Source code for openmdao.core.system

"""Define the base System class."""
import sys
import os
import hashlib
import pathlib
import time
import functools

from contextlib import contextmanager
from collections import defaultdict
from itertools import chain
from enum import IntEnum

from fnmatch import fnmatchcase

from numbers import Integral

import numpy as np

from openmdao.core.constants import _DEFAULT_COLORING_DIR, _DEFAULT_OUT_STREAM, \
    _UNDEFINED, INT_DTYPE, INF_BOUND, _SetupStatus
from openmdao.jacobians.jacobian import Jacobian
from openmdao.jacobians.assembled_jacobian import DenseJacobian, CSCJacobian
from openmdao.recorders.recording_manager import RecordingManager
from openmdao.vectors.vector import _full_slice
from openmdao.utils.mpi import MPI, multi_proc_exception_check
from openmdao.utils.options_dictionary import OptionsDictionary
from openmdao.utils.record_util import create_local_meta, check_path, has_match
from openmdao.utils.units import is_compatible, unit_conversion, simplify_unit
from openmdao.utils.variable_table import write_var_table, NA
from openmdao.utils.array_utils import evenly_distrib_idxs, shape_to_len
from openmdao.utils.name_maps import name2abs_name, name2abs_names
from openmdao.utils.coloring import _compute_coloring, Coloring, \
    _STD_COLORING_FNAME, _DEF_COMP_SPARSITY_ARGS, _ColSparsityJac
import openmdao.utils.coloring as coloring_mod
from openmdao.utils.indexer import indexer
from openmdao.utils.om_warnings import issue_warning, \
    DerivativesWarning, PromotionWarning, UnusedOptionWarning, UnitsWarning, warn_deprecation
from openmdao.utils.general_utils import determine_adder_scaler, \
    format_as_float_or_array, all_ancestors, match_prom_or_abs, \
    ensure_compatible, env_truthy, make_traceback, _is_slicer_op, _wrap_comm, _unwrap_comm, \
    _om_dump, SystemMetaclass
from openmdao.utils.file_utils import _get_outputs_dir
from openmdao.approximation_schemes.complex_step import ComplexStep
from openmdao.approximation_schemes.finite_difference import FiniteDifference

_empty_frozen_set = frozenset()

_asm_jac_types = {
    'csc': CSCJacobian,
    'dense': DenseJacobian,
}

# Suppored methods for derivatives
_supported_methods = {
    'fd': FiniteDifference,
    'cs': ComplexStep,
    'exact': None,
    'jax': None
}

_DEFAULT_COLORING_META = {
    'wrt_patterns': ('*',),  # patterns used to match wrt variables
    'method': 'fd',  # finite differencing method  ('fd' or 'cs')
    'wrt_matches': None,  # where matched wrt names are stored
    'per_instance': True,  # assume each instance can have a different coloring
    'coloring': None,  # this will contain the actual Coloring object
    'dynamic': False,  # True if dynamic coloring is being used
    'static': None,  # either _STD_COLORING_FNAME, a filename, or a Coloring object
                     # if use_fixed_coloring was called
}

_DEFAULT_COLORING_META.update(_DEF_COMP_SPARSITY_ARGS)

_recordable_funcs = frozenset(['_apply_linear', '_apply_nonlinear', '_solve_linear',
                               '_solve_nonlinear'])

# the following are local metadata that will also be accessible for vars on all procs
global_meta_names = {
    'input': ('units', 'shape', 'size', 'distributed', 'tags', 'desc',
              'shape_by_conn', 'compute_shape', 'copy_shape', 'require_connection'),
    'output': ('units', 'shape', 'size', 'desc',
               'ref', 'ref0', 'res_ref', 'distributed', 'lower', 'upper', 'tags',
               'shape_by_conn', 'compute_shape', 'copy_shape'),
}

allowed_meta_names = {
    'val',
    'global_shape',
    'global_size',
    'src_indices',
    'flat_src_indices',
    'type',
    'res_units',
}
allowed_meta_names.update(global_meta_names['input'])
allowed_meta_names.update(global_meta_names['output'])

resp_size_checks = {
    'con': ['ref', 'ref0', 'scaler', 'adder', 'upper', 'lower', 'equals'],
    'obj': ['ref', 'ref0', 'scaler', 'adder']
}
resp_types = {'con': 'constraint', 'obj': 'objective'}


class _MatchType(IntEnum):
    """
    Class used to define different types of promoted name matches.

    Attributes
    ----------
    NAME : int
        Literal name match.
    RENAME : int
        Rename match.
    PATTERN : int
        Glob pattern match.
    """

    NAME = 0
    RENAME = 1
    PATTERN = 2


class _OptStatus(IntEnum):
    """
    Class used to define different states during the optimization process.

    Attributes
    ----------
    PRE : int
        Before the optimization.
    OPTIMIZING : int
        During the optimization.
    POST : int
        After the optimization.
    """

    PRE = 0
    OPTIMIZING = 1
    POST = 2


[docs]def collect_errors(method): """ Decorate a method so that it will collect any exceptions for later display. Parameters ---------- method : method The method to be decorated. Returns ------- method The wrapped method. """ @functools.wraps(method) def wrapper(self, *args, **kwargs): try: return method(self, *args, **kwargs) except Exception: if env_truthy('OPENMDAO_FAIL_FAST'): raise type_exc, exc, tb = sys.exc_info() if isinstance(exc, KeyError) and self._get_saved_errors(): # it's likely the result of an earlier error, so ignore it return self._collect_error(str(exc), exc_type=type_exc, tback=tb) return wrapper
[docs]class System(object, metaclass=SystemMetaclass): """ Base class for all systems in OpenMDAO. Never instantiated; subclassed by <Group> or <Component>. In attribute names: abs: absolute, unpromoted variable name, seen from root (unique). rel: relative, unpromoted variable name, seen from current system (unique). prom: relative, promoted variable name, seen from current system (non-unique for inputs). Parameters ---------- num_par_fd : int If FD is active, number of concurrent FD solves. **kwargs : dict of keyword arguments Keyword arguments that will be mapped into the System options. Attributes ---------- name : str Name of the system, must be different from siblings. pathname : str Global name of the system, including the path. _comm : MPI.Comm or <FakeComm> MPI communicator object. options : OptionsDictionary options dictionary recording_options : OptionsDictionary Recording options dictionary _problem_meta : dict Problem level metadata. under_complex_step : bool When True, this system is undergoing complex step. under_finite_difference : bool When True, this system is undergoing finite differencing. iter_count : int Counts the number of times this system has called _solve_nonlinear. This also corresponds to the number of times that the system's outputs are recorded if a recorder is present. iter_count_apply : int Counts the number of times the system has called _apply_nonlinear. For ExplicitComponent, calls to apply_nonlinear also call compute, so number of executions can be found by adding this and iter_count together. Recorders do not record calls to apply_nonlinear. iter_count_without_approx : int Counts the number of times the system has iterated but excludes any that occur during approximation of derivatives. cite : str Listing of relevant citations that should be referenced when publishing work that uses this class. _full_comm : MPI.Comm or None MPI communicator object used when System's comm is split for parallel FD. _solver_print_cache : list Allows solver iprints to be set to requested values after setup calls. _subsystems_allprocs : dict Dict mapping subsystem name to SysInfo(system, index) for children of this system. _subsystems_myproc : [<System>, ...] List of local subsystems that exist on this proc. _var_promotes : { 'any': [], 'input': [], 'output': [] } Dictionary of lists of variable names/wildcards specifying promotion (used to calculate promoted names) _var_prom2inds : dict Maps promoted name to src_indices in scope of system. _var_allprocs_prom2abs_list : {'input': dict, 'output': dict} Dictionary mapping promoted names (continuous and discrete) to list of all absolute names. For outputs, the list will have length one since promoted output names are unique. _var_abs2prom : {'input': dict, 'output': dict} Dictionary mapping absolute names to promoted names, on current proc. Contains continuous and discrete variables. _var_allprocs_abs2prom : {'input': dict, 'output': dict} Dictionary mapping absolute names to promoted names, on all procs. Contains continuous and discrete variables. _var_allprocs_abs2meta : dict Dictionary mapping absolute names to metadata dictionaries for allprocs continuous variables. _var_abs2meta : dict Dictionary mapping absolute names to metadata dictionaries for myproc continuous variables. _var_discrete : dict Dictionary of discrete var metadata and values local to this process. _var_allprocs_discrete : dict Dictionary of discrete var metadata and values for all processes. _discrete_inputs : dict-like or None Storage for discrete input values. _discrete_outputs : dict-like or None Storage for discrete output values. _var_allprocs_abs2idx : dict Dictionary mapping absolute names to their indices among this system's allprocs variables. Therefore, the indices range from 0 to the total number of this system's variables. _var_sizes : {'input': ndarray, 'output': ndarray} Array of local sizes of this system's allprocs variables. The array has size nproc x num_var where nproc is the number of processors owned by this system and num_var is the number of allprocs variables. _owned_sizes : ndarray Array of local sizes for 'owned' or distributed vars only. _var_offsets : {<vecname>: {'input': dict of ndarray, 'output': dict of ndarray}, ...} or None Dict of distributed offsets, keyed by var name. Offsets are stored in an array of size nproc x num_var where nproc is the number of processors in this System's communicator and num_var is the number of allprocs variables in the given system. This is only defined in a Group that owns one or more interprocess connections or a top level Group that is used to compute total derivatives across multiple processes. _vars_to_gather : dict Contains names of non-distributed variables that are remote on at least one proc in the comm _conn_global_abs_in2out : {'abs_in': 'abs_out'} Dictionary containing all explicit & implicit connections (continuous and discrete) owned by this system or any descendant system. The data is the same across all processors. _vectors : {'input': dict, 'output': dict, 'residual': dict} Dictionaries of vectors keyed by vec_name. _inputs : <Vector> The nonlinear inputs vector. _outputs : <Vector> The nonlinear outputs vector. _residuals : <Vector> The nonlinear residuals vector. _dinputs : <Vector> The linear inputs vector. _doutputs : <Vector> The linear outputs vector. _dresiduals : <Vector> The linear residuals vector. _nonlinear_solver : <NonlinearSolver> Nonlinear solver to be used for solve_nonlinear. _linear_solver : <LinearSolver> Linear solver to be used for solve_linear; not the Newton system. _approx_schemes : dict A mapping of approximation types to the associated ApproximationScheme. _jacobian : <Jacobian> <Jacobian> object to be used in apply_linear. _owns_approx_jac : bool If True, this system approximated its Jacobian _owns_approx_jac_meta : dict Stores approximation metadata (e.g., step_size) from calls to approx_totals _owns_approx_of : list or None Overrides aproximation outputs. This is set when calculating system derivatives, and serves as a way to communicate the driver's output quantities to the approximation objects so that we only take derivatives of variables that the driver needs. _owns_approx_wrt : list or None Overrides aproximation inputs. This is set when calculating system derivatives, and serves as a way to communicate the driver's input quantities to the approximation objects so that we only take derivatives with respect to variables that the driver needs. _subjacs_info : dict of dict Sub-jacobian metadata for each (output, input) pair added using declare_partials. Members of each pair may be glob patterns. _approx_subjac_keys : list List of subjacobian keys used for approximated derivatives. _design_vars : dict of dict dict of all driver design vars added to the system. _responses : dict of dict dict of all driver responses added to the system. _rec_mgr : <RecordingManager> object that manages all recorders added to this system. _static_subsystems_allprocs : dict Dict of SysInfo(subsys, index) that stores all subsystems added outside of setup. _static_design_vars : dict of dict Driver design variables added outside of setup. _static_responses : dict of dict Driver responses added outside of setup. matrix_free : bool This is set to True if the component overrides the appropriate function with a user-defined matrix vector product with the Jacobian or any of its subsystems do. Note that the framework will not set the matrix_free flag correctly for Component instances having a matrix vector product function that is added dynamically (not declared as part of the class) and in that case the matrix_free flag must be set manually to True. _mode : str Indicates derivative direction for the model, either 'fwd' or 'rev'. _scope_cache : dict Cache for variables in the scope of various mat-vec products. _has_guess : bool True if this system has or contains a system with a `guess_nonlinear` method defined. _has_output_scaling : bool True if this system has output scaling. _has_output_adder : bool True if this system has scaling that includes an adder term. _has_resid_scaling : bool True if this system has resid scaling. _has_input_scaling : bool True if this system has input scaling. _has_input_adder : bool True if this system has scaling that includes an adder term. _has_bounds : bool True if this system has upper or lower bounds on outputs. _has_distrib_vars : bool If True, this System contains at least one distributed variable. Used to determine if a parallel group or distributed component is below a DirectSolver so that we can raise an exception. _owning_rank : dict Dict mapping var name to the lowest rank where that variable is local. _filtered_vars_to_record : Dict Dict of list of var names to record _vector_class : class Class to use for data vectors. After setup will contain the value of either _problem_meta['distributed_vector_class'] or _problem_meta['local_vector_class']. _assembled_jac : AssembledJacobian or None If not None, this is the AssembledJacobian owned by this system's linear_solver. _num_par_fd : int If FD is active, and the value is > 1, turns on parallel FD and specifies the number of concurrent FD solves. _par_fd_id : int ID used to determine which columns in the jacobian will be computed when using parallel FD. _has_approx : bool If True, this system or its descendent has declared approximated partial or semi-total derivatives. _coloring_info : tuple Metadata that defines how to perform coloring of this System's approx jacobian. Not used if this System does no partial or semi-total coloring. _first_call_to_linearize : bool If True, this is the first call to _linearize. _is_local : bool If True, this system is local to this mpi process. _tot_jac : __TotalJacInfo or None If a total jacobian is being computed and this is the top level System, this will be a reference to the _TotalJacInfo object. _saved_errors : list Temporary storage for any saved errors that occur before this System is assigned a parent Problem. _output_solver_options : dict or None Solver output options if set_output_solver_options has been called. _promotion_tree : dict Mapping of system path to promotion info indicating all subsystems where variables were promoted. _during_sparsity : bool If True, we're doing a sparsity computation and uncolored approxs need to be restricted to only colored columns. compute_primal : function or None Function that computes the primal for the given system. _jac_func_ : function or None Function that computes the jacobian using AD (jax). Not used if jax is not active. """
[docs] def __init__(self, num_par_fd=1, **kwargs): """ Initialize all attributes. """ self.name = '' self.pathname = None self._comm = None self._is_local = False # System options self.options = OptionsDictionary(parent_name=type(self).__name__) self.options.declare('assembled_jac_type', values=['csc', 'dense'], default='csc', desc='Linear solver(s) in this group or implicit component, ' 'if using an assembled jacobian, will use this type.') self.options.declare('derivs_method', default=None, values=['jax', 'cs', 'fd', None], desc='The method to use for computing derivatives') # Case recording options self.recording_options = OptionsDictionary(parent_name=type(self).__name__) self.recording_options.declare('record_inputs', types=bool, default=True, desc='Set to True to record inputs at the system level') self.recording_options.declare('record_outputs', types=bool, default=True, desc='Set to True to record outputs at the system level') self.recording_options.declare('record_residuals', types=bool, default=True, desc='Set to True to record residuals at the system level') self.recording_options.declare('includes', types=list, default=['*'], desc='Patterns for variables to include in recording. \ Uses fnmatch wildcards') self.recording_options.declare('excludes', types=list, default=[], desc='Patterns for vars to exclude in recording ' '(processed post-includes). Uses fnmatch wildcards') self.recording_options.declare('options_excludes', types=list, default=[], desc='User-defined metadata to exclude in recording') self._problem_meta = None # Counting iterations. self.iter_count = 0 self.iter_count_apply = 0 self.iter_count_without_approx = 0 self.cite = "" self._solver_print_cache = [] self._subsystems_allprocs = {} self._subsystems_myproc = [] self._vars_to_gather = {} self._var_promotes = {'input': [], 'output': [], 'any': []} self._var_allprocs_prom2abs_list = None self._var_prom2inds = {} self._var_abs2prom = {'input': {}, 'output': {}} self._var_allprocs_abs2prom = {'input': {}, 'output': {}} self._var_allprocs_abs2meta = {'input': {}, 'output': {}} self._var_abs2meta = {'input': {}, 'output': {}} self._var_discrete = {'input': {}, 'output': {}} self._var_allprocs_discrete = {'input': {}, 'output': {}} self._var_allprocs_abs2idx = {} self._var_sizes = None self._owned_sizes = None self._var_offsets = None self._full_comm = None self._vectors = {} self._inputs = None self._outputs = None self._residuals = None self._dinputs = None self._doutputs = None self._dresiduals = None self._discrete_inputs = None self._discrete_outputs = None self._nonlinear_solver = None self._linear_solver = None self._jacobian = None self._approx_schemes = {} self._subjacs_info = {} self._approx_subjac_keys = None self.matrix_free = _UNDEFINED self._owns_approx_jac = False self._owns_approx_jac_meta = {} self._owns_approx_wrt = None self._owns_approx_of = None self.under_complex_step = False self.under_finite_difference = False self._design_vars = {} self._responses = {} self._rec_mgr = RecordingManager() self._conn_global_abs_in2out = {} self._static_subsystems_allprocs = {} self._static_design_vars = {} self._static_responses = {} self._scope_cache = {} self._num_par_fd = num_par_fd self._declare_options() self.initialize() self.options.update(kwargs) self._has_guess = False self._has_output_scaling = False self._has_output_adder = False self._has_resid_scaling = False self._has_input_scaling = False self._has_input_adder = False self._has_bounds = False self._has_distrib_vars = False self._has_approx = False self._vector_class = None self._assembled_jac = None self._par_fd_id = 0 self._filtered_vars_to_record = {} self._owning_rank = None self._coloring_info = coloring_mod.Partial_ColoringMeta() self._first_call_to_linearize = True # will check in first call to _linearize self._tot_jac = None self._saved_errors = None if env_truthy('OPENMDAO_FAIL_FAST') else [] self._output_solver_options = {} self._promotion_tree = None self._during_sparsity = False if not hasattr(self, 'compute_primal'): self.compute_primal = None self._jac_func_ = None # for computing jacobian using AD (jax)
if _om_dump: @property def comm(self): """ Return the wrapped MPI communicator object for the system. Returns ------- DebugComm Wrapped MPI communicator object. """ return _wrap_comm(self._comm, self.msginfo) @comm.setter def comm(self, comm): """ Set the MPI communicator object for the system. Parameters ---------- comm : MPI.Comm or DebugComm Wrapped or unwrapped MPI communicator object. """ self._comm = _unwrap_comm(comm) else: @property def comm(self): """ Return the MPI communicator object for the system. Returns ------- MPI.Comm MPI communicator object. """ return self._comm @comm.setter def comm(self, comm): """ Set the MPI communicator object for the system. Parameters ---------- comm : MPI.Comm MPI communicator object. """ self._comm = comm @property def under_approx(self): """ Return True if under complex step or finite difference. Returns ------- bool True if under CS or FD. """ return self.under_complex_step or self.under_finite_difference @property def msginfo(self): """ Our instance pathname, if available, or our class name. For use in error messages. Returns ------- str Either our instance pathname or class name. """ if self.pathname is not None: if self.pathname == '': return f"<model> <class {type(self).__name__}>" return f"'{self.pathname}' <class {type(self).__name__}>" if self.name: return f"'{self.name}' <class {type(self).__name__}>" return f"<class {type(self).__name__}>" def _get_inst_id(self): return self.pathname if self.pathname is not None else ''
[docs] def abs_name_iter(self, iotype, local=True, cont=True, discrete=False): """ Iterate over absolute variable names for this System. By setting appropriate values for 'cont' and 'discrete', yielded variable names can be continuous only, discrete only, or both. Parameters ---------- iotype : str Either 'input' or 'output'. local : bool If True, include only names of local variables. Default is True. cont : bool If True, include names of continuous variables. Default is True. discrete : bool If True, include names of discrete variables. Default is False. Yields ------ str """ if cont: if local: yield from self._var_abs2meta[iotype] else: yield from self._var_allprocs_abs2meta[iotype] if discrete: if local: prefix = self.pathname + '.' if self.pathname else '' for name in self._var_discrete[iotype]: yield prefix + name else: yield from self._var_allprocs_discrete[iotype]
[docs] def abs_meta_iter(self, iotype, local=True, cont=True, discrete=False): """ Iterate over absolute variable names and their metadata for this System. By setting appropriate values for 'cont' and 'discrete', yielded variable names can be continuous only, discrete only, or both. Parameters ---------- iotype : str Either 'input' or 'output'. local : bool If True, include only names of local variables. Default is True. cont : bool If True, include names of continuous variables. Default is True. discrete : bool If True, include names of discrete variables. Default is False. Yields ------ str, dict """ if cont: if local: yield from self._var_abs2meta[iotype].items() else: yield from self._var_allprocs_abs2meta[iotype].items() if discrete: if local: prefix = self.pathname + '.' if self.pathname else '' for name, meta in self._var_discrete[iotype].items(): yield prefix + name, meta else: yield from self._var_allprocs_discrete[iotype].items()
def _jac_of_iter(self): """ Iterate over (name, offset, end, slice, dist_sizes) for each 'of' (row) var in the jacobian. The slice is internal to the given variable in the result, and this is always a full slice except when indices are defined for the 'of' variable. Yields ------ str Name of 'of' variable. int Starting index. int Ending index. slice or ndarray A full slice or indices for the 'of' variable. ndarray or None Distributed sizes if var is distributed else None """ toidx = self._var_allprocs_abs2idx sizes = self._var_sizes['output'] total = self.pathname == '' szname = 'global_size' if total else 'size' start = end = 0 for of, meta in self._var_abs2meta['output'].items(): end += meta[szname] yield of, start, end, _full_slice, sizes[:, toidx[of]] if meta['distributed'] else None start = end def _jac_wrt_iter(self, wrt_matches=None): """ Iterate over (name, offset, end, vec, slc, dist_sizes) for each column var in the jacobian. Parameters ---------- wrt_matches : set or None Only include row vars that are contained in this set. This will determine what the actual offsets are, i.e. the offsets will be into a reduced jacobian containing only the matching columns. Yields ------ str Name of 'wrt' variable. int Starting index. int Ending index. Vector or None Either the _outputs or _inputs vector if var is local else None. slice A full slice. ndarray or None Distributed sizes if var is distributed else None """ toidx = self._var_allprocs_abs2idx sizes_in = self._var_sizes['input'] tometa_in = self._var_allprocs_abs2meta['input'] local_ins = self._var_abs2meta['input'] local_outs = self._var_abs2meta['output'] total = self.pathname == '' szname = 'global_size' if total else 'size' start = end = 0 for of, _start, _end, _, dist_sizes in self._jac_of_iter(): if wrt_matches is None or of in wrt_matches: end += (_end - _start) vec = self._outputs if of in local_outs else None yield of, start, end, vec, _full_slice, dist_sizes start = end for wrt, meta in self._var_abs2meta['input'].items(): if wrt_matches is None or wrt in wrt_matches: end += meta[szname] vec = self._inputs if wrt in local_ins else None dist_sizes = sizes_in[:, toidx[wrt]] if tometa_in[wrt]['distributed'] else None yield wrt, start, end, vec, _full_slice, dist_sizes start = end def _declare_options(self): """ Declare options before kwargs are processed in the init method. This is optionally implemented by subclasses of Component or Group that themselves are intended to be subclassed by the end user. The options of the intermediate class are declared here leaving the `initialize` method available for user-defined options. """ pass def _have_output_solver_options_been_applied(self): """ Check to see if the cached output solver options were applied. """ for subsys in self.system_iter(include_self=True, recurse=True): if subsys._output_solver_options: # If options dict not empty, has not been applied return False # No need to look for more return True
[docs] def set_output_solver_options(self, name, lower=_UNDEFINED, upper=_UNDEFINED, ref=_UNDEFINED, ref0=_UNDEFINED, res_ref=_UNDEFINED): """ Set solver output options. Allows the user to set output solver options after the output has been defined and metadata set using the add_ouput method. Parameters ---------- name : str Name of the variable in this system's namespace. lower : float or list or tuple or ndarray or None Lower bound(s) in user-defined units. It can be (1) a float, (2) an array_like consistent with the shape arg (if given), or (3) an array_like matching the shape of val, if val is array_like. A value of None means this output has no lower bound. Default is None. upper : float or list or tuple or ndarray or None Upper bound(s) in user-defined units. It can be (1) a float, (2) an array_like consistent with the shape arg (if given), or (3) an array_like matching the shape of val, if val is array_like. A value of None means this output has no upper bound. Default is None. ref : float Scaling parameter. The value in the user-defined units of this output variable when the scaled value is 1. Default is 1. ref0 : float Scaling parameter. The value in the user-defined units of this output variable when the scaled value is 0. Default is 0. res_ref : float Scaling parameter. The value in the user-defined res_units of this output's residual when the scaled value is 1. Default is None, which means residual scaling matches output scaling. """ # Cache the solver options for use later in the setup process. # Since this can be called before setup, there is no way to update the # self._var_allprocs_abs2meta['output'] values since those have not been setup yet. # These values are applied in the System._apply_output_solver_options method # which is called in System._setup. That method is only called by the top model. output_solver_options = {} if lower is not _UNDEFINED: output_solver_options['lower'] = lower if upper is not _UNDEFINED: output_solver_options['upper'] = upper if ref is not _UNDEFINED: output_solver_options['ref'] = ref if ref0 is not _UNDEFINED: output_solver_options['ref0'] = ref0 if res_ref is not _UNDEFINED: output_solver_options['res_ref'] = res_ref self._output_solver_options[name] = output_solver_options return
def _apply_output_solver_options(self): """ Apply the cached output solver options. Solver options can be set using the System.set_output_solver_options method. These cannot be set immediately when that method is called because not all the variables have been setup at the time a user could potentially want to call it. So they are cached so that they can be applied later in the setup process. They are applied in System._setup using this method. """ # Loop through the output solver options that have been set on this System prefix = self.pathname + '.' if self.pathname else '' for name, options in self._output_solver_options.items(): subsys_path = name.rpartition('.')[0] subsys = self._get_subsystem(subsys_path) if subsys_path else self abs_name = prefix + name # Will need to set both of these dicts to keep them both up-to-date # _var_allprocs_abs2meta is a partial copy of _var_abs2meta abs2meta = subsys._var_abs2meta['output'] allprocs_abs2meta = subsys._var_allprocs_abs2meta['output'] if abs_name not in abs2meta: raise RuntimeError( f"Output solver options set using System.set_output_solver_options for " f"non-existent variable '{abs_name}' in System '{self.pathname}'.") metadatadict_abs2meta = abs2meta[abs_name] metadatadict_allprocs_abs2meta = allprocs_abs2meta[abs_name] # Update the metadata that was set for meta_key in options: if options[meta_key] is None: val_as_float_or_array_or_none = None else: shape = metadatadict_abs2meta['shape'] val = ensure_compatible(name, options[meta_key], shape)[0] val_as_float_or_array_or_none = format_as_float_or_array(meta_key, val, flatten=True) # Setting both here because the copying of _var_abs2meta to # _var_allprocs_abs2meta happens before this. Need to keep both up to date metadatadict_abs2meta.update({ meta_key: val_as_float_or_array_or_none, }) metadatadict_allprocs_abs2meta.update({ meta_key: val_as_float_or_array_or_none, }) # recalculate the _has scaling and bounds vars (_has_output_scaling, _has_output_adder, # _has_resid_scaling, _has_bounds ) across all outputs. # Since you are allowed to reference multiple subsystems from set_output_solver_options, # need to loop over all of the ones that got modified by those calls. # Loop over all the options set. Each one of these could be referencing a different # subsystem since the name could be a path for name, options in self._output_solver_options.items(): subsys_path = name.rpartition('.')[0] subsys = self._get_subsystem(subsys_path) if subsys_path else self # Now that we know which subsystem was affected. We have to recalculate # _has_output_scaling, _has_output_adder, _has_resid_scaling, _has_bounds # across all the outputs of that subsystem, since the changes might have # affected their values subsys._has_output_scaling = False subsys._has_output_adder = False subsys._has_resid_scaling = False subsys._has_bounds = False abs2meta = subsys._var_abs2meta['output'] for abs_name, metadata in abs2meta.items(): # Loop over all outputs for that subsystem ref = metadata['ref'] if np.isscalar(ref): subsys._has_output_scaling |= ref != 1.0 else: subsys._has_output_scaling |= np.any(ref != 1.0) ref0 = metadata['ref0'] if np.isscalar(ref0): subsys._has_output_scaling |= ref0 != 0.0 subsys._has_output_adder |= ref0 != 0.0 else: subsys._has_output_scaling |= np.any(ref0) subsys._has_output_adder |= np.any(ref0) res_ref = metadata['res_ref'] if np.isscalar(res_ref): subsys._has_resid_scaling |= res_ref != 1.0 else: subsys._has_resid_scaling |= np.any(res_ref != 1.0) if metadata['lower'] is not None or metadata['upper'] is not None: subsys._has_bounds = True # Clear the cached to indicate that the cached values have been applied self._output_solver_options = {}
[docs] def set_design_var_options(self, name, lower=_UNDEFINED, upper=_UNDEFINED, scaler=_UNDEFINED, adder=_UNDEFINED, ref=_UNDEFINED, ref0=_UNDEFINED): """ Set options for design vars in the model. Can be used to set the options outside of setting them when calling add_design_var Parameters ---------- name : str Name of the variable in this system's namespace. lower : float or ndarray, optional Lower boundary for the input. upper : upper or ndarray, optional Upper boundary for the input. scaler : float or ndarray, optional Value to multiply the model value to get the scaled value for the driver. scaler is second in precedence. adder and scaler are an alterantive to using ref and ref0. adder : float or ndarray, optional Value to add to the model value to get the scaled value for the driver. adder is first in precedence. adder and scaler are an alterantive to using ref and ref0. ref : float or ndarray, optional Value of design var that scales to 1.0 in the driver. ref0 : float or ndarray, optional Value of design var that scales to 0.0 in the driver. """ # Check inputs # Name must be a string if not isinstance(name, str): raise TypeError('{}: The name argument should be a string, got {}'.format(self.msginfo, name)) are_new_bounds = lower is not _UNDEFINED or upper is not _UNDEFINED are_new_scaling = scaler is not _UNDEFINED or adder is not _UNDEFINED or ref is not \ _UNDEFINED or ref0 is not _UNDEFINED # Must set at least one argument for this function to do something if not are_new_scaling and not are_new_bounds: raise RuntimeError( 'Must set a value for at least one argument in call to set_design_var_options.') if self._static_mode: design_vars = self._static_design_vars else: design_vars = self._design_vars if name not in design_vars: msg = "{}: set_design_var_options called with design variable '{}' that does not exist." raise RuntimeError(msg.format(self.msginfo, name)) existing_dv_meta = design_vars[name] are_existing_scaling = existing_dv_meta['scaler'] is not None or \ existing_dv_meta['adder'] is not None or \ existing_dv_meta['ref'] is not None or \ existing_dv_meta['ref0'] is not None are_existing_bounds = existing_dv_meta['lower'] is not None or \ existing_dv_meta['upper'] is not None # figure out the bounds (lower, upper) based on what is passed to this # method and what were the existing bounds if are_new_bounds: # wipe out all the bounds and only use what is set by the arguments to this call if lower is _UNDEFINED: lower = None if upper is _UNDEFINED: upper = None else: lower = existing_dv_meta['lower'] upper = existing_dv_meta['upper'] if are_new_scaling and are_existing_scaling and are_existing_bounds and not are_new_bounds: # need to unscale bounds using the existing scaling so the new scaling can # be applied. But if no new bounds, no need to if lower is not None: lower = lower / existing_dv_meta['scaler'] - existing_dv_meta['adder'] if upper is not None: upper = upper / existing_dv_meta['scaler'] - existing_dv_meta['adder'] # Now figure out scaling if are_new_scaling: if scaler is _UNDEFINED: scaler = None if adder is _UNDEFINED: adder = None if ref is _UNDEFINED: ref = None if ref0 is _UNDEFINED: ref0 = None else: scaler = existing_dv_meta['scaler'] adder = existing_dv_meta['adder'] ref = existing_dv_meta['ref'] ref0 = existing_dv_meta['ref0'] # Convert ref/ref0 to ndarray/float as necessary ref = format_as_float_or_array('ref', ref, val_if_none=None, flatten=True) ref0 = format_as_float_or_array('ref0', ref0, val_if_none=None, flatten=True) # determine adder and scaler based on args adder, scaler = determine_adder_scaler(ref0, ref, adder, scaler) if lower is None: # if not set, set lower to -INF_BOUND and don't apply adder/scaler lower = -INF_BOUND else: # Convert lower to ndarray/float as necessary lower = format_as_float_or_array('lower', lower, flatten=True) # Apply scaler/adder lower = (lower + adder) * scaler if upper is None: # if not set, set upper to INF_BOUND and don't apply adder/scaler upper = INF_BOUND else: # Convert upper to ndarray/float as necessary upper = format_as_float_or_array('upper', upper, flatten=True) # Apply scaler/adder upper = (upper + adder) * scaler if isinstance(scaler, np.ndarray): if np.all(scaler == 1.0): scaler = None elif scaler == 1.0: scaler = None if isinstance(adder, np.ndarray): if not np.any(adder): adder = None elif adder == 0.0: adder = None # Put together a dict of the new values so they can be used to update the metadata for # this var new_desvar_metadata = { 'scaler': scaler, 'total_scaler': scaler, 'adder': adder, 'total_adder': adder, 'upper': upper, 'lower': lower, 'ref': ref, 'ref0': ref0, } design_vars[name].update(new_desvar_metadata)
[docs] def set_constraint_options(self, name, ref=_UNDEFINED, ref0=_UNDEFINED, equals=_UNDEFINED, lower=_UNDEFINED, upper=_UNDEFINED, adder=_UNDEFINED, scaler=_UNDEFINED, alias=_UNDEFINED): """ Set options for constraints in the model. Can be used to set options that were set using add_constraint. Parameters ---------- name : str Name of the response variable in the system, or alias if given. ref : float or ndarray, optional Value of response variable that scales to 1.0 in the driver. ref0 : float or ndarray, optional Value of response variable that scales to 0.0 in the driver. equals : float or ndarray, optional Equality constraint value for the variable. lower : float or ndarray, optional Lower boundary for the variable. upper : float or ndarray, optional Upper boundary for the variable. adder : float or ndarray, optional Value to add to the model value to get the scaled value for the driver. adder is first in precedence. adder and scaler are an alterantive to using ref and ref0. scaler : float or ndarray, optional Value to multiply the model value to get the scaled value for the driver. scaler is second in precedence. adder and scaler are an alterantive to using ref and ref0. alias : str, optional Alias for this response. Necessary when adding multiple constraints on different indices or slices of a single variable. """ # Check inputs if not isinstance(name, str): raise TypeError('{}: The name argument should be a string, ' 'got {}'.format(self.msginfo, name)) if alias is not _UNDEFINED: warn_deprecation("Option 'alias' of set_constraint_options is deprecated. " "If the constraint has an alias, provide that as the " "'name' argument to set_constraint_options.") name = alias are_new_bounds = equals is not _UNDEFINED or lower is not _UNDEFINED or upper is not \ _UNDEFINED are_new_scaling = scaler is not _UNDEFINED or adder is not _UNDEFINED or \ ref is not _UNDEFINED or ref0 is not _UNDEFINED # At least one of the scaling or bounds parameters must be set or function won't do anything if not are_new_scaling and not are_new_bounds: raise RuntimeError( 'Must set a value for at least one argument in call to set_constraint_options.') # A constraint cannot be an equality and inequality constraint if equals is not _UNDEFINED and (lower is not _UNDEFINED or upper is not _UNDEFINED): msg = "{}: Constraint '{}' cannot be both equality and inequality." raise ValueError(msg.format(self.msginfo, name)) if self._static_mode and self._static_responses: responses = self._static_responses else: responses = self._responses if name not in responses: msg = f"{self.msginfo}: set_constraint_options called with " \ f"constraint '{name}' that does not exist. If the constraint was provided " \ f"an alias, use that in place of its name for set_constraint_options." raise RuntimeError(msg) existing_cons_meta = responses[name] are_existing_scaling = existing_cons_meta['scaler'] is not None or \ existing_cons_meta['adder'] is not None or \ existing_cons_meta['ref'] is not None or \ existing_cons_meta['ref0'] is not None are_existing_bounds = existing_cons_meta['equals'] is not None or \ existing_cons_meta['lower'] is not None or \ existing_cons_meta['upper'] is not None # figure out the bounds (equals, lower, upper) based on what is passed to this # method and what were the existing bounds if are_new_bounds: # wipe the slate clean and only use what is set by the arguments to this call if equals is _UNDEFINED: equals = None if lower is _UNDEFINED: lower = None if upper is _UNDEFINED: upper = None else: equals = existing_cons_meta['equals'] lower = existing_cons_meta['lower'] upper = existing_cons_meta['upper'] if are_new_scaling and are_existing_scaling and are_existing_bounds and not are_new_bounds: # need to unscale bounds using the existing scaling so the new scaling can # be applied if lower is not None: lower = lower / existing_cons_meta['scaler'] - existing_cons_meta['adder'] if upper is not None: upper = upper / existing_cons_meta['scaler'] - existing_cons_meta['adder'] if equals is not None: equals = equals / existing_cons_meta['scaler'] - existing_cons_meta['adder'] # Now figure out scaling if are_new_scaling: if scaler is _UNDEFINED: scaler = None if adder is _UNDEFINED: adder = None if ref is _UNDEFINED: ref = None if ref0 is _UNDEFINED: ref0 = None else: scaler = existing_cons_meta['scaler'] adder = existing_cons_meta['adder'] ref = existing_cons_meta['ref'] ref0 = existing_cons_meta['ref0'] # Convert ref/ref0 to ndarray/float as necessary ref = format_as_float_or_array('ref', ref, val_if_none=None, flatten=True) ref0 = format_as_float_or_array('ref0', ref0, val_if_none=None, flatten=True) # determine adder and scaler based on args adder, scaler = determine_adder_scaler(ref0, ref, adder, scaler) # Convert lower to ndarray/float as necessary try: if lower is None: # don't apply adder/scaler if lower not set lower = -INF_BOUND else: lower = format_as_float_or_array('lower', lower, flatten=True) if lower != - INF_BOUND: lower = (lower + adder) * scaler except (TypeError, ValueError): raise TypeError("Argument 'lower' can not be a string ('{}' given). You can not " "specify a variable as lower bound. You can only provide constant " "float values".format(lower)) # Convert upper to ndarray/float as necessary try: if upper is None: # don't apply adder/scaler if upper not set upper = INF_BOUND else: upper = format_as_float_or_array('upper', upper, flatten=True) if upper != INF_BOUND: upper = (upper + adder) * scaler except (TypeError, ValueError): raise TypeError("Argument 'upper' can not be a string ('{}' given). You can not " "specify a variable as upper bound. You can only provide constant " "float values".format(upper)) # Convert equals to ndarray/float as necessary if equals is not None: try: equals = format_as_float_or_array('equals', equals, flatten=True) except (TypeError, ValueError): raise TypeError("Argument 'equals' can not be a string ('{}' given). You can " "not specify a variable as equals bound. You can only provide " "constant float values".format(equals)) equals = (equals + adder) * scaler if isinstance(scaler, np.ndarray): if np.all(scaler == 1.0): scaler = None elif scaler == 1.0: scaler = None if isinstance(adder, np.ndarray): if not np.any(adder): adder = None elif adder == 0.0: adder = None new_cons_metadata = { 'ref': ref, 'ref0': ref0, 'equals': equals, 'lower': lower, 'upper': upper, 'adder': adder, 'total_adder': adder, 'scaler': scaler, 'total_scaler': scaler, } responses[name].update(new_cons_metadata)
[docs] def set_objective_options(self, name, ref=_UNDEFINED, ref0=_UNDEFINED, adder=_UNDEFINED, scaler=_UNDEFINED, alias=_UNDEFINED): """ Set options for objectives in the model. Can be used to set options after they have been set by add_objective. Parameters ---------- name : str Name of the response variable in the system, or alias if given. ref : float or ndarray, optional Value of response variable that scales to 1.0 in the driver. ref0 : float or ndarray, optional Value of response variable that scales to 0.0 in the driver. adder : float or ndarray, optional Value to add to the model value to get the scaled value for the driver. adder is first in precedence. adder and scaler are an alterantive to using ref and ref0. scaler : float or ndarray, optional Value to multiply the model value to get the scaled value for the driver. scaler is second in precedence. adder and scaler are an alterantive to using ref and ref0. alias : str Alias for this response. Used to disambiguate variable names when adding multiple objectives on different indices or slices of a single variable. Deprecated. """ # Check inputs # Name must be a string if not isinstance(name, str): raise TypeError(f'{self.msginfo}: The name argument should be a string, got {name}') if alias is not _UNDEFINED: warn_deprecation("Option 'alias' of set_objective_options is deprecated. " "If the objective has an alias, provide that as the 'name' " "argument to set_objective_options.") name = alias # At least one of the scaling parameters must be set or function does nothing if scaler is _UNDEFINED and adder is _UNDEFINED and ref is _UNDEFINED and ref0 == \ _UNDEFINED: raise RuntimeError( 'Must set a value for at least one argument in call to set_objective_options.') if self._static_mode and self._static_responses: responses = self._static_responses else: responses = self._responses # If the name is not in responses, which are keyed by alias, then it was given # as the actual variable name but the variable has a different alias. if name not in responses: msg = f"{self.msginfo}: set_objective_options called with " \ f"objective '{name}' that does not exist. If the objective was provided " \ f"an alias, use that in place of its name for set_objective_options." raise RuntimeError(msg) # Since one or more of these are being set by the incoming arguments, the # ones that are not being set should be set to None since they will be re-computed below if scaler is _UNDEFINED: scaler = None if adder is _UNDEFINED: adder = None if ref is _UNDEFINED: ref = None if ref0 is _UNDEFINED: ref0 = None # Convert ref/ref0 to ndarray/float as necessary ref = format_as_float_or_array('ref', ref, val_if_none=None, flatten=True) ref0 = format_as_float_or_array('ref0', ref0, val_if_none=None, flatten=True) # determine adder and scaler based on args adder, scaler = determine_adder_scaler(ref0, ref, adder, scaler) if isinstance(scaler, np.ndarray): if np.all(scaler == 1.0): scaler = None elif scaler == 1.0: scaler = None if isinstance(adder, np.ndarray): if not np.any(adder): adder = None elif adder == 0.0: adder = None new_obj_metadata = { 'ref': ref, 'ref0': ref0, 'adder': adder, 'total_adder': adder, 'scaler': scaler, 'total_scaler': scaler, } responses[name].update(new_obj_metadata)
[docs] def initialize(self): """ Perform any one-time initialization run at instantiation. """ pass
def _configure(self): """ Configure this system to assign children settings. """ pass def _get_approx_scheme(self, method): """ Return the approximation scheme associated with the given method, creating one if needed. Parameters ---------- method : str Name of the type of approxmation scheme. Returns ------- ApproximationScheme The ApproximationScheme associated with the given method. """ if method == 'exact': return None if method not in _supported_methods: msg = '{}: Method "{}" is not supported, method must be one of {}' raise ValueError(msg.format(self.msginfo, method, [m for m in _supported_methods if m != 'exact'])) if method not in self._approx_schemes: self._approx_schemes[method] = _supported_methods[method]() return self._approx_schemes[method]
[docs] def get_source(self, name): """ Return the source variable connected to the given named variable. The name can be a promoted name or an absolute name. If the given variable is an input, the absolute name of the connected source will be returned. If the given variable itself is a source, its own absolute name will be returned. Parameters ---------- name : str Absolute or promoted name of the variable. Returns ------- str The absolute name of the source variable. """ try: prom2abs = self._problem_meta['prom2abs'] except Exception: raise RuntimeError(f"{self.msginfo}: get_source cannot be called for variable {name} " "before Problem.setup has been called.") if name in prom2abs['output']: return prom2abs['output'][name][0] if name in prom2abs['input']: name = prom2abs['input'][name][0] model = self._problem_meta['model_ref']() if name in model._conn_global_abs_in2out: return model._conn_global_abs_in2out[name] raise KeyError(f"{self.msginfo}: source for '{name}' not found.")
def _get_graph_node_meta(self): """ Return metadata to add to this system's graph node. Returns ------- dict Metadata for this system's graph node. """ return { 'classname': type(self).__name__, 'implicit': not self.is_explicit(), } def _setup_check(self): """ Do any error checking on user's setup, before any other recursion happens. """ pass def _configure_check(self): """ Do any error checking on i/o and connections. """ pass def _get_approx_subjac_keys(self): """ Return a list of (of, wrt) keys needed for approx derivs for this system. All keys are absolute names. If this system is the top level Group, the keys will be source names. If not, they will be absolute input and output names. Returns ------- list List of approx derivative subjacobian keys. """ if self._approx_subjac_keys is None: self._approx_subjac_keys = list(self._approx_subjac_keys_iter()) return self._approx_subjac_keys
[docs] def use_fixed_coloring(self, coloring=_STD_COLORING_FNAME, recurse=True): """ Use a precomputed coloring for this System. Parameters ---------- coloring : str A coloring filename. If no arg is passed, filename will be determined automatically. recurse : bool If True, set fixed coloring in all subsystems that declare a coloring. Ignored if a specific coloring is passed in. """ if coloring_mod._force_dyn_coloring and coloring is _STD_COLORING_FNAME: self._coloring_info.dynamic = True return # don't use static this time self._coloring_info.static = coloring self._coloring_info.dynamic = False if coloring is not _STD_COLORING_FNAME: if recurse: issue_warning('recurse was passed to use_fixed_coloring but a specific coloring ' 'was set, so recurse was ignored.', prefix=self.pathname, category=UnusedOptionWarning) if isinstance(coloring, Coloring): approx = self._get_approx_scheme(coloring._meta['method']) # force regen of approx groups on next call to compute_approximations approx._reset() return if recurse: for s in self._subsystems_myproc: s.use_fixed_coloring(coloring, recurse)
[docs] def declare_coloring(self, wrt=_DEFAULT_COLORING_META['wrt_patterns'], method=_DEFAULT_COLORING_META['method'], form=None, step=None, per_instance=_DEFAULT_COLORING_META['per_instance'], num_full_jacs=_DEFAULT_COLORING_META['num_full_jacs'], tol=_DEFAULT_COLORING_META['tol'], orders=_DEFAULT_COLORING_META['orders'], perturb_size=_DEFAULT_COLORING_META['perturb_size'], min_improve_pct=_DEFAULT_COLORING_META['min_improve_pct'], show_summary=_DEFAULT_COLORING_META['show_summary'], show_sparsity=_DEFAULT_COLORING_META['show_sparsity']): """ Set options for deriv coloring of a set of wrt vars matching the given pattern(s). Parameters ---------- wrt : str or list of str The name or names of the variables that derivatives are taken with respect to. This can contain input names, output names, or glob patterns. method : str Method used to compute derivative: "fd" for finite difference, "cs" for complex step. form : str Finite difference form, can be "forward", "central", or "backward". Leave undeclared to keep unchanged from previous or default value. step : float Step size for finite difference. Leave undeclared to keep unchanged from previous or default value. per_instance : bool If True, a separate coloring will be generated for each instance of a given class. Otherwise, only one coloring for a given class will be generated and all instances of that class will use it. num_full_jacs : int Number of times to repeat partial jacobian computation when computing sparsity. tol : float Tolerance used to determine if an array entry is nonzero during sparsity determination. orders : int Number of orders above and below the tolerance to check during the tolerance sweep. perturb_size : float Size of input/output perturbation during generation of sparsity. min_improve_pct : float If coloring does not improve (decrease) the number of solves more than the given percentage, coloring will not be used. show_summary : bool If True, display summary information after generating coloring. show_sparsity : bool If True, plot sparsity with coloring info after generating coloring. """ if method not in ('fd', 'cs', 'jax'): raise RuntimeError( "{}: method must be one of ['fd', 'cs', 'jax'].".format(self.msginfo)) self._has_approx = True # start with defaults options = coloring_mod.Partial_ColoringMeta() if method != 'jax': approx = self._get_approx_scheme(method) options.update({k: v for k, v in approx.DEFAULT_OPTIONS.items() if k in ('step', 'form')}) if self._coloring_info.static is None: options.dynamic = True else: options.dynamic = False options.static = self._coloring_info.static options.coloring = self._coloring_info.coloring if isinstance(wrt, str): options.wrt_patterns = (wrt, ) else: options.wrt_patterns = tuple(wrt) options.method = method options.per_instance = per_instance options.num_full_jacs = num_full_jacs options.tol = tol options.orders = orders options.perturb_size = perturb_size options.min_improve_pct = min_improve_pct options.show_summary = show_summary options.show_sparsity = show_sparsity if form is not None: options.form = form if step is not None: options.step = step self._coloring_info = options
def _finalize_coloring(self, coloring, info, sp_info, sparsity_time): # if the improvement wasn't large enough, don't use coloring info.set_coloring(coloring, msginfo=self.msginfo) if info._failed: if not info.per_instance: # save the class coloring for so resources won't be wasted computing # a bad coloring fname = self.get_coloring_fname(mode='output') coloring_mod._CLASS_COLORINGS[fname] = None return False sp_info['sparsity_time'] = sparsity_time sp_info['pathname'] = self.pathname sp_info['class'] = type(self).__name__ sp_info['type'] = 'semi-total' if self._subsystems_allprocs else 'partial' ordered_wrt_info = list(self._jac_wrt_iter(info.wrt_matches)) ordered_of_info = list(self._jac_of_iter()) if self.pathname: ordered_of_info = self._jac_var_info_abs2prom(ordered_of_info) ordered_wrt_info = self._jac_var_info_abs2prom(ordered_wrt_info) coloring._row_vars = [t[0] for t in ordered_of_info] coloring._col_vars = [t[0] for t in ordered_wrt_info] coloring._row_var_sizes = [t[2] - t[1] for t in ordered_of_info] coloring._col_var_sizes = [t[2] - t[1] for t in ordered_wrt_info] coloring._meta.update(info) # save metadata we used to create the coloring coloring._meta.update(sp_info) if info.show_sparsity or info.show_summary: print("\nColoring for '%s' (class %s)" % (self.pathname, type(self).__name__)) info.display() self._save_coloring(coloring) if not info.per_instance: # save the class coloring for other instances of this class to use ofname = self.get_coloring_fname(mode='output') coloring_mod._CLASS_COLORINGS[ofname] = coloring return True
[docs] def compute_sparsity(self): """ Compute the sparsity of the partial jacobian. Returns ------- coo_matrix The sparsity matrix. dict Metadata about the sparsity computation. """ use_jax = self.options['derivs_method'] == 'jax' if not use_jax: approx_scheme = self._get_approx_scheme(self._coloring_info['method']) save_first_call = self._first_call_to_linearize self._first_call_to_linearize = False # for groups, this does some setup of approximations self._setup_approx_coloring() # tell approx scheme to limit itself to only colored columns if not use_jax: approx_scheme._reset() self._during_sparsity = True self._coloring_info._update_wrt_matches(self) save_jac = self._jacobian # use special sparse jacobian to collect sparsity info self._jacobian = _ColSparsityJac(self, self._coloring_info) from openmdao.core.group import Group is_total = isinstance(self, Group) is_explicit = self.is_explicit() # compute perturbations starting_inputs = self._inputs.asarray(copy=True) in_offsets = starting_inputs.copy() in_offsets[in_offsets == 0.0] = 1.0 in_offsets *= self._coloring_info['perturb_size'] starting_outputs = self._outputs.asarray(copy=True) if not is_explicit: out_offsets = starting_outputs.copy() out_offsets[out_offsets == 0.0] = 1.0 out_offsets *= self._coloring_info['perturb_size'] starting_resids = self._residuals.asarray(copy=True) for i in range(self._coloring_info['num_full_jacs']): # randomize inputs (and outputs if implicit) if i > 0: self._inputs.set_val(starting_inputs + in_offsets * np.random.random(in_offsets.size)) if not is_explicit: self._outputs.set_val(starting_outputs + out_offsets * np.random.random(out_offsets.size)) if is_total: with self._relevance.nonlinear_active('iter'): self._solve_nonlinear() else: self._apply_nonlinear() if not use_jax: for scheme in self._approx_schemes.values(): scheme._reset() # force a re-initialization of approx if use_jax: self._jax_linearize() else: self.run_linearize(sub_do_ln=False) sparsity, sp_info = self._jacobian.get_sparsity(self) self._jacobian = save_jac if not use_jax: self._during_sparsity = False # revert uncolored approx back to normal for scheme in self._approx_schemes.values(): scheme._reset() # restore original inputs/outputs self._inputs.set_val(starting_inputs) self._outputs.set_val(starting_outputs) self._residuals.set_val(starting_resids) self._first_call_to_linearize = save_first_call return sparsity, sp_info
def _compute_coloring(self, recurse=False, **overrides): """ Compute a coloring of the partial jacobian. This assumes that the current System is in a proper state for computing derivatives. Parameters ---------- recurse : bool If True, recurse from this system down the system hierarchy. Whenever a group is encountered that has specified its coloring metadata, we don't recurse below that group unless that group has a subsystem that has a nonlinear solver that uses gradients. **overrides : dict Any args that will override either default coloring settings or coloring settings resulting from an earlier call to declare_coloring. Returns ------- list of Coloring The computed colorings. """ if recurse: colorings = [] my_coloring = self._coloring_info.coloring grad_systems = self._get_gradient_nl_solver_systems() for s in self.system_iter(include_self=True, recurse=True): if my_coloring is None or s in grad_systems: if s._coloring_info.coloring is not None: coloring = s._compute_coloring(recurse=False, **overrides)[0] colorings.append(coloring) if coloring is not None: coloring._meta['pathname'] = s.pathname coloring._meta['class'] = type(s).__name__ return [c for c in colorings if c is not None] or [None] info = self._coloring_info use_jax = self.options['derivs_method'] == 'jax' info.update(overrides) if info['method'] is None and self._approx_schemes: info['method'] = list(self._approx_schemes)[0] if info.coloring is None: # check to see if any approx or jax derivs have been declared for meta in self._subjacs_info.values(): if 'method' in meta and meta['method']: break else: # no approx derivs found if not (self._owns_approx_of or self._owns_approx_wrt): issue_warning("No partials found but coloring was requested. " "Declaring ALL partials as dense " "(method='{}')".format(info['method']), prefix=self.msginfo, category=DerivativesWarning) try: self.declare_partials('*', '*', method=info['method']) except AttributeError: # assume system is a group from openmdao.core.component import Component from openmdao.core.indepvarcomp import IndepVarComp from openmdao.components.exec_comp import ExecComp for s in self.system_iter(recurse=True, typ=Component): if not isinstance(s, ExecComp) and not isinstance(s, IndepVarComp): s.declare_partials('*', '*', method=info['method']) self._setup_partials() if not use_jax: approx_scheme = self._get_approx_scheme(info['method']) if info.coloring is None and info.static is None: info.dynamic = True coloring_fname = self.get_coloring_fname(mode='output') # if we find a previously computed class coloring for our class, just use that # instead of regenerating a coloring. if not info.per_instance and coloring_fname in coloring_mod._CLASS_COLORINGS: info.coloring = coloring = coloring_mod._CLASS_COLORINGS[coloring_fname] if coloring is None: print("\nClass coloring for class '{}' wasn't good enough, " "so skipping for '{}'".format(type(self).__name__, self.pathname)) info.static = None else: print("\n{} using class coloring for class '{}'".format(self.pathname, type(self).__name__)) info.update(coloring._meta) # force regen of approx groups during next compute_approximations if not use_jax: approx_scheme._reset() return [coloring] sparsity_start_time = time.perf_counter() sparsity, sp_info = self.compute_sparsity() sparsity_time = time.perf_counter() - sparsity_start_time if use_jax: direction = self._mode else: direction = 'fwd' coloring = _compute_coloring(sparsity, direction) if not self._finalize_coloring(coloring, info, sp_info, sparsity_time): return [None] return [coloring] def _setup_approx_coloring(self): pass
[docs] def get_coloring_fname(self, mode): """ Return the full pathname to a coloring file. Parameters ---------- mode : str The type of coloring file desired. Must be either 'input' or 'output'. Returns ------- pathlib.Path Full pathname of the coloring file. """ prob_coloring_dir = self._problem_meta['coloring_dir'] if mode == 'output' or prob_coloring_dir is _DEFAULT_COLORING_DIR: directory = self.get_outputs_dir('coloring_files', mkdir=True) elif mode == 'input': directory = pathlib.Path(prob_coloring_dir).absolute() else: raise ValueError(f"{self.msginfo}: get_coloring_fname requires mode" "to be one of 'input' or 'output'.") if not self.pathname: # total coloring return directory / 'total_coloring.pkl' if self._coloring_info.per_instance: # base the name on the instance pathname fname = 'coloring_' + self.pathname.replace('.', '_') + '.pkl' else: # base the name on the class name fname = 'coloring_' + '_'.join( [self.__class__.__module__.replace('.', '_'), self.__class__.__name__]) + '.pkl' return directory / fname
def _save_coloring(self, coloring): """ Save the coloring to a file based on this system's class or pathname. Parameters ---------- coloring : Coloring See Coloring class docstring. """ # under MPI, only save on proc 0 if ((self._full_comm is not None and self._full_comm.rank == 0) or (self._full_comm is None and self.comm.rank == 0)): coloring.save(self.get_coloring_fname(mode='output')) def _get_static_coloring(self): """ Get the Coloring for this system. If necessary, load the Coloring from a file. Returns ------- Coloring or None Coloring object, possible loaded from a file, or None """ info = self._coloring_info coloring = info.coloring if coloring is not None: return coloring static = info.static if static is _STD_COLORING_FNAME or isinstance(static, str): std_fname = self.get_coloring_fname(mode='input') if static is _STD_COLORING_FNAME: fname = std_fname else: fname = static print(f"{self.msginfo}: loading coloring from file {fname}") info.coloring = coloring = Coloring.load(fname) if fname != std_fname: # save it in the standard location self._save_coloring(coloring) if info.wrt_patterns != coloring._meta['wrt_patterns']: raise RuntimeError("%s: Loaded coloring has different wrt_patterns (%s) than " "declared ones (%s)." % (self.msginfo, coloring._meta['wrt_patterns'], info.wrt_patterns)) info.update(info.coloring._meta) approx = self._get_approx_scheme(info['method']) # force regen of approx groups during next compute_approximations approx._reset() elif isinstance(static, coloring_mod.Coloring): info.coloring = coloring = static if coloring is not None: info.dynamic = False info.static = coloring return coloring def _get_coloring(self): """ Get the Coloring for this system. If necessary, load the Coloring from a file or dynamically generate it. Returns ------- Coloring or None Coloring object, possible loaded from a file or dynamically generated, or None """ coloring = self._get_static_coloring() if coloring is None: if self._coloring_info.dynamic: self._coloring_info.coloring = coloring = self._compute_coloring()[0] if coloring is not None: self._coloring_info.update(coloring._meta) else: if not self._coloring_info.dynamic: coloring._check_config_partial(self) return coloring def _setup_par_fd_procs(self, comm): """ Split up the comm for use in parallel FD. Parameters ---------- comm : MPI.Comm or <FakeComm> MPI communicator object. Returns ------- MPI.Comm or <FakeComm> MPI communicator object. """ num_par_fd = self._num_par_fd if comm.size < num_par_fd: raise ValueError("%s: num_par_fd must be <= communicator size (%d)" % (self.msginfo, comm.size)) self._full_comm = comm if num_par_fd > 1: sizes, offsets = evenly_distrib_idxs(num_par_fd, comm.size) # a 'color' is assigned to each subsystem, with # an entry for each processor it will be given # e.g. [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3] color = np.empty(comm.size, dtype=INT_DTYPE) for i in range(num_par_fd): color[offsets[i]:offsets[i] + sizes[i]] = i self._par_fd_id = color[comm.rank] comm = self._full_comm.Split(self._par_fd_id) return comm def _setup_recording(self): """ Set up case recording. """ if self._rec_mgr.has_recorders(): myinputs = myoutputs = myresiduals = [] options = self.recording_options incl = options['includes'] excl = options['excludes'] # includes and excludes for outputs are specified using promoted names # includes and excludes for inputs are specified using _absolute_ names abs2prom_output = self._var_allprocs_abs2prom['output'] # set of promoted output names and absolute input and residual names # used for matching includes/excludes match_names = set() # includes and excludes for inputs are specified using _absolute_ names # vectors are keyed on absolute name, discretes on relative/promoted name if options['record_inputs']: abs2prom_inputs = self._var_allprocs_abs2prom['input'] match_names.update(abs2prom_inputs) myinputs = sorted([n for n in abs2prom_inputs if check_path(n, incl, excl)]) # includes and excludes for outputs are specified using _promoted_ names # vectors are keyed on absolute name, discretes on relative/promoted name if options['record_outputs']: match_names.update(abs2prom_output.values()) myoutputs = sorted([n for n, prom in abs2prom_output.items() if check_path(prom, incl, excl)]) if self._var_discrete['output']: # if we have discrete outputs then residual name set doesn't match output one if options['record_residuals']: contains = self._residuals._contains_abs myresiduals = [n for n in myoutputs if contains(n)] elif options['record_residuals']: myresiduals = myoutputs elif options['record_residuals']: match_names.update(self._residuals) myresiduals = [n for n in self._residuals._abs_iter() if check_path(abs2prom_output[n], incl, excl)] # check that all exclude/include globs have at least one matching output or input name for pattern in excl: if not has_match(pattern, match_names): issue_warning(f"{self.msginfo}: No matches for pattern '{pattern}' in " "recording_options['excludes'].") for pattern in incl: if not has_match(pattern, match_names): issue_warning(f"{self.msginfo}: No matches for pattern '{pattern}' in " "recording_options['includes'].") self._filtered_vars_to_record = { 'input': myinputs, 'output': myoutputs, 'residual': myresiduals } self._rec_mgr.startup(self, self._problem_meta['comm']) for subsys in self._subsystems_myproc: subsys._setup_recording() def _reset_setup_vars(self): """ Reset all the stuff that gets initialized in setup. """ self._first_call_to_linearize = True self._is_local = True self._vectors = {} self._full_comm = None self._approx_subjac_keys = None self.options._parent_name = self.msginfo self.recording_options._parent_name = self.msginfo self._design_vars = {} self._responses = {} self._design_vars.update(self._static_design_vars) self._responses.update(self._static_responses) def _setup_procs(self, pathname, comm, prob_meta): """ Execute first phase of the setup process. Distribute processors, assign pathnames, and call setup on the component. Also reset internal data structures. Parameters ---------- pathname : str Global name of the system, including the path. comm : MPI.Comm or <FakeComm> MPI communicator object. prob_meta : dict Problem level options. """ self._reset_setup_vars() self.pathname = pathname self._set_problem_meta(prob_meta) self.load_model_options() def _setup_var_data(self): """ Compute the list of abs var names, abs/prom name maps, and metadata dictionaries. """ self._var_prom2inds = {} self._var_allprocs_prom2abs_list = {'input': {}, 'output': {}} self._var_abs2prom = {'input': {}, 'output': {}} self._var_allprocs_abs2prom = {'input': {}, 'output': {}} self._var_allprocs_abs2meta = {'input': {}, 'output': {}} self._var_abs2meta = {'input': {}, 'output': {}} self._var_allprocs_discrete = {'input': {}, 'output': {}} self._var_allprocs_abs2idx = {} self._owning_rank = defaultdict(int) self._var_sizes = {} self._owned_sizes = None cfginfo = self._problem_meta['config_info'] if cfginfo and self.pathname in cfginfo._modified_systems: cfginfo._modified_systems.remove(self.pathname) def _setup_global_shapes(self): """ Compute the global size and shape of all variables on this system. """ loc_meta = self._var_abs2meta for io in ('input', 'output'): # now set global sizes and shapes into metadata for distributed variables sizes = self._var_sizes[io] for idx, (abs_name, mymeta) in enumerate(self._var_allprocs_abs2meta[io].items()): local_shape = mymeta['shape'] if mymeta['distributed']: global_size = np.sum(sizes[:, idx]) mymeta['global_size'] = global_size # assume that all but the first dimension of the shape of a # distributed variable is the same on all procs mymeta['global_shape'] = self._get_full_dist_shape(abs_name, local_shape) else: # not distributed, just use local shape and size mymeta['global_size'] = mymeta['size'] mymeta['global_shape'] = local_shape if abs_name in loc_meta[io]: loc_meta[io][abs_name]['global_shape'] = mymeta['global_shape'] loc_meta[io][abs_name]['global_size'] = mymeta['global_size'] def _setup_driver_units(self, abs2meta=None): """ Compute unit conversions for driver variables. """ if abs2meta is None: abs2meta = self._var_allprocs_abs2meta['output'] has_scaling = False for name, meta in self._design_vars.items(): units = meta['units'] meta['total_adder'] = meta['adder'] meta['total_scaler'] = meta['scaler'] if units is not None: # If derivatives are not being calculated, then you reach here before source # is placed in the meta. try: units_src = meta['source'] except KeyError: units_src = self.get_source(name) var_units = abs2meta[units_src]['units'] if var_units == units: continue if var_units is None: msg = "{}: Target for design variable {} has no units, but '{}' units " + \ "were specified." raise RuntimeError(msg.format(self.msginfo, name, units)) if not is_compatible(var_units, units): msg = "{}: Target for design variable {} has '{}' units, but '{}' units " + \ "were specified." raise RuntimeError(msg.format(self.msginfo, name, var_units, units)) # Derivation of the total scaler and total adder for design variables: # Given based design variable value y # First we apply the desired unit conversion # y_in_desired_units = unit_scaler * (y + unit_adder) # Then we apply the user-declared scaling # y_opt = declared_scaler * (y_in_desired_units + declared_adder) # Thus # y_opt = declared_scaler * (unit_scaler * (y + unit_adder) + declared_adder) # And collecting terms # y_opt = [declared_scaler * unit_scaler] # * (y + unit_adder + declared_adder/unit_scaler) # So the total_scaler and total_adder for the optimizer are: # total_scaler = declared_scaler * unit_scaler # total_adder = unit_adder + declared_adder / unit_scaler unit_scaler, unit_adder = unit_conversion(var_units, units) declared_adder, declared_scaler = determine_adder_scaler(None, None, meta['adder'], meta['scaler']) meta['total_adder'] = unit_adder + declared_adder / unit_scaler meta['total_scaler'] = declared_scaler * unit_scaler if meta['total_scaler'] is not None: has_scaling = True resp = self._responses type_dict = {'con': 'constraint', 'obj': 'objective'} for name, meta in resp.items(): units = meta['units'] meta['total_scaler'] = meta['scaler'] meta['total_adder'] = meta['adder'] if units is not None: # If derivatives are not being calculated, then you reach here before source # is placed in the meta. try: units_src = meta['source'] except KeyError: units_src = self.get_source(meta['name']) src_units = abs2meta[units_src]['units'] if src_units == units: continue if src_units is None: msg = "{}: Target for {} {} has no units, but '{}' units " + \ "were specified." raise RuntimeError(msg.format(self.msginfo, type_dict[meta['type']], name, units)) if not is_compatible(src_units, units): msg = "{}: Target for {} {} has '{}' units, but '{}' units " + \ "were specified." raise RuntimeError(msg.format(self.msginfo, type_dict[meta['type']], name, src_units, units)) unit_scaler, unit_adder = unit_conversion(src_units, units) declared_adder, declared_scaler =\ determine_adder_scaler(None, None, meta['adder'], meta['scaler']) meta['total_scaler'] = declared_scaler * unit_scaler meta['total_adder'] = unit_adder + declared_adder / unit_scaler if meta['total_scaler'] is not None: has_scaling = True for s in self._subsystems_myproc: has_scaling |= s._setup_driver_units(abs2meta) if (self.comm.size > 1 and self._subsystems_allprocs and self._mpi_proc_allocator.parallel): has_scaling = bool(self.comm.allreduce(int(has_scaling))) return has_scaling def _setup_connections(self): """ Compute dict of all connections owned by this system. """ pass def _setup_vectors(self, root_vectors): """ Compute all vectors for all vec names and assign excluded variables lists. Parameters ---------- root_vectors : dict of dict of Vector Root vectors: first key is 'input', 'output', or 'residual'; second key is vec_name. """ self._vectors = vectors = {'input': {}, 'output': {}, 'residual': {}} # Allocate complex if root vector was allocated complex. alloc_complex = root_vectors['output']['nonlinear']._alloc_complex # This happens if you reconfigure and switch to 'cs' without forcing the vectors to be # initially allocated as complex. if not alloc_complex and 'cs' in self._approx_schemes: raise RuntimeError("{}: In order to activate complex step during reconfiguration, " "you need to set 'force_alloc_complex' to True during setup. e.g. " "'problem.setup(force_alloc_complex=True)'".format(self.msginfo)) if self._vector_class is None: self._vector_class = self._local_vector_class vector_class = self._vector_class vectypes = ('nonlinear', 'linear') if self._use_derivatives else ('nonlinear',) for vec_name in vectypes: # Only allocate complex in the vectors we need. vec_alloc_complex = root_vectors['output'][vec_name]._alloc_complex for kind in ['input', 'output', 'residual']: rootvec = root_vectors[kind][vec_name] vectors[kind][vec_name] = vector_class( vec_name, kind, self, rootvec, alloc_complex=vec_alloc_complex) if self._use_derivatives: vectors['input']['linear']._scaling_nl_vec = vectors['input']['nonlinear']._scaling self._inputs = vectors['input']['nonlinear'] self._outputs = vectors['output']['nonlinear'] self._residuals = vectors['residual']['nonlinear'] if self._use_derivatives: self._dinputs = vectors['input']['linear'] self._doutputs = vectors['output']['linear'] self._dresiduals = vectors['residual']['linear'] for subsys in self._sorted_sys_iter(): subsys._scale_factors = self._scale_factors subsys._setup_vectors(root_vectors) def _setup_transfers(self): """ Compute all transfers that are owned by this system. """ pass def _setup_solvers(self): """ Perform setup in all solvers. """ # remove old solver error files if they exist if self.pathname == '': rank = MPI.COMM_WORLD.rank if MPI is not None else 0 if rank == 0: for f in os.listdir('.'): if fnmatchcase(f, 'solver_errors.*.out'): os.remove(f) if self._nonlinear_solver is not None: self._nonlinear_solver._setup_solvers(self, 0) if self._linear_solver is not None: self._linear_solver._setup_solvers(self, 0) for subsys in self._subsystems_myproc: subsys._setup_solvers() def _setup_jacobians(self, recurse=True): """ Set and populate jacobians down through the system tree. Parameters ---------- recurse : bool If True, setup jacobians in all descendants. """ asm_jac_solvers = set() if self._linear_solver is not None: asm_jac_solvers.update(self._linear_solver._assembled_jac_solver_iter()) nl_asm_jac_solvers = set() if self.nonlinear_solver is not None: nl_asm_jac_solvers.update(self.nonlinear_solver._assembled_jac_solver_iter()) asm_jac = None if asm_jac_solvers: asm_jac = _asm_jac_types[self.options['assembled_jac_type']](system=self) self._assembled_jac = asm_jac for s in asm_jac_solvers: s._assembled_jac = asm_jac if nl_asm_jac_solvers: if asm_jac is None: asm_jac = _asm_jac_types[self.options['assembled_jac_type']](system=self) for s in nl_asm_jac_solvers: s._assembled_jac = asm_jac if self._has_approx: self._set_approx_partials_meta() # At present, we don't support a AssembledJacobian in a group # if any subcomponents are matrix-free. if asm_jac is not None: if self.matrix_free: raise RuntimeError("%s: AssembledJacobian not supported for matrix-free " "subcomponent." % self.msginfo) if recurse: for subsys in self._subsystems_myproc: subsys._setup_jacobians() def _get_promotion_maps(self): """ Define variable maps based on promotes lists. Returns ------- dict of {'input': {str:(str, info), ...}, 'output': {str:(str, info), ...}} dictionary mapping input/output variable names to (promoted name, promotion_info) tuple. """ from openmdao.core.group import Group def split_list(lst): """ Yield match type, name/pattern/tuple info, and src_indices info. Parameters ---------- lst : list List of names, patterns and/or tuples specifying promotes. Yields ------ Enum match type str name or pattern string (str, _PromotesInfo) name/rename/pattern, promotion info (src_indices, etc.) """ for entry in lst: key, pinfo = entry if isinstance(key, str): # note, conditional here is faster than using precompiled regex if '*' in key or '?' in key or '[' in key: yield _MatchType.PATTERN, key, entry else: yield _MatchType.NAME, key, entry elif isinstance(key, tuple) and len(key) == 2: yield _MatchType.RENAME, key[0], (key[1], pinfo) else: raise TypeError(f"when adding subsystem '{self.pathname}', entry '{key}'" " is not a string or tuple of size 2.") def _check_dup(io, matches, match_type, name, tup): """ Report error or warning when attempting to promote a variable twice. Parameters ---------- io : str One of 'input' or 'output'. matches : dict {'input': ..., 'output': ...} Dict of promoted names and associated info. match_type : intEnum Indicates whether match is an explicit name, rename, or pattern match. name : str Name of promoted variable that is specified multiple times. tup : tuple (?, _PromotesInfo) First entry can be name, rename, or pattern depending on the match type. Returns ------- bool If True, ignore the new match, else replace the old with the new. """ try: old_name, old_key, old_info, old_match_type = matches[io][name] _, info = tup if old_match_type == _MatchType.RENAME: old_key = old_using = (old_name, old_key) else: old_using = f"'{old_key}'" if match_type == _MatchType.RENAME: new_using = (name, tup[0]) else: new_using = f"'{tup[0]}'" diff = info.compare(old_info) if info is not None and old_info is not None else () if diff: raise RuntimeError(f"{self.msginfo}: {io} variable '{name}', promoted using " f"'{new_using}', was already promoted using '{old_using}' " f"with different values for {diff}.") if old_match_type != _MatchType.PATTERN: if old_key != tup[0]: raise RuntimeError(f"{self.msginfo}: Can't alias promoted {io} '{name}' to " f"'{tup[0]}' because '{name}' has already been promoted " f"as '{old_key}'.") if old_using != "'*'" and new_using != "'*'": msg = f"{io} variable '{name}', promoted using {new_using}, " \ f"was already promoted using {old_using}." issue_warning(msg, prefix=self.msginfo, category=PromotionWarning) except Exception: type_exc, exc, tb = sys.exc_info() self._collect_error(str(exc), exc_type=type_exc, tback=tb) return False return match_type == _MatchType.PATTERN def resolve(to_match, io_types, matches, proms): """ Determine the mapping of promoted names to the parent scope for a promotion type. This is called once for promotes or separately for promotes_inputs and promotes_outputs. """ if not to_match: return # always add '*' so we won't report if it matches nothing (in the case where the # system has no variables of that io type) found = {'*'} for match_type, key, tup in split_list(to_match): s, pinfo = tup if match_type == _MatchType.PATTERN: for io in io_types: if io == 'output': pinfo = None if key == '*' and not matches[io]: # special case. add everything matches[io] = pmap = {n: (n, key, pinfo, match_type) for n in proms[io]} else: pmap = matches[io] nmatch = len(pmap) for n in proms[io]: if fnmatchcase(n, key): if not (n in pmap and _check_dup(io, matches, match_type, n, tup)): pmap[n] = (n, key, pinfo, match_type) if len(pmap) > nmatch: found.add(key) else: # NAME or RENAME for io in io_types: if io == 'output': pinfo = None pmap = matches[io] if key in proms[io]: if key in pmap: _check_dup(io, matches, match_type, key, tup) pmap[key] = (s, key, pinfo, match_type) if match_type == _MatchType.NAME: found.add(key) else: found.add((key, s)) not_found = set(n for n, _ in to_match) - found if not_found: if (not self._var_abs2meta['input'] and not self._var_abs2meta['output'] and isinstance(self, Group)): empty_group_msg = ' Group contains no variables.' else: empty_group_msg = '' if len(io_types) == 2: call = 'promotes' else: call = 'promotes_%ss' % io_types[0] not_found = sorted(not_found, key=lambda x: x if isinstance(x, str) else x[0]) raise RuntimeError(f"{self.msginfo}: '{call}' failed to find any matches for the " f"following names or patterns: {not_found}.{empty_group_msg}") prom2abs_list = self._var_allprocs_prom2abs_list maps = {'input': {}, 'output': {}} if self._var_promotes['input'] or self._var_promotes['output']: if self._var_promotes['any']: raise RuntimeError("%s: 'promotes' cannot be used at the same time as " "'promotes_inputs' or 'promotes_outputs'." % self.msginfo) resolve(self._var_promotes['input'], ('input',), maps, prom2abs_list) resolve(self._var_promotes['output'], ('output',), maps, prom2abs_list) else: resolve(self._var_promotes['any'], ('input', 'output'), maps, prom2abs_list) return maps def _get_matvec_scope(self): """ Find the input and output variables that are needed for a particular matvec product. Returns ------- (set, set) Sets of output and input variables. """ try: return self._scope_cache[None] except KeyError: self._scope_cache[None] = (None, _empty_frozen_set) return self._scope_cache[None] @contextmanager def _unscaled_context(self, outputs=(), residuals=()): """ Context manager for units and scaling for vectors. Temporarily puts vectors in a physical and unscaled state, because internally, vectors are nominally in a dimensionless and scaled state. Parameters ---------- outputs : list of output <Vector> objects List of output vectors to apply the unit and scaling conversions. residuals : list of residual <Vector> objects List of residual vectors to apply the unit and scaling conversions. """ if self._has_output_scaling: for vec in outputs: vec.scale_to_phys() if self._has_resid_scaling: for vec in residuals: vec.scale_to_phys() try: yield finally: if self._has_output_scaling: for vec in outputs: vec.scale_to_norm() if self._has_resid_scaling: for vec in residuals: vec.scale_to_norm() @contextmanager def _scaled_context_all(self): """ Context manager that temporarily puts all vectors in a scaled state. """ if self._has_output_scaling: for vec in self._vectors['output'].values(): vec.scale_to_norm() if self._has_resid_scaling: for vec in self._vectors['residual'].values(): vec.scale_to_norm() try: yield finally: if self._has_output_scaling: for vec in self._vectors['output'].values(): vec.scale_to_phys() if self._has_resid_scaling: for vec in self._vectors['residual'].values(): vec.scale_to_phys() @contextmanager def _matvec_context(self, scope_out, scope_in, mode, clear=True): """ Context manager for vectors. Return vectors that use a set of internal variables that are relevant to the current matrix-vector product. This is called only from _apply_linear. Parameters ---------- scope_out : frozenset or None Set of absolute output names in the scope of this mat-vec product. If None, all are in the scope. scope_in : frozenset or None Set of absolute input names in the scope of this mat-vec product. If None, all are in the scope. mode : str Key for specifying derivative direction. Values are 'fwd' or 'rev'. clear : bool(True) If True, zero out residuals (in fwd mode) or inputs and outputs (in rev mode). Yields ------ (d_inputs, d_outputs, d_residuals) : tuple of Vectors Yields the three Vectors configured internally to deal only with variables relevant to the current matrix vector product. """ d_inputs = self._dinputs d_outputs = self._doutputs d_residuals = self._dresiduals if clear: if mode == 'fwd': d_residuals.set_val(0.0) else: # rev d_inputs.set_val(0.0) d_outputs.set_val(0.0) if scope_out is None and scope_in is None: yield d_inputs, d_outputs, d_residuals else: old_ins = d_inputs._names old_outs = d_outputs._names if scope_out is not None: d_outputs._names = scope_out.intersection(old_outs) if scope_in is not None: d_inputs._names = scope_in.intersection(old_ins) try: yield d_inputs, d_outputs, d_residuals finally: # reset _names so users will see full vector contents d_inputs._names = old_ins d_outputs._names = old_outs @contextmanager def _call_user_function(self, fname, protect_inputs=True, protect_outputs=False, protect_residuals=False): """ Context manager that wraps a call to a user defined function. Protect any vectors that should not be modified to help prevent user error and add information about the system to any errors that don't have it already. Parameters ---------- fname : str Name of the user defined function. protect_inputs : bool If True, then set the inputs vector to be read only protect_outputs : bool If True, then set the outputs vector to be read only protect_residuals : bool If True, then set the residuals vector to be read only """ self._inputs.read_only = protect_inputs self._outputs.read_only = protect_outputs self._residuals.read_only = protect_residuals try: yield except Exception: err_type, err, trace = sys.exc_info() if str(err).startswith(self.msginfo): raise else: raise err_type( f"{self.msginfo}: Error calling {fname}(), {err}").with_traceback(trace) finally: self._inputs.read_only = False self._outputs.read_only = False self._residuals.read_only = False
[docs] def get_nonlinear_vectors(self): """ Return the inputs, outputs, and residuals vectors. Returns ------- (inputs, outputs, residuals) Yields the inputs, outputs, and residuals nonlinear vectors. """ if self._inputs is None: raise RuntimeError("{}: Cannot get vectors because setup has not yet been " "called.".format(self.msginfo)) return self._inputs, self._outputs, self._residuals
[docs] def get_linear_vectors(self): """ Return the linear inputs, outputs, and residuals vectors. Returns ------- (inputs, outputs, residuals): tuple of <Vector> instances Yields the linear inputs, outputs, and residuals vectors. """ if self._inputs is None: raise RuntimeError("{}: Cannot get vectors because setup has not yet been " "called.".format(self.msginfo)) return (self._dinputs, self._doutputs, self._dresiduals)
@property def nonlinear_solver(self): """ Get the nonlinear solver for this system. """ return self._nonlinear_solver @nonlinear_solver.setter def nonlinear_solver(self, solver): """ Set this system's nonlinear solver. """ # from openmdao.core.group import Group # if not isinstance(self, Group): # raise TypeError("nonlinear_solver can only be set on a Group.") self._nonlinear_solver = solver @property def linear_solver(self): """ Get the linear solver for this system. """ return self._linear_solver @linear_solver.setter def linear_solver(self, solver): """ Set this system's linear solver. """ self._linear_solver = solver @property def _force_alloc_complex(self): return self._problem_meta['force_alloc_complex'] @property def _use_derivatives(self): return self._problem_meta['use_derivatives'] @property def _local_vector_class(self): return self._problem_meta['local_vector_class'] @property def _distributed_vector_class(self): return self._problem_meta['distributed_vector_class'] @property def _recording_iter(self): return self._problem_meta['recording_iter'] @property def _relevance(self): return self._problem_meta['relevance'] @property def _jax_group(self): return self._problem_meta['jax_group'] @_jax_group.setter def _jax_group(self, val): self._problem_meta['jax_group'] = val @property def _static_mode(self): """ Return True if we are outside of setup. In this case, add_input, add_output, and add_subsystem all add to the '_static' versions of the respective data structures. These data structures are never reset during setup. Returns ------- True if outside of setup. """ return self._problem_meta is None or self._problem_meta['static_mode'] @property def _mode(self): """ Return the current system mode. Returns ------- str The current system mode, 'fwd' or 'rev'. """ return self._problem_meta['mode'] @property def _orig_mode(self): """ Return the user specified system mode. Returns ------- str The system mode specified during setup, 'fwd', 'rev', or 'auto'. """ return self._problem_meta['orig_mode'] def _set_solver_print(self, level=2, depth=1e99, type_='all'): """ Apply the given print settings to the internal solvers, recursively. Parameters ---------- level : int iprint level. Set to 2 to print residuals each iteration; set to 1 to print just the iteration totals; set to 0 to disable all printing except for failures, and set to -1 to disable all printing including failures. depth : int How deep to recurse. For example, you can set this to 0 if you only want to print the top level linear and nonlinear solver messages. Default prints everything. type_ : str Type of solver to set: 'LN' for linear, 'NL' for nonlinear, or 'all' for all. """ if self._linear_solver is not None and type_ != 'NL': self._linear_solver._set_solver_print(level=level, type_=type_) if self.nonlinear_solver is not None and type_ != 'LN': self.nonlinear_solver._set_solver_print(level=level, type_=type_) if self.pathname.count('.') + 1 >= depth: return for subsys, _ in self._subsystems_allprocs.values(): subsys._set_solver_print(level=level, depth=depth, type_=type_) if subsys._linear_solver is not None and type_ != 'NL': subsys._linear_solver._set_solver_print(level=level, type_=type_) if subsys.nonlinear_solver is not None and type_ != 'LN': subsys.nonlinear_solver._set_solver_print(level=level, type_=type_) def _setup_solver_print(self, recurse=True): """ Apply the cached solver print settings during setup. Parameters ---------- recurse : bool Whether to call this method in subsystems. """ for level, depth, type_ in self._solver_print_cache: self._set_solver_print(level, depth, type_) if recurse: for subsys in self._subsystems_myproc: subsys._setup_solver_print(recurse=recurse)
[docs] def set_solver_print(self, level=2, depth=1e99, type_='all'): """ Control printing for solvers and subsolvers in the model. Parameters ---------- level : int Iprint level. Set to 2 to print residuals each iteration; set to 1 to print just the iteration totals; set to 0 to disable all printing except for failures, and set to -1 to disable all printing including failures. depth : int How deep to recurse. For example, you can set this to 0 if you only want to print the top level linear and nonlinear solver messages. Default prints everything. type_ : str Type of solver to set: 'LN' for linear, 'NL' for nonlinear, or 'all' for all. """ if (level, depth, type_) not in self._solver_print_cache: self._solver_print_cache.append((level, depth, type_))
def _set_approx_partials_meta(self): # this will load a static coloring (if any) and will populate wrt_matches if # there is any coloring (static or dynamic). self._get_static_wrt_matches() def _get_static_wrt_matches(self): """ Return wrt_matches for static coloring if there is one. Returns ------- list of str or () List of wrt_matches for a static coloring or () if there isn't one. """ if (self._coloring_info.coloring is not None and self._coloring_info.wrt_matches is None): self._coloring_info._update_wrt_matches(self) # if coloring has been specified, we don't want to have multiple # approximations for the same subjac, so don't register any new # approximations when the wrt matches those used in the coloring. if self._get_static_coloring() is not None: # static coloring has been specified return self._coloring_info.wrt_matches return () # for dynamic coloring or no coloring
[docs] def system_iter(self, include_self=False, recurse=True, typ=None): """ Yield a generator of local subsystems of this system. Parameters ---------- include_self : bool If True, include this system in the iteration. recurse : bool If True, iterate over the whole tree under this system. typ : type If not None, only yield Systems that match that are instances of the given type. Yields ------ type or None """ if include_self and (typ is None or isinstance(self, typ)): yield self for s in self._subsystems_myproc: if typ is None or isinstance(s, typ): yield s if recurse: for sub in s.system_iter(recurse=True, typ=typ): yield sub
def _all_subsystem_iter(self): """ Do nothing. Returns ------- tuple An empty tuple. """ return () def _create_indexer(self, indices, typename, vname, flat_src=False): """ Return an Indexer instance and it's size if possible. Parameters ---------- indices : ndarray or sequence of ints The indices used to create the Indexer. typename : str Type name of the variable. Could be 'design var', 'objective' or 'constraint'. vname : str Name of the variable. flat_src : bool If True, indices index into a flat array. Returns ------- Indexer The newly created Indexer int or None The size of the indices, if known. """ try: idxer = indexer(indices, flat_src=flat_src) except Exception as err: raise err.__class__(f"{self.msginfo}: Invalid indices {indices} for {typename} " f"'{vname}'.") # size may not be available at this point, but get it if we can in order to allow # some earlier error checking try: size = idxer.indexed_src_size except Exception: size = None return idxer, size
[docs] def add_design_var(self, name, lower=None, upper=None, ref=None, ref0=None, indices=None, adder=None, scaler=None, units=None, parallel_deriv_color=None, cache_linear_solution=False, flat_indices=False): r""" Add a design variable to this system. Parameters ---------- name : str Promoted name of the design variable in the system. lower : float or ndarray, optional Lower boundary for the input. upper : upper or ndarray, optional Upper boundary for the input. ref : float or ndarray, optional Value of design var that scales to 1.0 in the driver. ref0 : float or ndarray, optional Value of design var that scales to 0.0 in the driver. indices : iter of int, optional If an input is an array, these indicate which entries are of interest for this particular design variable. These may be positive or negative integers. adder : float or ndarray, optional Value to add to the model value to get the scaled value for the driver. adder is first in precedence. adder and scaler are an alterantive to using ref and ref0. scaler : float or ndarray, optional Value to multiply the model value to get the scaled value for the driver. scaler is second in precedence. adder and scaler are an alterantive to using ref and ref0. units : str, optional Units to convert to before applying scaling. parallel_deriv_color : str If specified, this design var will be grouped for parallel derivative calculations with other variables sharing the same parallel_deriv_color. cache_linear_solution : bool If True, store the linear solution vectors for this variable so they can be used to start the next linear solution with an initial guess equal to the solution from the previous linear solve. flat_indices : bool If True, interpret specified indices as being indices into a flat source array. Notes ----- The response can be scaled using ref and ref0. The argument :code:`ref0` represents the physical value when the scaled value is 0. The argument :code:`ref` represents the physical value when the scaled value is 1. """ if name in self._design_vars or name in self._static_design_vars: msg = "{}: Design Variable '{}' already exists." raise RuntimeError(msg.format(self.msginfo, name)) # Name must be a string if not isinstance(name, str): raise TypeError('{}: The name argument should be a string, got {}'.format(self.msginfo, name)) if units is not None: if not isinstance(units, str): raise TypeError(f"{self.msginfo}: The units argument should be a str or None for " f"design_var '{name}'.") try: units = simplify_unit(units, msginfo=self.msginfo) except ValueError as e: raise ValueError(f"{str(e)[:-1]} for design_var '{name}'.") # Convert ref/ref0 to ndarray/float as necessary ref = format_as_float_or_array('ref', ref, val_if_none=None, flatten=True) ref0 = format_as_float_or_array('ref0', ref0, val_if_none=None, flatten=True) # determine adder and scaler based on args adder, scaler = determine_adder_scaler(ref0, ref, adder, scaler) if lower is None: # if not set, set lower to -INF_BOUND and don't apply adder/scaler lower = -INF_BOUND else: # Convert lower to ndarray/float as necessary lower = format_as_float_or_array('lower', lower, flatten=True) # Apply scaler/adder lower = (lower + adder) * scaler if upper is None: # if not set, set upper to INF_BOUND and don't apply adder/scaler upper = INF_BOUND else: # Convert upper to ndarray/float as necessary upper = format_as_float_or_array('upper', upper, flatten=True) # Apply scaler/adder upper = (upper + adder) * scaler if self._static_mode: design_vars = self._static_design_vars else: design_vars = self._design_vars if isinstance(scaler, np.ndarray): if np.all(scaler == 1.0): scaler = None elif scaler == 1.0: scaler = None if isinstance(adder, np.ndarray): if not np.any(adder): adder = None elif adder == 0.0: adder = None if indices is not None: indices, size = self._create_indexer(indices, 'design var', name, flat_src=flat_indices) else: size = None design_vars[name] = { 'adder': adder, 'scaler': scaler, 'name': name, 'upper': upper, 'lower': lower, 'ref': ref, 'ref0': ref0, 'units': units, 'cache_linear_solution': cache_linear_solution, 'total_scaler': scaler, 'total_adder': adder, 'indices': indices, 'flat_indices': flat_indices, 'parallel_deriv_color': parallel_deriv_color, 'size': size, }
[docs] def add_response(self, name, type_, lower=None, upper=None, equals=None, ref=None, ref0=None, indices=None, index=None, units=None, adder=None, scaler=None, linear=False, parallel_deriv_color=None, cache_linear_solution=False, flat_indices=None, alias=None): r""" Add a response variable to this system. The response can be scaled using ref and ref0. The argument :code:`ref0` represents the physical value when the scaled value is 0. The argument :code:`ref` represents the physical value when the scaled value is 1. Parameters ---------- name : str Promoted name of the response variable in the system. type_ : str The type of response. Supported values are 'con' and 'obj'. lower : float or ndarray, optional Lower boundary for the variable. upper : upper or ndarray, optional Upper boundary for the variable. equals : equals or ndarray, optional Equality constraint value for the variable. ref : float or ndarray, optional Value of response variable that scales to 1.0 in the driver. ref0 : upper or ndarray, optional Value of response variable that scales to 0.0 in the driver. indices : sequence of int, optional If variable is an array, these indicate which entries are of interest for this particular response. index : int, optional If variable is an array, this indicates which entry is of interest for this particular response. units : str, optional Units to convert to before applying scaling. adder : float or ndarray, optional Value to add to the model value to get the scaled value for the driver. adder is first in precedence. adder and scaler are an alterantive to using ref and ref0. scaler : float or ndarray, optional Value to multiply the model value to get the scaled value for the driver. scaler is second in precedence. adder and scaler are an alterantive to using ref and ref0. linear : bool Set to True if constraint is linear. Default is False. parallel_deriv_color : str If specified, this design var will be grouped for parallel derivative calculations with other variables sharing the same parallel_deriv_color. cache_linear_solution : bool If True, store the linear solution vectors for this variable so they can be used to start the next linear solution with an initial guess equal to the solution from the previous linear solve. flat_indices : bool If True, interpret specified indices as being indices into a flat source array. alias : str or None Alias for this response. Necessary when adding multiple responses on different indices of the same variable. """ # Name must be a string if not isinstance(name, str): raise TypeError('{}: The name argument should be a string, ' 'got {}'.format(self.msginfo, name)) # Type must be a string and one of 'con' or 'obj' if not isinstance(type_, str): raise TypeError('{}: The type argument should be a string'.format(self.msginfo)) elif type_ not in ('con', 'obj'): raise ValueError('{}: The type must be one of \'con\' or \'obj\': ' 'Got \'{}\' instead'.format(self.msginfo, name)) if units is not None: if not isinstance(units, str): raise TypeError(f"{self.msginfo}: The units argument should be a str or None for " f"response '{name}'.") try: units = simplify_unit(units, msginfo=self.msginfo) except ValueError as e: raise ValueError(f"{str(e)[:-1]} for response '{name}'.") resp = {} if (name in self._responses or name in self._static_responses) and alias is None: typemap = {'con': 'Constraint', 'obj': 'Objective'} msg = ("{}: {} '{}' already exists. Use the 'alias' argument to apply a second " "constraint".format(self.msginfo, typemap[type_], name)) raise RuntimeError(msg.format(name)) resp['name'] = name resp['alias'] = alias # Convert ref/ref0 to ndarray/float as necessary ref = format_as_float_or_array('ref', ref, val_if_none=None, flatten=True) ref0 = format_as_float_or_array('ref0', ref0, val_if_none=None, flatten=True) # determine adder and scaler based on args adder, scaler = determine_adder_scaler(ref0, ref, adder, scaler) # A constraint cannot be an equality and inequality constraint if equals is not None and (lower is not None or upper is not None): msg = "{}: Constraint '{}' cannot be both equality and inequality." if alias is not None: namestr = f"'{name}' (alias '{alias}')" else: namestr = name raise ValueError(msg.format(self.msginfo, namestr)) if type_ == 'con': # Convert lower to ndarray/float as necessary try: if lower is None: # don't apply adder/scaler if lower not set lower = -INF_BOUND else: lower = format_as_float_or_array('lower', lower, flatten=True) lower = (lower + adder) * scaler except (TypeError, ValueError): raise TypeError("Argument 'lower' can not be a string ('{}' given). You can not " "specify a variable as lower bound. You can only provide constant " "float values".format(lower)) # Convert upper to ndarray/float as necessary try: if upper is None: # don't apply adder/scaler if upper not set upper = INF_BOUND else: upper = format_as_float_or_array('upper', upper, flatten=True) upper = (upper + adder) * scaler except (TypeError, ValueError): raise TypeError("Argument 'upper' can not be a string ('{}' given). You can not " "specify a variable as upper bound. You can only provide constant " "float values".format(upper)) # Convert equals to ndarray/float as necessary if equals is not None: try: equals = format_as_float_or_array('equals', equals, flatten=True) except (TypeError, ValueError): raise TypeError("Argument 'equals' can not be a string ('{}' given). You can " "not specify a variable as equals bound. You can only provide " "constant float values".format(equals)) equals = (equals + adder) * scaler resp['lower'] = lower resp['upper'] = upper resp['equals'] = equals resp['linear'] = linear if indices is not None: indices, size = self._create_indexer(indices, resp_types[type_], name, flat_src=flat_indices) if size is not None: resp['size'] = size resp['indices'] = indices else: # 'obj' if index is not None: if not isinstance(index, Integral): raise TypeError(f"{self.msginfo}: index must be of integral type, but type is " f"{type(index).__name__}") index = indexer(index, flat_src=flat_indices) resp['size'] = 1 resp['indices'] = index if isinstance(scaler, np.ndarray): if np.all(scaler == 1.0): scaler = None elif scaler == 1.0: scaler = None resp['scaler'] = scaler resp['total_scaler'] = scaler if isinstance(adder, np.ndarray): if not np.any(adder): adder = None elif adder == 0.0: adder = None resp['adder'] = adder resp['total_adder'] = adder resp['ref'] = ref resp['ref0'] = ref0 resp['type'] = type_ resp['units'] = units resp['cache_linear_solution'] = cache_linear_solution resp['parallel_deriv_color'] = parallel_deriv_color resp['flat_indices'] = flat_indices if self._static_mode: responses = self._static_responses else: responses = self._responses if alias in responses: raise TypeError(f"{self.msginfo}: Constraint alias '{alias}' is a duplicate of an " "existing alias or variable name.") if alias is not None: responses[alias] = resp else: responses[name] = resp
[docs] def add_constraint(self, name, lower=None, upper=None, equals=None, ref=None, ref0=None, adder=None, scaler=None, units=None, indices=None, linear=False, parallel_deriv_color=None, cache_linear_solution=False, flat_indices=False, alias=None): r""" Add a constraint variable to this system. Parameters ---------- name : str Name of the response variable in the system. lower : float or ndarray, optional Lower boundary for the variable. upper : float or ndarray, optional Upper boundary for the variable. equals : float or ndarray, optional Equality constraint value for the variable. ref : float or ndarray, optional Value of response variable that scales to 1.0 in the driver. ref0 : float or ndarray, optional Value of response variable that scales to 0.0 in the driver. adder : float or ndarray, optional Value to add to the model value to get the scaled value for the driver. adder is first in precedence. adder and scaler are an alterantive to using ref and ref0. scaler : float or ndarray, optional Value to multiply the model value to get the scaled value for the driver. scaler is second in precedence. adder and scaler are an alternative to using ref and ref0. units : str, optional Units to convert to before applying scaling. indices : sequence of int, optional If variable is an array, these indicate which entries are of interest for this particular response. These may be positive or negative integers. linear : bool Set to True if constraint is linear. Default is False. parallel_deriv_color : str If specified, this design var will be grouped for parallel derivative calculations with other variables sharing the same parallel_deriv_color. cache_linear_solution : bool If True, store the linear solution vectors for this variable so they can be used to start the next linear solution with an initial guess equal to the solution from the previous linear solve. flat_indices : bool If True, interpret specified indices as being indices into a flat source array. alias : str Alias for this response. Necessary when adding multiple constraints on different indices or slices of a single variable. Notes ----- The response can be scaled using ref and ref0. The argument :code:`ref0` represents the physical value when the scaled value is 0. The argument :code:`ref` represents the physical value when the scaled value is 1. The arguments (:code:`lower`, :code:`upper`, :code:`equals`) can not be strings or variable names. """ self.add_response(name=name, type_='con', lower=lower, upper=upper, equals=equals, scaler=scaler, adder=adder, ref=ref, ref0=ref0, indices=indices, linear=linear, units=units, parallel_deriv_color=parallel_deriv_color, cache_linear_solution=cache_linear_solution, flat_indices=flat_indices, alias=alias)
[docs] def add_objective(self, name, ref=None, ref0=None, index=None, units=None, adder=None, scaler=None, parallel_deriv_color=None, cache_linear_solution=False, flat_indices=False, alias=None): r""" Add a response variable to this system. Parameters ---------- name : str Name of the response variable in the system. ref : float or ndarray, optional Value of response variable that scales to 1.0 in the driver. ref0 : float or ndarray, optional Value of response variable that scales to 0.0 in the driver. index : int, optional If variable is an array, this indicates which entry is of interest for this particular response. This may be a positive or negative integer. units : str, optional Units to convert to before applying scaling. adder : float or ndarray, optional Value to add to the model value to get the scaled value for the driver. adder is first in precedence. adder and scaler are an alterantive to using ref and ref0. scaler : float or ndarray, optional Value to multiply the model value to get the scaled value for the driver. scaler is second in precedence. adder and scaler are an alterantive to using ref and ref0. parallel_deriv_color : str If specified, this design var will be grouped for parallel derivative calculations with other variables sharing the same parallel_deriv_color. cache_linear_solution : bool If True, store the linear solution vectors for this variable so they can be used to start the next linear solution with an initial guess equal to the solution from the previous linear solve. flat_indices : bool If True, interpret specified indices as being indices into a flat source array. alias : str Alias for this response. Necessary when adding multiple objectives on different indices or slices of a single variable. Notes ----- The objective can be scaled using scaler and adder, where .. math:: x_{scaled} = scaler(x + adder) or through the use of ref/ref0, which map to scaler and adder through the equations: .. math:: 0 = scaler(ref_0 + adder) 1 = scaler(ref + adder) which results in: .. math:: adder = -ref_0 scaler = \frac{1}{ref + adder} """ if index is not None and not isinstance(index, int): raise TypeError('{}: If specified, objective index must be ' 'an int.'.format(self.msginfo)) self.add_response(name, type_='obj', scaler=scaler, adder=adder, ref=ref, ref0=ref0, index=index, units=units, parallel_deriv_color=parallel_deriv_color, cache_linear_solution=cache_linear_solution, flat_indices=flat_indices, alias=alias)
def _update_dv_meta(self, meta, get_size=False, use_prom_ivc=False): """ Update the design variable metadata. Parameters ---------- meta : dict Metadata dictionary that is populated by this method. get_size : bool If True, compute the size and store it in the metadata. use_prom_ivc : bool Determines whether return key is promoted name or source name. """ model = self._problem_meta['model_ref']() pro2abs_out = self._var_allprocs_prom2abs_list['output'] abs2meta_out = model._var_allprocs_abs2meta['output'] prom_name = meta['name'] if prom_name in pro2abs_out: # promoted output src_name = pro2abs_out[prom_name][0] meta['orig'] = (prom_name, None) else: # Design variable on an input connected to an ivc. pro2abs_in = self._var_allprocs_prom2abs_list['input'] src_name = model._conn_global_abs_in2out[pro2abs_in[prom_name][0]] meta['orig'] = (None, prom_name) key = prom_name if use_prom_ivc else src_name meta['source'] = src_name meta['distributed'] = \ src_name in abs2meta_out and abs2meta_out[src_name]['distributed'] if get_size: if 'indices' not in meta: meta['indices'] = None abs2idx = model._var_allprocs_abs2idx sizes = model._var_sizes['output'] if src_name in abs2idx: # var is continuous vmeta = abs2meta_out[src_name] indices = meta['indices'] if indices is not None: # Index defined in this design var. # update src shapes for Indexer objects indices.set_src_shape(vmeta['global_shape']) indices = indices.shaped_instance() meta['size'] = meta['global_size'] = indices.indexed_src_size else: if meta['distributed']: meta['size'] = sizes[model.comm.rank, abs2idx[src_name]] else: meta['size'] = sizes[model._owning_rank[src_name], abs2idx[src_name]] meta['global_size'] = vmeta['global_size'] else: meta['global_size'] = meta['size'] = 0 # discrete var return key def _check_voi_meta_sizes(self, typename, name, meta, names): """ Check that sizes of named metadata agree with meta['size']. Parameters ---------- typename : str 'design var', 'objective', or 'constraint' name : str The name of the variable. May be an alias. meta : dict Metadata dictionary. names : list of str The metadata entries at each of these names must match meta['size']. """ if 'size' in meta and meta['size'] is not None: size = meta['size'] for mname in names: val = meta[mname] if isinstance(val, np.ndarray) and size != val.size: raise ValueError(f"{self.msginfo}: When adding {typename} '{name}'," f" {mname} should have size {size} but instead has size " f"{val.size}.")
[docs] def get_design_vars(self, recurse=True, get_sizes=True, use_prom_ivc=True): """ Get the DesignVariable settings from this system. Retrieve all design variable settings from the system and, if recurse is True, all of its subsystems. Parameters ---------- recurse : bool If True, recurse through the subsystems of a group and return the path of all design vars relative to the this system. get_sizes : bool, optional If True, compute the size of each design variable. use_prom_ivc : bool Use promoted names for inputs, else convert to absolute source names. Returns ------- dict The design variables defined in the current system and, if recurse=True, its subsystems. """ out = {} try: for name, data in self._design_vars.items(): if 'parallel_deriv_color' in data and data['parallel_deriv_color'] is not None: self._problem_meta['has_par_deriv_color'] = True key = self._update_dv_meta(data, get_size=get_sizes, use_prom_ivc=use_prom_ivc) if get_sizes and data['source'] in self._var_allprocs_abs2idx: self._check_voi_meta_sizes( 'design var', name, data, ['ref', 'ref0', 'scaler', 'adder', 'upper', 'lower']) out[key] = data except KeyError as err: raise RuntimeError(f"{self.msginfo}: Output not found for design variable {err}.") return out
def _update_response_meta(self, meta, get_size=False, use_prom_ivc=False): """ Update the design variable metadata. Parameters ---------- meta : dict Metadata dictionary. get_size : bool If True, compute the size of each design variable. use_prom_ivc : bool Use promoted names for inputs, else convert to absolute source names. """ prom2abs_out = self._var_allprocs_prom2abs_list['output'] prom2abs_in = self._var_allprocs_prom2abs_list['input'] model = self._problem_meta['model_ref']() conns = model._conn_global_abs_in2out abs2meta_out = model._var_allprocs_abs2meta['output'] alias = meta['alias'] prom = meta['name'] # 'usually' a promoted name, but can be absolute if alias is not None: if alias in prom2abs_out or alias in prom2abs_in: # Constraint alias should never be the same as any openmdao variable. path = prom2abs_out[prom][0] if prom in prom2abs_out else prom raise RuntimeError(f"{self.msginfo}: Constraint alias '{alias}' on '{path}'" " is the same name as an existing variable.") meta['parent'] = self.pathname if prom in prom2abs_out: # promoted output src_name = prom2abs_out[prom][0] elif prom in abs2meta_out: src_name = prom elif prom in prom2abs_in: src_name = conns[prom2abs_in[prom][0]] else: # abs input src_name = conns[prom][0] if alias: key = alias elif use_prom_ivc: key = prom else: key = src_name meta['source'] = src_name meta['distributed'] = dist = \ src_name in abs2meta_out and abs2meta_out[src_name]['distributed'] if get_size: sizes = model._var_sizes['output'] abs2idx = model._var_allprocs_abs2idx owning_rank = model._owning_rank if src_name in abs2idx: out_meta = abs2meta_out[src_name] if 'indices' in meta and meta['indices'] is not None: indices = meta['indices'] indices.set_src_shape(out_meta['global_shape']) indices = indices.shaped_instance() meta['size'] = meta['global_size'] = indices.indexed_src_size else: if dist: meta['size'] = sizes[self.comm.rank, abs2idx[src_name]] else: meta['size'] = sizes[owning_rank[src_name], abs2idx[src_name]] meta['global_size'] = out_meta['global_size'] else: meta['size'] = meta['global_size'] = 0 # discrete var, don't know size return key
[docs] def get_responses(self, recurse=True, get_sizes=True, use_prom_ivc=False): """ Get the response variable settings from this system. Retrieve all response variable settings from the system as a dict, keyed by either absolute variable name, promoted name, or alias name, depending on the value of use_prom_ivc and whether the original key was a promoted output, promoted input, or an alias. Parameters ---------- recurse : bool, optional If True, recurse through the subsystems and return the path of all responses relative to the this system. get_sizes : bool, optional If True, compute the size of each response. use_prom_ivc : bool Translate ivc names to their promoted input names. Returns ------- dict The responses defined in the current system and, if recurse=True, its subsystems. """ out = {} try: # keys of self._responses are the alias or the promoted name for name, meta in self._responses.items(): if 'parallel_deriv_color' in meta and meta['parallel_deriv_color'] is not None: self._problem_meta['has_par_deriv_color'] = True key = self._update_response_meta(meta, get_size=get_sizes, use_prom_ivc=use_prom_ivc) if get_sizes: self._check_voi_meta_sizes( resp_types[meta['type']], name, meta, resp_size_checks[meta['type']]) out[key] = meta except KeyError as err: raise RuntimeError(f"{self.msginfo}: Output not found for response {err}.") return out
[docs] def get_constraints(self, recurse=True, get_sizes=True, use_prom_ivc=True): """ Get the Constraint settings from this system. Retrieve the constraint settings for the current system as a dict, keyed by variable name. Parameters ---------- recurse : bool, optional If True, recurse through the subsystems and return the path of all constraints relative to the this system. get_sizes : bool, optional If True, compute the size of each constraint. use_prom_ivc : bool Translate ivc names to their promoted input names. Returns ------- dict The constraints defined in the current system. """ return { key: response for key, response in self.get_responses(recurse=recurse, get_sizes=get_sizes, use_prom_ivc=use_prom_ivc).items() if response['type'] == 'con' }
[docs] def get_objectives(self, recurse=True, get_sizes=True, use_prom_ivc=True): """ Get the Objective settings from this system. Retrieve all objectives settings from the system as a dict, keyed by variable name. Parameters ---------- recurse : bool, optional If True, recurse through the subsystems and return the path of all objective relative to the this system. get_sizes : bool, optional If True, compute the size of each objective. use_prom_ivc : bool Translate ivc names to their promoted input names. Returns ------- dict The objectives defined in the current system. """ return { key: response for key, response in self.get_responses(recurse=recurse, get_sizes=get_sizes, use_prom_ivc=use_prom_ivc).items() if response['type'] == 'obj' }
[docs] def run_apply_nonlinear(self): """ Compute residuals. This calls _apply_nonlinear, but with the model assumed to be in an unscaled state. """ with self._scaled_context_all(): self._apply_nonlinear()
[docs] def get_io_metadata(self, iotypes=('input', 'output'), metadata_keys=None, includes=None, excludes=None, is_indep_var=None, is_design_var=None, tags=None, get_remote=False, rank=None, return_rel_names=True): """ Retrieve metadata for a filtered list of variables. Parameters ---------- iotypes : str or iter of str Will contain either 'input', 'output', or both. Defaults to both. metadata_keys : iter of str or None Names of metadata entries to be retrieved or None, meaning retrieve all available 'allprocs' metadata. If 'val' or 'src_indices' are required, their keys must be provided explicitly since they are not found in the 'allprocs' metadata and must be retrieved from local metadata located in each process. includes : str, iter of str or None Collection of glob patterns for pathnames of variables to include. Default is None, which includes all variables. excludes : str, iter of str or None Collection of glob patterns for pathnames of variables to exclude. Default is None. is_indep_var : bool or None If None (the default), do no additional filtering of the inputs. If True, list only inputs connected to an output tagged `openmdao:indep_var`. If False, list only inputs _not_ connected to outputs tagged `openmdao:indep_var`. is_design_var : bool or None If None (the default), do no additional filtering of the inputs. If True, list only inputs connected to outputs that are driver design variables. If False, list only inputs _not_ connected to outputs that are driver design variables. tags : str or iter of strs User defined tags that can be used to filter what gets listed. Only inputs with the given tags will be listed. Default is None, which means there will be no filtering based on tags. get_remote : bool If True, retrieve variables from other MPI processes as well. rank : int or None If None, and get_remote is True, retrieve values from all MPI process to all other MPI processes. Otherwise, if get_remote is True, retrieve values from all MPI processes only to the specified rank. return_rel_names : bool If True, the names returned will be relative to the scope of this System. Otherwise they will be absolute names. Returns ------- dict A dict of metadata keyed on name, where name is either absolute or relative based on the value of the `return_rel_names` arg, and metadata is a dict containing entries based on the value of the metadata_keys arg. Every metadata dict will always contain two entries, 'prom_name' and 'discrete', to indicate a given variable's promoted name and whether or not it is discrete. """ prefix = self.pathname + '.' if self.pathname else '' rel_idx = len(prefix) # Setup any modified subsystems so the metadata dicts are up-to-date. if self._problem_meta: conf_info = self._problem_meta['config_info'] if conf_info: if self._subsystems_allprocs: conf_info._update_modified_systems(self) if self.pathname in conf_info._modified_systems: self._setup_var_data() if isinstance(iotypes, str): iotypes = (iotypes,) if isinstance(includes, str): includes = (includes,) if isinstance(excludes, str): excludes = (excludes,) if isinstance(tags, str): tags = {tags} gather_keys = {'val', 'src_indices'} need_gather = get_remote and self.comm is not None and self.comm.size > 1 if metadata_keys is not None: keyset = set(metadata_keys) diff = keyset - allowed_meta_names if diff: raise RuntimeError(f"{self.msginfo}: {sorted(diff)} are not valid metadata entry " "names.") need_local_meta = metadata_keys is not None and len(gather_keys.intersection(keyset)) > 0 all2meta = self._var_allprocs_abs2meta if need_local_meta: metadict = self._var_abs2meta disc_metadict = self._var_discrete else: metadict = all2meta disc_metadict = self._var_allprocs_discrete need_gather = False # we can get everything from 'allprocs' dict without gathering result = {} it = self._var_allprocs_abs2prom if get_remote else self._var_abs2prom if is_design_var is not None: des_vars = self.get_design_vars(get_sizes=False, use_prom_ivc=False) for iotype in iotypes: cont2meta = metadict[iotype] disc2meta = disc_metadict[iotype] for abs_name, prom in it[iotype].items(): if abs_name.startswith('_auto_ivc.'): if not match_prom_or_abs(abs_name, abs_name, includes, excludes): continue else: if not match_prom_or_abs(abs_name, prom, includes, excludes): continue rel_name = abs_name[rel_idx:] if abs_name in all2meta[iotype]: # continuous meta = cont2meta[abs_name] if abs_name in cont2meta else None distrib = all2meta[iotype][abs_name]['distributed'] else: # discrete if need_local_meta: # use relative name for discretes meta = disc2meta[rel_name] if rel_name in disc2meta else None else: meta = disc2meta[abs_name] distrib = False if meta is None: ret_meta = None else: if metadata_keys is None: ret_meta = dict(meta) else: ret_meta = {} for key in keyset: try: ret_meta[key] = meta[key] except KeyError: ret_meta[key] = NA if need_gather: if distrib or abs_name in self._vars_to_gather: if rank is None: allproc_metas = self.comm.allgather(ret_meta) else: allproc_metas = self.comm.gather(ret_meta, root=rank) if rank is None or self.comm.rank == rank: if not ret_meta: ret_meta = {} if distrib: if 'val' in keyset: # assemble the full distributed value dist_vals = [m['val'] for m in allproc_metas if m is not None and m['val'].size > 0] if dist_vals: ret_meta['val'] = np.concatenate(dist_vals) else: ret_meta['val'] = np.zeros(0) if 'src_indices' in keyset: # assemble full src_indices dist_src_inds = [m['src_indices'] for m in allproc_metas if m is not None and m['src_indices'].size > 0] if dist_src_inds: ret_meta['src_indices'] = np.concatenate(dist_src_inds) else: ret_meta['src_indices'] = np.zeros(0, dtype=INT_DTYPE) elif abs_name in self._vars_to_gather: for m in allproc_metas: if m is not None: ret_meta = m break else: ret_meta = None if ret_meta is not None: # handle is_indep_var if is_indep_var is not None: if iotype == 'output': out_meta = meta else: src_name = self.get_source(abs_name) try: out_meta = metadict['output'][src_name] except KeyError: out_meta = disc_metadict['output'][src_name] src_tags = out_meta['tags'] if 'tags' in out_meta else {} if is_indep_var: if 'openmdao:indep_var' not in src_tags: continue elif 'openmdao:indep_var' in src_tags: continue # handle is_design_var if is_design_var is not None: if iotype == 'output': out_name = abs_name else: out_name = self.get_source(abs_name) if is_design_var: if out_name not in des_vars: continue elif out_name in des_vars: continue # handle tags if tags: meta_tags = ret_meta.get('tags', {}) match_tag = False for tag in tags: for meta_tag in meta_tags: if fnmatchcase(meta_tag, tag): match_tag = True break if not match_tag: continue ret_meta['prom_name'] = prom ret_meta['discrete'] = abs_name not in all2meta[iotype] if return_rel_names: result[rel_name] = ret_meta else: result[abs_name] = ret_meta return result
[docs] def list_vars(self, val=True, prom_name=True, residuals=False, residuals_tol=None, units=False, shape=False, global_shape=False, bounds=False, scaling=False, desc=False, print_arrays=False, tags=None, print_tags=False, includes=None, excludes=None, is_indep_var=None, is_design_var=None, all_procs=False, list_autoivcs=False, out_stream=_DEFAULT_OUT_STREAM, print_min=False, print_max=False, return_format='list'): """ Write a list of inputs and outputs sorted by component in execution order. Parameters ---------- val : bool, optional When True, display output values. Default is True. prom_name : bool, optional When True, display the promoted name of the variable. Default is True. residuals : bool, optional When True, display residual values. Default is False. residuals_tol : float, optional If set, limits the output of list_outputs to only variables where the norm of the resids array is greater than the given 'residuals_tol'. Default is None. units : bool, optional When True, display units. Default is False. shape : bool, optional When True, display/return the shape of the value. Default is False. global_shape : bool, optional When True, display/return the global shape of the value. Default is False. bounds : bool, optional When True, display/return bounds (lower and upper). Default is False. scaling : bool, optional When True, display/return scaling (ref, ref0, and res_ref). Default is False. desc : bool, optional When True, display/return description. Default is False. print_arrays : bool, optional When False, in the columnar display, just display norm of any ndarrays with size > 1. The norm is surrounded by vertical bars to indicate that it is a norm. When True, also display full values of the ndarray below the row. Format is affected by the values set with numpy.set_printoptions Default is False. tags : str or list of strs User defined tags that can be used to filter what gets listed. Only outputs with the given tags will be listed. Default is None, which means there will be no filtering based on tags. print_tags : bool When true, display tags in the columnar display. includes : None, str, or iter of str Collection of glob patterns for pathnames of variables to include. Default is None, which includes all output variables. excludes : None, str, or iter of str Collection of glob patterns for pathnames of variables to exclude. Default is None. is_indep_var : bool or None If None (the default), do no additional filtering of the inputs. If True, list only outputs tagged `openmdao:indep_var`. If False, list only outputs that are _not_ tagged `openmdao:indep_var`. is_design_var : bool or None If None (the default), do no additional filtering of the inputs. If True, list only inputs connected to outputs that are driver design variables. If False, list only inputs _not_ connected to outputs that are driver design variables. all_procs : bool, optional When True, display output on all processors. Default is False. list_autoivcs : bool If True, include auto_ivc outputs in the listing. Defaults to False. out_stream : file-like Where to send human readable output. Default is sys.stdout. Set to None to suppress. print_min : bool When true, if the output value is an array, print its smallest value. print_max : bool When true, if the output value is an array, print its largest value. return_format : str Indicates the desired format of the return value. Can have value of 'list' or 'dict'. If 'list', the return value is a list of (name, metadata) tuples. if 'dict', the return value is a dictionary mapping {name: metadata}. Returns ------- list of (name, metadata) or dict of {name: metadata} List or dict of output names and other optional information about those outputs. """ if (self._problem_meta is None or self._problem_meta['setup_status'] < _SetupStatus.POST_FINAL_SETUP) and val: issue_warning("Calling `list_vars` before `final_setup` will only " "display the default values of variables and will not show the result of " "any `set_val` calls.") if return_format not in ('list', 'dict'): badarg = f"'{return_format}'" if isinstance(return_format, str) else f"{return_format}" raise ValueError(f"Invalid value ({badarg}) for return_format, " "must be a string value of 'list' or 'dict'") keynames = ['val', 'units', 'shape', 'global_shape', 'desc', 'tags'] keyflags = [val, units, shape, global_shape, desc, tags or print_tags] keys = [name for i, name in enumerate(keynames) if keyflags[i]] if bounds: keys.extend(('lower', 'upper')) if scaling: keys.extend(('ref', 'ref0', 'res_ref')) if all_procs: local = True else: local = False outputs = self.get_io_metadata(('output',), keys, includes, excludes, is_indep_var, is_design_var, tags, get_remote=True, rank=None if all_procs or val or residuals else 0, return_rel_names=False) metavalues = val and self._inputs is None keyvals = [metavalues, units, shape, global_shape, desc, tags or print_tags] keys = [n for i, n in enumerate(keynames) if keyvals[i]] inputs = self.get_io_metadata(('input',), keys, includes, excludes, is_indep_var, is_design_var, tags, get_remote=True, rank=None if all_procs or val else 0, return_rel_names=False) # filter auto_ivcs if requested if outputs and not list_autoivcs: outputs = {n: m for n, m in outputs.items() if not n.startswith('_auto_ivc.')} # get values & resids if self._outputs is not None and (val or residuals or residuals_tol): to_remove = [] print_options = np.get_printoptions() np_precision = print_options['precision'] for name, meta in outputs.items(): if val: # we want value from the input vector, not from the metadata meta['val'] = self._abs_get_val(name, get_remote=True, rank=None if all_procs else 0, kind='output') if isinstance(meta['val'], np.ndarray): if print_min: meta['min'] = np.round(np.min(meta['val']), np_precision) if print_max: meta['max'] = np.round(np.max(meta['val']), np_precision) if residuals or residuals_tol: resids = self._abs_get_val(name, get_remote=True, rank=None if all_procs else 0, kind='residual') if residuals_tol and np.linalg.norm(resids) < residuals_tol: to_remove.append(name) elif residuals: meta['resids'] = resids # remove any outputs that don't pass the residuals_tol filter for name in to_remove: del outputs[name] if val and self._inputs is not None: # we want value from the input vector, not from the metadata print_options = np.get_printoptions() np_precision = print_options['precision'] for n, meta in inputs.items(): meta['val'] = self._abs_get_val(n, get_remote=True, rank=None if all_procs else 0, kind='input') if isinstance(meta['val'], np.ndarray): if print_min: meta['min'] = np.round(np.min(meta['val']), np_precision) if print_max: meta['max'] = np.round(np.max(meta['val']), np_precision) # remove metadata we don't want to show/return to_remove = ['discrete'] if not print_tags: to_remove.append('tags') if not prom_name: to_remove.append('prom_name') for _, meta in chain(outputs.items(), inputs.items()): for key in to_remove: try: del meta[key] except KeyError: pass variables = set(outputs.keys()).union(set(inputs.keys())) var_list = [] var_dict = {} var_list = self._get_vars_exec_order(inputs=True, outputs=True, variables=variables, local=local) for var_name in var_list: if var_name in outputs: var_dict[var_name] = outputs[var_name] var_dict[var_name]['io'] = 'output' else: var_dict[var_name] = inputs[var_name] var_dict[var_name]['io'] = 'input' if not (all_procs or self.comm.rank == 0): out_stream = None write_var_table(self.pathname, var_list, 'all', var_dict, True, print_arrays, out_stream) if not (outputs or inputs) or (not all_procs and self.comm.rank != 0): return {} if return_format == 'dict' else [] return var_dict if return_format == 'dict' else list(var_dict.items())
[docs] def list_inputs(self, val=True, prom_name=True, units=False, shape=False, global_shape=False, desc=False, hierarchical=True, print_arrays=False, tags=None, print_tags=False, includes=None, excludes=None, is_indep_var=None, is_design_var=None, all_procs=False, out_stream=_DEFAULT_OUT_STREAM, print_min=False, print_max=False, return_format='list'): """ Write a list of input names and other optional information to a specified stream. Parameters ---------- val : bool, optional When True, display/return input values. Default is True. prom_name : bool, optional When True, display/return the promoted name of the variable. Default is True. units : bool, optional When True, display/return units. Default is False. shape : bool, optional When True, display/return the shape of the value. Default is False. global_shape : bool, optional When True, display/return the global shape of the value. Default is False. desc : bool, optional When True, display/return description. Default is False. hierarchical : bool, optional When True, human readable output shows variables in hierarchical format. print_arrays : bool, optional When False, in the columnar display, just display norm of any ndarrays with size > 1. The norm is surrounded by vertical bars to indicate that it is a norm. When True, also display full values of the ndarray below the row. Format is affected by the values set with numpy.set_printoptions Default is False. tags : str or list of strs User defined tags that can be used to filter what gets listed. Only inputs with the given tags will be listed. Default is None, which means there will be no filtering based on tags. print_tags : bool When true, display tags in the columnar display. includes : None, str, or iter of str Collection of glob patterns for pathnames of variables to include. Default is None, which includes all input variables. excludes : None, str, or iter of str Collection of glob patterns for pathnames of variables to exclude. Default is None. is_indep_var : bool or None If None (the default), do no additional filtering of the inputs. If True, list only inputs connected to an output tagged `openmdao:indep_var`. If False, list only inputs _not_ connected to outputs tagged `openmdao:indep_var`. is_design_var : bool or None If None (the default), do no additional filtering of the inputs. If True, list only inputs connected to outputs that are driver design variables. If False, list only inputs _not_ connected to outputs that are driver design variables. all_procs : bool, optional When True, display output on all ranks. Default is False, which will display output only from rank 0. out_stream : file-like object Where to send human readable output. Default is sys.stdout. Set to None to suppress. print_min : bool When true, if the input value is an array, print its smallest value. print_max : bool When true, if the input value is an array, print its largest value. return_format : str Indicates the desired format of the return value. Can have value of 'list' or 'dict'. If 'list', the return value is a list of (name, metadata) tuples. if 'dict', the return value is a dictionary mapping {name: metadata}. Returns ------- list of (name, metadata) or dict of {name: metadata} List or dict of input names and other optional information about those inputs. """ if (self._problem_meta is None or self._problem_meta['setup_status'] < _SetupStatus.POST_FINAL_SETUP) and val: issue_warning("Calling `list_inputs` before `final_setup` will only " "display the default values of variables and will not show the result of " "any `set_val` calls.") if return_format not in ('list', 'dict'): raise ValueError(f"Invalid value ({return_format}) for return_format, " "must be a string value of 'list' or 'dict'") metavalues = val and self._inputs is None keynames = ['val', 'units', 'shape', 'global_shape', 'desc', 'tags'] keyvals = [metavalues, units, shape, global_shape, desc, tags or print_tags] keys = [n for i, n in enumerate(keynames) if keyvals[i]] inputs = self.get_io_metadata(('input',), keys, includes, excludes, is_indep_var, is_design_var, tags, get_remote=True, rank=None if all_procs or val else 0, return_rel_names=False) if val and self._inputs is not None: # we want value from the input vector, not from the metadata print_options = np.get_printoptions() np_precision = print_options['precision'] for n, meta in inputs.items(): meta['val'] = self._abs_get_val(n, get_remote=True, rank=None if all_procs else 0, kind='input') if isinstance(meta['val'], np.ndarray): if print_min: meta['min'] = np.round(np.min(meta['val']), np_precision) if print_max: meta['max'] = np.round(np.max(meta['val']), np_precision) to_remove = ['discrete'] if not print_tags: to_remove.append('tags') if not prom_name: to_remove.append('prom_name') for _, meta in inputs.items(): for key in to_remove: try: del meta[key] except KeyError: pass if not (all_procs or self.comm.rank == 0): out_stream = None self._write_table('input', inputs, hierarchical, print_arrays, all_procs, out_stream) if not inputs or (not all_procs and self.comm.rank != 0): return {} if return_format == 'dict' else [] if self.pathname: # convert to relative names rel_idx = len(self.pathname) + 1 inputs = [(n[rel_idx:], meta) for n, meta in inputs.items()] else: inputs = list(inputs.items()) return dict(inputs) if return_format == 'dict' else inputs
[docs] def list_outputs(self, explicit=True, implicit=True, val=True, prom_name=True, residuals=False, residuals_tol=None, units=False, shape=False, global_shape=False, bounds=False, scaling=False, desc=False, hierarchical=True, print_arrays=False, tags=None, print_tags=False, includes=None, excludes=None, is_indep_var=None, is_design_var=None, all_procs=False, list_autoivcs=False, out_stream=_DEFAULT_OUT_STREAM, print_min=False, print_max=False, return_format='list'): """ Write a list of output names and other optional information to a specified stream. Parameters ---------- explicit : bool, optional Include outputs from explicit components. Default is True. implicit : bool, optional Include outputs from implicit components. Default is True. val : bool, optional When True, display output values. Default is True. prom_name : bool, optional When True, display the promoted name of the variable. Default is True. residuals : bool, optional When True, display residual values. Default is False. residuals_tol : float, optional If set, limits the output of list_outputs to only variables where the norm of the resids array is greater than the given 'residuals_tol'. Default is None. units : bool, optional When True, display units. Default is False. shape : bool, optional When True, display/return the shape of the value. Default is False. global_shape : bool, optional When True, display/return the global shape of the value. Default is False. bounds : bool, optional When True, display/return bounds (lower and upper). Default is False. scaling : bool, optional When True, display/return scaling (ref, ref0, and res_ref). Default is False. desc : bool, optional When True, display/return description. Default is False. hierarchical : bool, optional When True, human readable output shows variables in hierarchical format. print_arrays : bool, optional When False, in the columnar display, just display norm of any ndarrays with size > 1. The norm is surrounded by vertical bars to indicate that it is a norm. When True, also display full values of the ndarray below the row. Format is affected by the values set with numpy.set_printoptions Default is False. tags : str or list of strs User defined tags that can be used to filter what gets listed. Only outputs with the given tags will be listed. Default is None, which means there will be no filtering based on tags. print_tags : bool When true, display tags in the columnar display. includes : None, str, or iter of str Collection of glob patterns for pathnames of variables to include. Default is None, which includes all output variables. excludes : None, str, or iter of str Collection of glob patterns for pathnames of variables to exclude. Default is None. is_indep_var : bool or None If None (the default), do no additional filtering of the inputs. If True, list only outputs tagged `openmdao:indep_var`. If False, list only outputs that are _not_ tagged `openmdao:indep_var`. is_design_var : bool or None If None (the default), do no additional filtering of the inputs. If True, list only inputs connected to outputs that are driver design variables. If False, list only inputs _not_ connected to outputs that are driver design variables. all_procs : bool, optional When True, display output on all processors. Default is False. list_autoivcs : bool If True, include auto_ivc outputs in the listing. Defaults to False. out_stream : file-like Where to send human readable output. Default is sys.stdout. Set to None to suppress. print_min : bool When true, if the output value is an array, print its smallest value. print_max : bool When true, if the output value is an array, print its largest value. return_format : str Indicates the desired format of the return value. Can have value of 'list' or 'dict'. If 'list', the return value is a list of (name, metadata) tuples. if 'dict', the return value is a dictionary mapping {name: metadata}. Returns ------- list of (name, metadata) or dict of {name: metadata} List or dict of output names and other optional information about those outputs. """ if return_format not in ('list', 'dict'): badarg = f"'{return_format}'" if isinstance(return_format, str) else f"{return_format}" raise ValueError(f"Invalid value ({badarg}) for return_format, " "must be a string value of 'list' or 'dict'") keynames = ['val', 'units', 'shape', 'global_shape', 'desc', 'tags'] keyflags = [val, units, shape, global_shape, desc, tags or print_tags] keys = [name for i, name in enumerate(keynames) if keyflags[i]] if bounds: keys.extend(('lower', 'upper')) if scaling: keys.extend(('ref', 'ref0', 'res_ref')) outputs = self.get_io_metadata(('output',), keys, includes, excludes, is_indep_var, is_design_var, tags, get_remote=True, rank=None if all_procs or val or residuals else 0, return_rel_names=False) # filter auto_ivcs if requested if outputs and not list_autoivcs: outputs = {n: m for n, m in outputs.items() if not n.startswith('_auto_ivc.')} # get values & resids if self._outputs is not None and (val or residuals or residuals_tol): to_remove = [] print_options = np.get_printoptions() np_precision = print_options['precision'] for name, meta in outputs.items(): if val: # we want value from the input vector, not from the metadata meta['val'] = self._abs_get_val(name, get_remote=True, rank=None if all_procs else 0, kind='output') if isinstance(meta['val'], np.ndarray): if print_min: meta['min'] = np.round(np.min(meta['val']), np_precision) if print_max: meta['max'] = np.round(np.max(meta['val']), np_precision) if residuals or residuals_tol: resids = self._abs_get_val(name, get_remote=True, rank=None if all_procs else 0, kind='residual') if residuals_tol and np.linalg.norm(resids) < residuals_tol: to_remove.append(name) elif residuals: meta['resids'] = resids # remove any outputs that don't pass the residuals_tol filter for name in to_remove: del outputs[name] # remove metadata we don't want to show/return to_remove = ['discrete'] if not print_tags: to_remove.append('tags') if not prom_name: to_remove.append('prom_name') for _, meta in outputs.items(): for key in to_remove: try: del meta[key] except KeyError: pass rel_idx = len(self.pathname) + 1 if self.pathname else 0 if not (all_procs or self.comm.rank == 0): out_stream = None states = set(self._list_states()) if explicit: expl_outputs = {n: m for n, m in outputs.items() if n not in states} self._write_table('explicit', expl_outputs, hierarchical, print_arrays, all_procs, out_stream) if self.name: # convert to relative name expl_outputs = [(n[rel_idx:], meta) for n, meta in expl_outputs.items()] else: expl_outputs = list(expl_outputs.items()) if implicit: impl_outputs = {} if residuals_tol: for n, m in outputs.items(): if n in states: if residuals_tol and 'resids' in m: if np.linalg.norm(m['resids']) >= residuals_tol: impl_outputs[n] = m else: impl_outputs[n] = m else: impl_outputs = {n: m for n, m in outputs.items() if n in states} if not (all_procs or self.comm.rank == 0): out_stream = None self._write_table('implicit', impl_outputs, hierarchical, print_arrays, all_procs, out_stream) if self.name: # convert to relative name impl_outputs = [(n[rel_idx:], meta) for n, meta in impl_outputs.items()] else: impl_outputs = list(impl_outputs.items()) if not outputs or (not all_procs and self.comm.rank != 0): return {} if return_format == 'dict' else [] if explicit and implicit: outputs = expl_outputs + impl_outputs elif explicit: outputs = expl_outputs elif implicit: outputs = impl_outputs else: raise RuntimeError('You have excluded both Explicit and Implicit components.') return dict(outputs) if return_format == 'dict' else outputs
def _write_table(self, var_type, var_data, hierarchical, print_arrays, all_procs, out_stream): """ Write table of variable names, values, residuals, and metadata to out_stream. Parameters ---------- var_type : 'input', 'explicit' or 'implicit' Indicates type of variables, input or explicit/implicit output. var_data : dict dict of name and metadata. hierarchical : bool When True, human readable output shows variables in hierarchical format. print_arrays : bool When False, in the columnar display, just display norm of any ndarrays with size > 1. The norm is surrounded by vertical bars to indicate that it is a norm. When True, also display full values of the ndarray below the row. Format is affected by the values set with numpy.set_printoptions Default is False. all_procs : bool, optional When True, display output on all processors. out_stream : file-like object Where to send human readable output. Set to None to suppress. """ if self._outputs is None: var_list = var_data.keys() else: inputs = var_type == 'input' outputs = not inputs var_list = self._get_vars_exec_order(inputs=inputs, outputs=outputs, variables=var_data) write_var_table(self.pathname, var_list, var_type, var_data, hierarchical, print_arrays, out_stream) def _get_vars_exec_order(self, inputs=False, outputs=False, variables=None, local=False): """ Get list of variable names in execution order, based on the order subsystems were setup. Parameters ---------- outputs : bool, optional Get names of output variables. Default is False. inputs : bool, optional Get names of input variables. Default is False. variables : Collection (list or dict) Absolute path names of the subset of variables to include. If None then all variables will be included. Default is None. local : bool, optional Get variables from local subsystems only. Default is False. Returns ------- list list of variable names in execution order """ var_list = [] real_vars = self._var_allprocs_abs2meta disc_vars = self._var_allprocs_discrete # variable order: real inputs, real outputs, discrete inputs, discrete outputs var_dicts = [] if inputs: var_dicts.append(real_vars['input']) if outputs: var_dicts.append(real_vars['output']) if inputs and disc_vars['input']: var_dicts.append(disc_vars['input']) if outputs and disc_vars['output']: var_dicts.append(disc_vars['output']) # For components, self._subsystems_allprocs is empty. if self._subsystems_allprocs: if local: from openmdao.core.component import Component it = [s.pathname for s in self.system_iter(recurse=True, typ=Component)] else: it = self._allprocs_exec_order() for path in it: prefix = path + '.' for var_name in chain(*var_dicts): if variables is None or var_name in variables: if var_name.startswith(prefix): var_list.append(var_name) else: for var_name in chain(*var_dicts): if variables is None or var_name in variables: var_list.append(var_name) return var_list
[docs] def run_solve_nonlinear(self): """ Compute outputs. This calls _solve_nonlinear, but with the model assumed to be in an unscaled state. """ with self._scaled_context_all(): self._solve_nonlinear()
[docs] def run_apply_linear(self, mode, scope_out=None, scope_in=None): """ Compute jac-vec product. This calls _apply_linear, but with the model assumed to be in an unscaled state. Parameters ---------- mode : str 'fwd' or 'rev'. scope_out : set or None Set of absolute output names in the scope of this mat-vec product. If None, all are in the scope. scope_in : set or None Set of absolute input names in the scope of this mat-vec product. If None, all are in the scope. """ with self._scaled_context_all(): self._apply_linear(None, mode, scope_out, scope_in)
[docs] def run_solve_linear(self, mode): """ Apply inverse jac product. This calls _solve_linear, but with the model assumed to be in an unscaled state. Parameters ---------- mode : str 'fwd' or 'rev'. """ with self._scaled_context_all(): self._solve_linear(mode)
[docs] def run_linearize(self, sub_do_ln=True): """ Compute jacobian / factorization. This calls _linearize, but with the model assumed to be in an unscaled state. Parameters ---------- sub_do_ln : bool Flag indicating if the children should call linearize on their linear solvers. """ with self._scaled_context_all(): self._linearize(self._assembled_jac, sub_do_ln=self._linear_solver is not None and self._linear_solver._linearize_children()) if self._linear_solver is not None and sub_do_ln: self._linear_solver._linearize()
def _apply_nonlinear(self): """ Compute residuals. The model is assumed to be in a scaled state. """ raise NotImplementedError(self.msginfo + ": _apply_nonlinear has not been overridden")
[docs] def check_config(self, logger): """ Perform optional error checks. Parameters ---------- logger : object The object that manages logging output. """ pass
def _iter_call_apply_linear(self): """ Return whether to call _apply_linear on this System from within parent _apply_linear. Returns ------- bool True if _apply_linear should be called from within a parent _apply_linear. """ return True def _apply_linear(self, jac, mode, scope_in=None, scope_out=None): """ Compute jac-vec product. The model is assumed to be in a scaled state. Parameters ---------- jac : Jacobian or None If None, use local jacobian, else use assembled jacobian jac. mode : str 'fwd' or 'rev'. scope_out : set or None Set of absolute output names in the scope of this mat-vec product. If None, all are in the scope. scope_in : set or None Set of absolute input names in the scope of this mat-vec product. If None, all are in the scope. """ raise NotImplementedError(self.msginfo + ": _apply_linear has not been overridden") def _solve_linear(self, mode, scope_out=_UNDEFINED, scope_in=_UNDEFINED): """ Apply inverse jac product. The model is assumed to be in a scaled state. Parameters ---------- mode : str 'fwd' or 'rev'. scope_out : set, None, or _UNDEFINED Outputs relevant to possible lower level calls to _apply_linear on Components. scope_in : set, None, or _UNDEFINED Inputs relevant to possible lower level calls to _apply_linear on Components. """ pass def _linearize(self, jac, sub_do_ln=True): """ Compute jacobian / factorization. The model is assumed to be in a scaled state. Parameters ---------- jac : Jacobian or None If None, use local jacobian, else use assembled jacobian jac. sub_do_ln : bool Flag indicating if the children should call linearize on their linear solvers. """ raise NotImplementedError(self.msginfo + ": _linearize has not been overridden") def _list_states(self): """ Return list of all states at and below this system. Returns ------- list List of all states. """ return [] def _list_states_allprocs(self): """ Return list of all states at and below this system across all procs. Returns ------- list List of all states. """ return []
[docs] def load_model_options(self): """ Load the relevant model options from `Problem._metadata['model_options']`. This method examines each path filter and corresponding options in self._problem_meta['model_options']. If this System's pathname matches the given path filter, it will assume the value for each given option which it possesses. """ model_options = self._problem_meta['model_options'] for path_filter, path_options in model_options.items(): if fnmatchcase(self.pathname, path_filter): for option, val in path_options.items(): if option in self.options: self.options[option] = val
[docs] def add_recorder(self, recorder, recurse=False): """ Add a recorder to the system. Parameters ---------- recorder : <CaseRecorder> A recorder instance. recurse : bool Flag indicating if the recorder should be added to all the subsystems. """ if MPI: raise RuntimeError(self.msginfo + ": Recording of Systems when running parallel " "code is not supported yet") self._rec_mgr.append(recorder) if recurse: for s in self.system_iter(include_self=False, recurse=recurse): s._rec_mgr.append(recorder)
[docs] def record_iteration(self): """ Record an iteration of the current System. """ global _recordable_funcs if self._rec_mgr._recorders: parallel = self._rec_mgr._check_parallel() if self.comm.size > 1 else False do_gather = self._rec_mgr._check_gather() local = parallel and not do_gather options = self.recording_options metadata = create_local_meta(self.pathname) # Get the data to record if self._recording_iter.stack: stack_top = self._recording_iter.stack[-1][0] method = stack_top.rsplit('.', 1)[-1] if method not in _recordable_funcs: raise ValueError(f"{self.msginfo}: {method} must be one of: " f"{sorted(_recordable_funcs)}") if 'nonlinear' in method: inputs, outputs, residuals = self.get_nonlinear_vectors() vec_name = 'nonlinear' else: inputs, outputs, residuals = self.get_linear_vectors() vec_name = 'linear' else: # outside of a run, just record nonlinear vectors inputs, outputs, residuals = self.get_nonlinear_vectors() vec_name = 'nonlinear' discrete_inputs = self._discrete_inputs discrete_outputs = self._discrete_outputs filt = self._filtered_vars_to_record data = {'input': {}, 'output': {}, 'residual': {}} if options['record_inputs'] and (inputs._names or len(discrete_inputs) > 0): data['input'] = self._retrieve_data_of_kind(filt, 'input', vec_name, local) if options['record_outputs'] and (outputs._names or len(discrete_outputs) > 0): data['output'] = self._retrieve_data_of_kind(filt, 'output', vec_name, local) if options['record_residuals'] and residuals._names: data['residual'] = self._retrieve_data_of_kind(filt, 'residual', vec_name, local) self._rec_mgr.record_iteration(self, data, metadata) # All calls to _solve_nonlinear are recorded, The counter is incremented after recording. self.iter_count += 1 if not self.under_approx: self.iter_count_without_approx += 1
def _clear_iprint(self): """ Clear out the iprint stack from the solvers. """ self.nonlinear_solver._solver_info.clear() def _reset_iter_counts(self): """ Recursively reset iteration counter for all systems and solvers. """ for s in self.system_iter(include_self=True, recurse=True): s.iter_count = 0 s.iter_count_apply = 0 s.iter_count_without_approx = 0 if s._linear_solver: s._linear_solver._iter_count = 0 if s._nonlinear_solver: nl = s._nonlinear_solver nl._iter_count = 0 if nl.linesearch: nl.linesearch._iter_count = 0
[docs] def get_reports_dir(self): """ Get the path to the directory where the report files should go. If it doesn't exist, it will be created. Returns ------- str The path to the directory where reports should be written. """ return self._problem_meta['reports_dir']
[docs] def get_outputs_dir(self, *subdirs, mkdir=True): """ Get the path under which all output files of this system are to be placed. Parameters ---------- *subdirs : str Subdirectories nested under the relevant problem output directory. To create {prob_output_dir}/a/b one would pass `system.get_outputs_dir('a', 'b')`. mkdir : bool If True, attempt to create this directory if it does not exist. Returns ------- pathlib.Path The path of the outputs directory for the problem. """ return _get_outputs_dir(self, *subdirs, mkdir=mkdir)
def _set_finite_difference_mode(self, active): """ Turn on or off finite difference mode. Recurses to turn on or off finite difference mode in all subsystems. Parameters ---------- active : bool Finite difference flag; set to True prior to commencing finite difference. """ for sub in self.system_iter(include_self=True, recurse=True): sub.under_finite_difference = active def _set_complex_step_mode(self, active): """ Turn on or off complex stepping mode. Recurses to turn on or off complex stepping mode in all subsystems and their vectors. Parameters ---------- active : bool Complex mode flag; set to True prior to commencing complex step. """ self.under_complex_step = active self._inputs.set_complex_step_mode(active) self._outputs.set_complex_step_mode(active) self._residuals.set_complex_step_mode(active) if self._doutputs._alloc_complex: self._doutputs.set_complex_step_mode(active) self._dinputs.set_complex_step_mode(active) self._dresiduals.set_complex_step_mode(active) if self.nonlinear_solver: self.nonlinear_solver._set_complex_step_mode(active) if self.linear_solver: self.linear_solver._set_complex_step_mode(active) if isinstance(self._jacobian, Jacobian): self._jacobian.set_complex_step_mode(active) if self._assembled_jac: self._assembled_jac.set_complex_step_mode(active) for sub in self._subsystems_myproc: sub._set_complex_step_mode(active)
[docs] def cleanup(self): """ Clean up resources prior to exit. """ # shut down all recorders self._rec_mgr.shutdown() # do any required cleanup on solvers if self._nonlinear_solver: self._nonlinear_solver.cleanup() if self._linear_solver: self._linear_solver.cleanup()
def _get_gradient_nl_solver_systems(self): """ Return a set of all Systems, including this one, that have a gradient nonlinear solver. Returns ------- set Set of Systems containing nonlinear solvers that compute gradients. """ return set(s for s in self.system_iter(include_self=True, recurse=True) if s.nonlinear_solver and s.nonlinear_solver.supports['gradients']) def _jac_var_info_abs2prom(self, var_info): """ Return a new list with tuples' [0] entry converted from absolute to promoted names. Parameters ---------- var_info : list of (name, offset, end, idxs) The list that uses absolute names. Returns ------- list The new list with promoted names. """ new_list = [] abs2prom_in = self._var_allprocs_abs2prom['input'] abs2prom_out = self._var_allprocs_abs2prom['output'] for tup in var_info: lst = list(tup) if tup[0] in abs2prom_out: lst[0] = abs2prom_out[tup[0]] else: lst[0] = abs2prom_in[tup[0]] new_list.append(lst) return new_list def _abs_get_val(self, abs_name, get_remote=False, rank=None, vec_name=None, kind=None, flat=False, from_root=False): """ Return the value of the variable specified by the given absolute name. Parameters ---------- abs_name : str The absolute name of the variable. get_remote : bool or None If True, return the value even if the variable is remote. NOTE: This function must be called in all procs in the Problem's MPI communicator. If False, only retrieve the value if it is on the current process, or only the part of the value that's on the current process for a distributed variable. If None and the variable is remote or distributed, a RuntimeError will be raised. rank : int or None If not None, specifies that the value is to be gathered to the given rank only. Otherwise, if get_remote is specified, the value will be broadcast to all procs in the MPI communicator. vec_name : str Name of the vector to use. kind : str or None Kind of variable ('input', 'output', or 'residual'). If None, returned value will be either an input or output. flat : bool If True, return the flattened version of the value. from_root : bool If True, resolve variables from top level scope. Returns ------- object or None The value of the requested output/input/resid variable. None if variable is not found. """ discrete = distrib = False val = _UNDEFINED if from_root: all_meta = self._problem_meta['model_ref']()._var_allprocs_abs2meta my_meta = self._problem_meta['model_ref']()._var_abs2meta io = 'output' if abs_name in all_meta['output'] else 'input' all_meta = all_meta[io] my_meta = my_meta[io] else: io = 'output' if abs_name in self._var_allprocs_abs2meta['output'] else 'input' all_meta = self._var_allprocs_abs2meta[io] my_meta = self._var_abs2meta[io] vars_to_gather = self._problem_meta['vars_to_gather'] # if abs_name is non-discrete it should be found in all_meta if abs_name in all_meta: if get_remote: meta = all_meta[abs_name] distrib = meta['distributed'] elif self.comm.size > 1: if abs_name in vars_to_gather and vars_to_gather[abs_name] != self.comm.rank: raise RuntimeError(f"{self.msginfo}: Variable '{abs_name}' is not local to " f"rank {self.comm.rank}. You can retrieve values from " "other processes using `get_val(<name>, get_remote=True)`.") meta = my_meta[abs_name] distrib = meta['distributed'] if distrib and get_remote is None: raise RuntimeError(f"{self.msginfo}: Variable '{abs_name}' is a distributed " "variable. You can retrieve values from all processes " "using `get_val(<name>, get_remote=True)` or from the " "local process using `get_val(<name>, get_remote=False)`.") else: discrete = True relname = abs_name[len(self.pathname) + 1:] if self.pathname else abs_name if relname in self._discrete_outputs: val = self._discrete_outputs[relname] elif relname in self._discrete_inputs: val = self._discrete_inputs[relname] elif abs_name in self._var_allprocs_discrete['output']: pass # non-local discrete output elif abs_name in self._var_allprocs_discrete['input']: pass # non-local discrete input elif get_remote: raise ValueError(f"{self.msginfo}: Can't find variable named '{abs_name}'.") else: return _UNDEFINED typ = 'output' if abs_name in self._var_allprocs_abs2prom['output'] else 'input' if kind is None: kind = typ if vec_name is None: vec_name = 'nonlinear' if not discrete: try: vec = self._vectors[kind][vec_name] except KeyError: if abs_name in my_meta: if vec_name != 'nonlinear': raise ValueError(f"{self.msginfo}: Can't get variable named '{abs_name}' " "because linear vectors are not available before " "final_setup.") val = my_meta[abs_name]['val'] else: if from_root: vec = vec._root_vector if vec._contains_abs(abs_name): val = vec._abs_get_val(abs_name, flat) if get_remote and (distrib or abs_name in vars_to_gather) and self.comm.size > 1: owner = self._owning_rank[abs_name] myrank = self.comm.rank if distrib: idx = self._var_allprocs_abs2idx[abs_name] sizes = self._var_sizes[typ][:, idx] # TODO: could cache these offsets offsets = np.zeros(sizes.size, dtype=INT_DTYPE) offsets[1:] = np.cumsum(sizes[:-1]) if val is _UNDEFINED: loc_val = np.zeros(sizes[myrank]) else: loc_val = np.ascontiguousarray(val) val = np.zeros(np.sum(sizes)) if rank is None: # bcast if distrib: self.comm.Allgatherv(loc_val, [val, sizes, offsets, MPI.DOUBLE]) if not flat: val.shape = meta['global_shape'] if get_remote else meta['shape'] else: if owner != self.comm.rank: val = None # TODO: use Bcast if not discrete for speed new_val = self.comm.bcast(val, root=owner) val = new_val else: # retrieve to rank if distrib: self.comm.Gatherv(loc_val, [val, sizes, offsets, MPI.DOUBLE], root=rank) if not flat: val.shape = meta['global_shape'] if get_remote else meta['shape'] else: if rank != owner: tag = self._var_allprocs_abs2idx[abs_name] # avoid tag collisions between inputs, outputs, and resids if kind != 'output': tag += len(self._var_allprocs_abs2meta['output']) if kind == 'residual': tag += len(self._var_allprocs_abs2meta['input']) if self.comm.rank == owner: self.comm.send(val, dest=rank, tag=tag) elif self.comm.rank == rank: val = self.comm.recv(source=owner, tag=tag) return val
[docs] def get_val(self, name, units=None, indices=None, get_remote=False, rank=None, vec_name='nonlinear', kind=None, flat=False, from_src=True): """ Get an output/input/residual variable. Function is used if you want to specify display units. Parameters ---------- name : str Promoted or relative variable name in the root system's namespace. units : str, optional Units to convert to before return. indices : int or list of ints or tuple of ints or int ndarray or Iterable or None, optional Indices or slice to return. get_remote : bool or None If True, retrieve the value even if it is on a remote process. Note that if the variable is remote on ANY process, this function must be called on EVERY process in the Problem's MPI communicator. If False, only retrieve the value if it is on the current process, or only the part of the value that's on the current process for a distributed variable. If None and the variable is remote or distributed, a RuntimeError will be raised. rank : int or None If not None, only gather the value to this rank. vec_name : str Name of the vector to use. Defaults to 'nonlinear'. kind : str or None Kind of variable ('input', 'output', or 'residual'). If None, returned value will be either an input or output. flat : bool If True, return the flattened version of the value. from_src : bool If True, retrieve value of an input variable from its connected source. Returns ------- object The value of the requested output/input variable. """ abs_names = name2abs_names(self, name) if not abs_names: raise KeyError('{}: Variable "{}" not found.'.format(self.msginfo, name)) simp_units = simplify_unit(units) if from_src: conns = self._problem_meta['model_ref']()._conn_global_abs_in2out else: conns = [] if from_src and abs_names[0] in conns: # pull input from source src = conns[abs_names[0]] if src in self._var_allprocs_abs2prom['output']: caller = self else: # src is outside of this system so get the value from the model caller = self._problem_meta['model_ref']() return caller._get_input_from_src(name, abs_names, conns, units=simp_units, indices=indices, get_remote=get_remote, rank=rank, vec_name=vec_name, flat=flat, scope_sys=self) else: val = self._abs_get_val(abs_names[0], get_remote, rank, vec_name, kind, flat) if indices is not None: val = val[indices] if units is not None: val = self.convert2units(abs_names[0], val, simp_units) return val
def _get_cached_val(self, name, abs_names, get_remote=False): # We have set and cached already for abs_name in abs_names: if abs_name in self._initial_condition_cache: return self._initial_condition_cache[abs_name][0] # Vector not setup, so we need to pull values from saved metadata request. model = self._problem_meta['model_ref']() try: conns = model._conn_abs_in2out except AttributeError: conns = {} abs_name = abs_names[0] vars_to_gather = self._problem_meta['vars_to_gather'] units = None meta = model._var_abs2meta io = 'output' if abs_name in meta['output'] else 'input' if abs_name in meta[io]: if abs_name in conns: smeta = meta['output'][conns[abs_name]] val = smeta['val'] # output units = smeta['units'] else: vmeta = meta[io][abs_name] val = vmeta['val'] units = vmeta['units'] else: # not found in real outputs or inputs, try discretes meta = model._var_discrete io = 'output' if abs_name in meta['output'] else 'input' if abs_name in meta[io]: if abs_name in conns: val = meta['output'][conns[abs_name]]['val'] else: val = meta[io][abs_name]['val'] if get_remote and abs_name in vars_to_gather: owner = vars_to_gather[abs_name] if model.comm.rank == owner: model.comm.bcast(val, root=owner) else: val = model.comm.bcast(None, root=owner) if val is not _UNDEFINED: # Need to cache the "get" in case the user calls in-place numpy operations. self._initial_condition_cache[abs_name] = (val, units, self.pathname, name) return val
[docs] def set_val(self, name, val, units=None, indices=None): """ Set an input or output variable. Parameters ---------- name : str Promoted or relative variable name in the system's namespace. val : object Value to assign to this variable. units : str, optional Units of the value. indices : int or list of ints or tuple of ints or int ndarray or Iterable or None, optional Indices or slice to set. """ post_setup = self._problem_meta is not None and \ self._problem_meta['setup_status'] >= _SetupStatus.POST_SETUP if post_setup: abs_names = name2abs_names(self, name) else: raise RuntimeError(f"{self.msginfo}: Called set_val({name}, ...) before setup " "completes.") has_vectors = self._problem_meta['setup_status'] >= _SetupStatus.POST_FINAL_SETUP value = val model = self._problem_meta['model_ref']() conns = model._conn_global_abs_in2out all_meta = model._var_allprocs_abs2meta loc_meta = model._var_abs2meta n_proms = 0 # if nonzero, name given was promoted input name w/o a matching prom output try: ginputs = self._group_inputs except AttributeError: ginputs = {} # could happen if this system is not a Group if abs_names: n_proms = len(abs_names) # for output this will never be > 1 if n_proms > 1 and name in ginputs: abs_name = ginputs[name][0].get('use_tgt', abs_names[0]) else: abs_name = abs_names[0] else: raise KeyError(f'{model.msginfo}: Variable "{name}" not found.') set_units = None if abs_name in conns: # we're setting an input src = conns[abs_name] if abs_name not in model._var_allprocs_discrete['input']: # input is continuous value = np.asarray(value) tmeta = all_meta['input'][abs_name] tunits = tmeta['units'] sunits = all_meta['output'][src]['units'] if abs_name in loc_meta['input']: tlocmeta = loc_meta['input'][abs_name] else: tlocmeta = None gunits = ginputs[name][0].get('units') if name in ginputs else None if n_proms > 1: # promoted input name was used if gunits is None: tunit_list = [all_meta['input'][n]['units'] for n in abs_names] tu0 = tunit_list[0] for tu in tunit_list: if tu != tu0: model._show_ambiguity_msg(name, ('units',), abs_names) if units is None: # avoids double unit conversion ivalue = value if sunits is not None: if gunits is not None and gunits != tunits: value = model.convert_from_units(src, value, gunits) elif tunits is not None: value = model.convert_from_units(src, value, tunits) else: msg = "A value with no units has been specified for input " + \ f"'{name}', but the source ('{src}') has units '{sunits}'. " + \ "No unit checking can be done." issue_warning(msg, prefix=self.msginfo, category=UnitsWarning) else: if gunits is None: ivalue = model.convert_from_units(abs_name, value, units) else: ivalue = model.convert_units(name, value, units, gunits) value = model.convert_from_units(src, value, units) set_units = sunits else: src = abs_name if units is not None: value = model.convert_from_units(abs_name, value, units) try: set_units = all_meta['output'][abs_name]['units'] except KeyError: # this can happen if a component is the top level System set_units = all_meta['input'][abs_name]['units'] # Caching only needed if vectors aren't allocated yet. if not has_vectors: ic_cache = model._initial_condition_cache if indices is not None: self._get_cached_val(name, abs_names) try: cval = ic_cache[abs_name][0] if _is_slicer_op(indices): try: ic_cache[abs_name] = (value[indices], set_units, self.pathname, name) except IndexError: cval[indices] = value ic_cache[abs_name] = (cval, set_units, self.pathname, name) else: cval[indices] = value ic_cache[abs_name] = (cval, set_units, self.pathname, name) except Exception as err: raise RuntimeError(f"Failed to set value of '{name}': {str(err)}.") else: ic_cache[abs_name] = (value, set_units, self.pathname, name) else: myrank = model.comm.rank if indices is None: indices = _full_slice if model._outputs._contains_abs(abs_name): distrib = all_meta['output'][abs_name]['distributed'] if (distrib and indices is _full_slice and value.size == all_meta['output'][abs_name]['global_size']): # assume user is setting using full distributed value sizes = model._var_sizes['output'][:, model._var_allprocs_abs2idx[abs_name]] start = np.sum(sizes[:myrank]) end = start + sizes[myrank] model._outputs.set_var(abs_name, value[start:end], indices) else: model._outputs.set_var(abs_name, value, indices) elif abs_name in conns: # input name given. Set value into output src_is_auto_ivc = src.startswith('_auto_ivc.') # when setting auto_ivc output, error messages should refer # to the promoted name used in the set_val call var_name = name if src_is_auto_ivc else src if model._outputs._contains_abs(src): # src is local if (model._outputs._abs_get_val(src).size == 0 and src_is_auto_ivc and all_meta['output'][src]['distributed']): pass # special case, auto_ivc dist var with 0 local size elif tmeta['has_src_indices']: if tlocmeta: # target is local flat = False if name in model._var_prom2inds: sshape, inds, flat = model._var_prom2inds[name] src_indices = inds elif (tlocmeta.get('manual_connection') or model._inputs._contains_abs(name)): src_indices = tlocmeta['src_indices'] else: src_indices = None if src_indices is None: model._outputs.set_var(src, value, _full_slice, flat, var_name=var_name) else: flat = src_indices._flat_src if tmeta['distributed']: src_indices = src_indices.shaped_array() ssizes = model._var_sizes['output'] sidx = model._var_allprocs_abs2idx[src] ssize = ssizes[myrank, sidx] start = np.sum(ssizes[:myrank, sidx]) end = start + ssize if np.any(src_indices < start) or np.any(src_indices >= end): raise RuntimeError(f"{model.msginfo}: Can't set {name}: " "src_indices refer " "to out-of-process array entries.") if start > 0: src_indices = src_indices - start src_indices = indexer(src_indices) if indices is _full_slice: model._outputs.set_var(src, value, src_indices, flat, var_name=var_name) else: model._outputs.set_var(src, value, src_indices.apply(indices), True, var_name=var_name) else: issue_warning(f"{model.msginfo}: Cannot set the value of '{abs_name}':" " Setting the value of a remote connected input with" " src_indices is currently not supported, you must call" " `run_model()` to have the outputs populate their" " corresponding inputs.") else: value = np.asarray(value) if indices is not _full_slice: indices = indexer(indices) model._outputs.set_var(src, value, indices, var_name=var_name) elif src in model._discrete_outputs: model._discrete_outputs[src] = value # also set the input # TODO: maybe remove this if inputs are removed from case recording if n_proms < 2: if model._inputs._contains_abs(abs_name): model._inputs.set_var(abs_name, ivalue, indices) elif abs_name in model._discrete_inputs: model._discrete_inputs[abs_name] = value else: # must be a remote var. so, just do nothing on this proc. We can't get here # unless abs_name is found in connections, so the variable must exist. if abs_name in model._var_allprocs_abs2meta: print(f"Variable '{name}' is remote on rank {self.comm.rank}. " "Local assignment ignored.") elif abs_name in model._discrete_outputs: model._discrete_outputs[abs_name] = value elif model._inputs._contains_abs(abs_name): # could happen if model is a component model._inputs.set_var(abs_name, value, indices) elif abs_name in model._discrete_inputs: # could happen if model is a component model._discrete_inputs[abs_name] = value
def _get_input_from_src(self, name, abs_ins, conns, units=None, indices=None, get_remote=False, rank=None, vec_name='nonlinear', flat=False, scope_sys=None): """ Given an input name, retrieve the value from its source output. Parameters ---------- name : str Promoted or relative variable name in the root system's namespace. abs_ins : list of str List of absolute input names. conns : dict Mapping of absolute names of each input to its connected output across the whole model. units : str, optional Units to convert to before return. indices : int or list of ints or tuple of ints or int ndarray or Iterable or None, optional Indices or slice to return. get_remote : bool If True, retrieve the value even if it is on a remote process. Note that if the variable is remote on ANY process, this function must be called on EVERY process in the Problem's MPI communicator. If False, only retrieve the value if it is on the current process, or only the part of the value that's on the current process for a distributed variable. If None and the variable is remote or distributed, a RuntimeError will be raised. rank : int or None If not None, only gather the value to this rank. vec_name : str Name of the vector to use. Defaults to 'nonlinear'. flat : bool If True, return the flattened version of the value. scope_sys : <System> or None If not None, the System where the original get_val was called. This situation happens when get_val is called on an input, and the source connected to that input resides in a different scope. Returns ------- object The value of the requested variable. """ abs_name = abs_ins[0] src = conns[abs_name] if src in self._var_allprocs_discrete['output']: return self._abs_get_val(src, get_remote, rank, vec_name, 'output', flat, from_root=True) is_prom = len(abs_ins) > 1 or name != abs_ins[0] if scope_sys is None: scope_sys = self abs2meta_all_ins = self._var_allprocs_abs2meta['input'] # if we have multiple promoted inputs that are explicitly connected to an output and units # have not been specified, look for group input to disambiguate if units is None and len(abs_ins) > 1: if abs_name not in self._var_allprocs_discrete['input']: # can't get here unless Group because len(abs_ins) always == 1 for comp try: units = scope_sys._group_inputs[name][0]['units'] except (KeyError, IndexError): unit0 = abs2meta_all_ins[abs_ins[0]]['units'] for n in abs_ins[1:]: if unit0 != abs2meta_all_ins[n]['units']: self._show_ambiguity_msg(name, ('units',), abs_ins) break is_local = abs_name in self._var_abs2meta['input'] src_indices = vshape = None if is_local: # input is local vmeta = self._var_abs2meta['input'][abs_name] if vmeta.get('manual_connection') or not is_prom: src_indices = vmeta['src_indices'] vshape = vmeta['shape'] else: vmeta = abs2meta_all_ins[abs_name] distrib = vmeta['distributed'] vdynshape = vmeta['shape_by_conn'] for n in abs_ins: if abs2meta_all_ins[n]['has_src_indices']: has_src_indices = True break else: has_src_indices = False if is_prom: # see if we have any 'intermediate' level src_indices when using a promoted name n = name scope = scope_sys while n: if n in scope._var_prom2inds: _, inds, _ = scope._var_prom2inds[n] if inds is None: if is_prom: # using a promoted lookup src_indices = None vshape = None has_src_indices = False else: shp = inds.indexed_src_shape src_indices = inds has_src_indices = True if is_prom: vshape = shp break parent, _, child = n.partition('.') if child: s = scope._get_subsystem(parent) if s is not None: scope = s n = child if self.comm.size > 1 and get_remote: if self.comm.rank == self._owning_rank[abs_name]: self.comm.bcast(has_src_indices, root=self.comm.rank) else: has_src_indices = self.comm.bcast(None, root=self._owning_rank[abs_name]) model_ref = self._problem_meta['model_ref']() smeta = model_ref._var_allprocs_abs2meta['output'][src] sdistrib = smeta['distributed'] dynshape = vdynshape or smeta['shape_by_conn'] slocal = src in model_ref._var_abs2meta['output'] if self.comm.size > 1: if distrib and get_remote is None: raise RuntimeError(f"{self.msginfo}: Variable '{abs_name}' is a distributed " "variable. You can retrieve values from all processes " "using `get_val(<name>, get_remote=True)` or from the " "local process using `get_val(<name>, get_remote=False)`.") if sdistrib and not distrib and not get_remote: raise RuntimeError(f"{self.msginfo}: Non-distributed variable '{abs_name}' has " f"a distributed source, '{src}', so you must retrieve its value " "using 'get_remote=True'.") # get value of the source val = self._abs_get_val(src, get_remote, rank, vec_name, 'output', flat, from_root=True) if has_src_indices: if not is_local: val = np.zeros(0) elif src_indices is None: if vshape is not None: val = val.reshape(vshape) else: var_idx = self._var_allprocs_abs2idx[src] sizes = self._var_sizes['output'][:, var_idx] if distrib and (sdistrib or dynshape or not slocal) and not get_remote: # sizes for src var in each proc start = np.sum(sizes[:self.comm.rank]) end = start + sizes[self.comm.rank] src_indices = src_indices.shaped_array(copy=True) if np.all(np.logical_and(src_indices >= start, src_indices < end)): if src_indices.size > 0: src_indices = src_indices - start val = val.ravel()[src_indices] fail = 0 else: fail = 1 if self.comm.allreduce(fail) > 0: raise RuntimeError(f"{self.msginfo}: Can't retrieve distributed variable " f"'{abs_name}' because its src_indices reference " "entries from other processes. You can retrieve values " "from all processes using " "`get_val(<name>, get_remote=True)`.") else: if src_indices._flat_src: val = val.ravel()[src_indices.flat()] # if at component level, just keep shape of the target and don't flatten if not flat and not is_prom: shp = vmeta['shape'] val.shape = shp else: val = val[src_indices()] if vshape is not None and val.shape != vshape: val.shape = vshape elif not is_prom and vmeta is not None and val.shape != vmeta['shape']: val.shape = vmeta['shape'] if get_remote and self.comm.size > 1: if distrib: if rank is None: parts = self.comm.allgather(val) parts = [p for p in parts if p.size > 0] val = np.concatenate(parts, axis=0) else: parts = self.comm.gather(val, root=rank) if rank == self.comm.rank: parts = [p for p in parts if p.size > 0] val = np.concatenate(parts, axis=0) else: val = None else: # non-distrib input if self.comm.rank == self._owning_rank[abs_name]: self.comm.bcast(val, root=self.comm.rank) else: val = self.comm.bcast(None, root=self._owning_rank[abs_name]) if distrib and get_remote: val.shape = abs2meta_all_ins[abs_name]['global_shape'] elif not flat and val.size > 0 and vshape is not None: val.shape = vshape elif vshape is not None: val = val.reshape(vshape) if indices is not None: val = val[indices] if units is not None: if smeta['units'] is not None: try: val = self.convert2units(src, val, units) except TypeError: # just call this to get the right error message self.convert2units(abs_name, val, units) else: val = self.convert2units(abs_name, val, units) elif (vmeta['units'] is not None and smeta['units'] is not None and vmeta['units'] != smeta['units']): val = self.convert2units(src, val, vmeta['units']) return val def _retrieve_data_of_kind(self, filtered_vars, kind, vec_name, local=False): """ Retrieve variables, either local or remote, in the filtered_vars list. Parameters ---------- filtered_vars : dict Dictionary containing entries for 'input', 'output', and/or 'residual'. kind : str Either 'input', 'output', or 'residual'. vec_name : str Either 'nonlinear' or 'linear'. local : bool If True, only local values should be saved in each proc. Returns ------- dict Variable values keyed on absolute name. """ prom2abs_in = self._var_allprocs_prom2abs_list['input'] conns = self._problem_meta['model_ref']()._conn_global_abs_in2out vdict = {} variables = filtered_vars.get(kind) if variables: vec = self._vectors[kind][vec_name] rank = self.comm.rank discrete_vec = () if kind == 'residual' else self._var_discrete[kind] offset = len(self.pathname) + 1 if self.pathname else 0 if self.comm.size == 1: get = vec._abs_get_val srcget = self._vectors['output'][vec_name]._abs_get_val vdict = {} if discrete_vec: for n in variables: if vec._contains_abs(n): vdict[n] = get(n, False) elif n[offset:] in discrete_vec: vdict[n] = discrete_vec[n[offset:]]['val'] else: ivc_path = conns[prom2abs_in[n][0]] if vec._contains_abs(ivc_path): vdict[ivc_path] = srcget(ivc_path, False) elif ivc_path[offset:] in discrete_vec: vdict[ivc_path] = discrete_vec[ivc_path[offset:]]['val'] else: for name in variables: if name in self._responses and self._responses[name]['alias'] is not None: name = self._responses[name]['source'] if vec._contains_abs(name): vdict[name] = get(name, False) else: ivc_path = conns[prom2abs_in[name][0]] vdict[ivc_path] = srcget(ivc_path, False) elif local: get = self._abs_get_val vdict = {} if discrete_vec: for name in variables: if name in self._responses and self._responses[name]['alias'] is not None: name = self._responses[name]['source'] if vec._contains_abs(name): vdict[name] = get(name, get_remote=True, rank=0, vec_name=vec_name, kind=kind) elif name[offset:] in discrete_vec and self._owning_rank[name] == rank: vdict[name] = discrete_vec[name[offset:]]['val'] else: for name in variables: if vec._contains_abs(name): vdict[name] = get(name, get_remote=True, rank=0, vec_name=vec_name, kind=kind) elif name in prom2abs_in: ivc_path = conns[prom2abs_in[name][0]] vdict[name] = get(ivc_path, get_remote=True, rank=0, vec_name=vec_name, kind='output') else: for name in variables: vdict[name] = self.get_val(name, get_remote=True, rank=0, vec_name=vec_name, kind=kind, from_src=False) return vdict
[docs] def convert2units(self, name, val, units): """ Convert the given value to the specified units. Parameters ---------- name : str Name of the variable. val : float or ndarray of float The value of the variable. units : str The units to convert to. Returns ------- float or ndarray of float The value converted to the specified units. """ base_units = self._get_var_meta(name, 'units') if base_units == units: return val try: scale, offset = unit_conversion(base_units, units) except Exception: msg = "{}: Can't express variable '{}' with units of '{}' in units of '{}'." raise TypeError(msg.format(self.msginfo, name, base_units, units)) return (val + offset) * scale
[docs] def convert_from_units(self, name, val, units): """ Convert the given value from the specified units to those of the named variable. Parameters ---------- name : str Name of the variable. val : float or ndarray of float The value of the variable. units : str The units to convert to. Returns ------- float or ndarray of float The value converted to the specified units. """ base_units = self._get_var_meta(name, 'units') if base_units == units: return val try: scale, offset = unit_conversion(units, base_units) except Exception: msg = "{}: Can't express variable '{}' with units of '{}' in units of '{}'." raise TypeError(msg.format(self.msginfo, name, base_units, units)) return (val + offset) * scale
[docs] def convert_units(self, name, val, units_from, units_to): """ Wrap the utility convert_units and give a good error message. Parameters ---------- name : str Name of the variable. val : float or ndarray of float The value of the variable. units_from : str The units to convert from. units_to : str The units to convert to. Returns ------- float or ndarray of float The value converted to the specified units. """ if units_from == units_to: return val try: scale, offset = unit_conversion(units_from, units_to) except Exception: raise TypeError(f"{self.msginfo}: Can't set variable '{name}' with units " f"'{units_from}' to value with units '{units_to}'.") return (val + offset) * scale
def _get_var_meta(self, name, key): """ Get metadata for a variable. Parameters ---------- name : str Variable name (promoted, relative, or absolute) in the root system's namespace. key : str Key into the metadata dict for the given variable. Returns ------- object The value stored under key in the metadata dictionary for the named variable. """ if self._problem_meta is not None: model_ref = self._problem_meta['model_ref']() else: model_ref = None if model_ref is not None: meta_all = model_ref._var_allprocs_abs2meta meta_loc = model_ref._var_abs2meta else: meta_all = self._var_allprocs_abs2meta meta_loc = self._var_abs2meta meta = None if name in meta_all['output']: abs_name = name meta = meta_all['output'][name] elif name in meta_all['input']: abs_name = name meta = meta_all['input'][name] if meta is None: abs_name = name2abs_name(self, name) if abs_name is not None: if abs_name in meta_all['output']: meta = meta_all['output'][abs_name] elif abs_name in meta_all['input']: meta = meta_all['input'][abs_name] if meta: if key in meta: return meta[key] else: # key is either bogus or a key into the local metadata dict # (like 'val' or 'src_indices'). If MPI is active, this val may be remote # on some procs if self.comm.size > 1 and abs_name in self._vars_to_gather: # TODO: fix this # cause a failure in all procs to avoid a hang raise RuntimeError(f"{self.msgifo}: No support yet for retrieving local " f"metadata key '{key}' from a remote proc.") elif abs_name in meta_loc['output']: try: return meta_loc['output'][abs_name][key] except KeyError: raise KeyError(f"{self.msginfo}: Metadata key '{key}' not found for " f"variable '{name}'.") elif abs_name in meta_loc['input']: try: return meta_loc['input'][abs_name][key] except KeyError: raise KeyError(f"{self.msginfo}: Metadata key '{key}' not found for " f"variable '{name}'.") if abs_name is not None: if abs_name in self._var_allprocs_discrete['output']: meta = self._var_allprocs_discrete['output'][abs_name] elif abs_name in self._var_allprocs_discrete['input']: meta = self._var_allprocs_discrete['input'][abs_name] if meta and key in meta: return meta[key] rel_idx = len(self.pathname) + 1 if self.pathname else 0 relname = abs_name[rel_idx:] if relname in self._var_discrete['output']: meta = self._var_discrete['output'][relname] elif relname in self._var_discrete['input']: meta = self._var_discrete['input'][relname] if meta: try: return meta[key] except KeyError: raise KeyError(f"{self.msginfo}: Metadata key '{key}' not found for " f"variable '{name}'.") raise KeyError(f"{self.msginfo}: Metadata for variable '{name}' not found.") def _resolve_ambiguous_input_meta(self): pass def _generate_md5_hash(self): """ Generate an md5 hash for the data structure of this model. The hash is generated from an encoded string containing the physical model hiearchy, including all component and variable names, and all connection information. The hash is used by the n2 viewer to determine if a saved view can be reused. It is not intended to accurately track whether a model has been changed, so no options/settings are tracked. Returns ------- str The md5 hash string for the model. """ data = [] # Model Hierarchy. for system in self.system_iter(include_self=True, recurse=True): # System name and depth. pathname = system.pathname if pathname: name_parts = pathname.split('.') data.append((name_parts[-1], len(name_parts))) else: data.append(('model', 0)) # Local (relative) names for Component inputs and outputs. try: data.append(sorted(system._var_rel_names['input'])) data.append(sorted(system._var_rel_names['output'])) except AttributeError: continue # All Connections. # Note: dictionary can be in any order, so we have to sort. for key in sorted(self._conn_global_abs_in2out): data.append(self._conn_global_abs_in2out[key]) try: hash = hashlib.md5(str(data).encode(), usedforsecurity=False).hexdigest() # nosec: content not sensitive except TypeError: hash = hashlib.md5(str(data).encode()).hexdigest() # nosec: content not sensitive return hash def _get_full_dist_shape(self, abs_name, local_shape): """ Get the full 'distributed' shape for a variable. Variable name is absolute and variable is assumed to be continuous. Parameters ---------- abs_name : str Absolute name of the variable. local_shape : tuple Local shape of the variable, used in error reporting. Returns ------- tuple The distributed shape for the given variable. """ if abs_name in self._var_allprocs_abs2meta['output']: io = 'output' scope = self elif abs_name in self._problem_meta['model_ref']()._var_allprocs_abs2meta['output']: io = 'output' scope = self._problem_meta['model_ref']() else: io = 'input' scope = self meta = scope._var_allprocs_abs2meta[io][abs_name] var_idx = scope._var_allprocs_abs2idx[abs_name] global_size = np.sum(scope._var_sizes[io][:, var_idx]) # assume that all but the first dimension of the shape of a # distributed variable is the same on all procs shape = meta['shape'] if shape is None and self._get_saved_errors(): # a setup error has occurred earlier that caused shape to be None. Just return (0,) # to avoid a confusing KeyError return (0,) high_dims = shape[1:] sz = shape_to_len(shape) with multi_proc_exception_check(self.comm): if high_dims: high_size = shape_to_len(high_dims) dim_size_match = bool(global_size % high_size == 0) if dim_size_match is False and sz > 0: raise RuntimeError(f"{self.msginfo}: All but the first dimension of the " "shape's local parts in a distributed variable must match " f"across processes. For output '{abs_name}', local shape " f"{local_shape} in MPI rank {self.comm.rank} has a " "higher dimension that differs in another rank.") dim1 = global_size // high_size return tuple([dim1] + list(high_dims)) return (global_size,) def _has_fast_rel_lookup(self): """ Return True if this System should have fast relative variable name lookup in vectors. Returns ------- bool True if this System should have fast relative variable name lookup in vectors. """ return False def _collect_error(self, msg, exc_type=None, tback=None, ident=None): """ Save an error message to raise as an exception later. Parameters ---------- msg : str The connection error message to be saved. exc_type : class or None The type of exception to be raised if this error is the only one collected. tback : traceback or None The traceback of a caught exception. ident : int Identifier of the object responsible for issuing the error. """ if exc_type is None: exc_type = RuntimeError if tback is None: tback = make_traceback() if self.msginfo not in msg: msg = f"{self.msginfo}: {msg}" saved_errors = self._get_saved_errors() # if saved_errors is None it means we have already finished setup and all errors should # be raised as exceptions immediately. if saved_errors is None or env_truthy('OPENMDAO_FAIL_FAST'): raise exc_type(msg).with_traceback(tback) saved_errors.append((ident, msg, exc_type, tback)) def _get_saved_errors(self): if self._problem_meta is None: return self._saved_errors return self._problem_meta['saved_errors'] def _set_problem_meta(self, prob_meta): self._problem_meta = prob_meta # transfer any temporarily stored error msgs to the Problem if self._saved_errors and prob_meta['saved_errors'] is not None: prob_meta['saved_errors'].extend(self._saved_errors) self._saved_errors = None if env_truthy('OPENMDAO_FAIL_FAST') else [] def _get_inconsistent_keys(self): keys = set() if self.comm.size > 1: from openmdao.core.component import Component if isinstance(self, Component): keys.update(self._inconsistent_keys) else: for comp in self.system_iter(recurse=True, include_self=True, typ=Component): keys.update(comp._inconsistent_keys) myrank = self.comm.rank for rank, proc_keys in enumerate(self.comm.allgather(keys)): if rank != myrank: keys.update(proc_keys) return keys
[docs] def is_explicit(self): """ Return True if this is an explicit component. Returns ------- bool True if this is an explicit component. """ return False
[docs] def best_partial_deriv_direction(self): """ Return the best direction for partial deriv calculations based on input and output sizes. Returns ------- str The best direction for derivative calculations, 'fwd' or 'rev'. """ return 'fwd' if len(self._outputs) > len(self._inputs) else 'rev'
def _get_sys_promotion_tree(self, tree=None): """ Return a dict of all subsystems and their promoted inputs/outputs. Parameters ---------- tree : dict A dict of subsystems and their promoted inputs/outputs. Returns ------- dict A dict of subsystems and their promoted inputs/outputs. """ if tree is None: tree = {} tree[self.pathname] = {'proms_out': defaultdict(set), 'proms_in': defaultdict(set)} parent = self.pathname.rpartition('.')[0] if self.pathname else None if parent in tree: parent_node = tree[parent] out_promotions = parent_node['proms_out'] in_promotions = parent_node['proms_in'] maps = self._get_promotion_maps() for prom_out, tup in maps['output'].items(): out_promotions[tup[0]].add(self.name + '.' + prom_out) for prom_in, tup in maps['input'].items(): in_promotions[tup[0]].add(self.name + '.' + prom_in) for subsys in self._subsystems_myproc: subsys._get_sys_promotion_tree(tree=tree) return tree def _get_promote_lists(self, tree, abs_vnames, io): """ Return a list of (sysname, varpath, prom_name) tuples. Parameters ---------- tree : dict A dict of subsystems and their promoted inputs/outputs. abs_vnames : list of str List of absolute variable names. io : str 'in' or 'out' Returns ------- list of (str, str, str) List of (sysname, varpath, prom_name) tuples. """ promotion_list = [] if abs_vnames: node_proms = f'proms_{io}' for abs_vname in abs_vnames: # starting vname is just the local vname = abs_vname.rpartition('.')[2] # systems from the bottom up slist = list(all_ancestors(abs_vname))[1:] if not self.pathname: slist += [''] for spath in slist: sname = spath.rpartition('.')[2] node = tree[spath] proms = node[node_proms] for pname, subs in proms.items(): if vname in subs: promotion_list.append((spath, vname, pname)) vname = sname + '.' + pname break else: vname = sname + '.' + vname return promotion_list
[docs] def get_promotions(self, inprom=None, outprom=None): """ Return all promotions for the given promoted variable(s). In other words, how and where did promotions occur to convert absolute variable names into the given promoted name(s) at the current System level. Parameters ---------- inprom : str or None The promoted input variable name. outprom : str or None The promoted output variable name. Returns ------- dict Dictionary keyed on system pathname containing input and/or output promotion lists for each System where promotions occurred to produce the given promoted variable(s). """ if inprom is None and outprom is None: raise RuntimeError(f"{self.msginfo}: At least one of (inprom, outprom) must be set " "when calling get_promotions.") if self._promotion_tree is None: self._promotion_tree = self._get_sys_promotion_tree() tree = self._promotion_tree plist_ins = plist_outs = None if outprom is None and inprom in self._var_allprocs_prom2abs_list['output']: outprom = inprom if outprom is not None: try: abs_outs = self._var_allprocs_prom2abs_list['output'][outprom] except KeyError: # outprom might be an inprom mapped to an auto_ivc try: inabs = self._var_allprocs_prom2abs_list['input'][outprom] abs_outs = [self._conn_global_abs_in2out[inabs[0]]] except KeyError: raise KeyError(f"{self.msginfo}: Promoted output variable '{outprom}' was not " "found.") plist_outs = self._get_promote_lists(tree, abs_outs, 'out') if inprom is not None: try: abs_ins = self._var_allprocs_prom2abs_list['input'][inprom] except KeyError: raise KeyError(f"{self.msginfo}: Promoted input variable '{inprom}' was not " "found.") plist_ins = self._get_promote_lists(tree, abs_ins, 'in') # create a dict that interleaves all of the input and output promotions, keeping the # number of rows consistent when adding a promotion tree info to a table. sys_prom_map = defaultdict(lambda: [None, set(), None, set()]) if plist_outs: for spath, sub, theprom in plist_outs: sys_prom_map[spath][2] = theprom sys_prom_map[spath][3].add(sub) if plist_ins: for spath, sub, theprom in plist_ins: sys_prom_map[spath][0] = theprom sys_prom_map[spath][1].add(sub) # return regular dict sorted by system pathname return {spath: data for spath, data in sorted(sys_prom_map.items(), key=lambda x: x[0])}
def _sorted_sys_iter(self): yield from ()
[docs] def load_case(self, case): """ Pull all input and output variables from a Case into this System. Override this method if the System requires special handling when loading a case. Parameters ---------- case : Case or dict A Case from a CaseReader, or a dictionary with key 'inputs' mapped to the output of problem.model.list_inputs and key 'outputs' mapped to the output of prob.model.list_outputs. Both list_inputs and list_outputs should be called with `prom_name=True` and `return_format='dict'`. """ pass
[docs] def comm_info_iter(self): """ Yield comm size for this system and all subsystems. Yields ------ tuple A tuple of the form (abs_name, comm_size). """ if MPI: yield (self.pathname, self.comm.size, self.comm.rank, MPI.COMM_WORLD.rank) for s in self._subsystems_myproc: yield from s.comm_info_iter()
[docs] def dist_size_iter(self, io, top_comm): """ Yield names and distributed ranges of all local and remote variables in this system. Parameters ---------- io : str Either 'input' or 'output'. top_comm : MPI.Comm or None The top-level MPI communicator. Yields ------ tuple A tuple of the form ((abs_name, rank), start, end). """ sizes = self._var_sizes vmeta = self._var_allprocs_abs2meta topranks = np.arange(top_comm.size) myrank = self.comm.rank toprank = top_comm.rank mytopranks = topranks[toprank - myrank: toprank - myrank + self.comm.size] for rank in range(self.comm.size): for ivar, vname in enumerate(vmeta[io]): sz = sizes[io][rank, ivar] if sz > 0: yield (vname, mytopranks[rank]), sz
[docs] def local_range_iter(self, io): """ Yield names and local ranges of all local variables in this system. Parameters ---------- io : str Either 'input' or 'output'. Yields ------ tuple A tuple of the form (abs_name, start, end). """ vmeta = self._var_allprocs_abs2meta offset = 0 for vname, size in zip(vmeta[io], self._var_sizes[io][self.comm.rank]): if size > 0: yield vname, offset, offset + size offset += size
[docs] def get_var_dup_info(self, name, io): """ Return information about how the given variable is duplicated across MPI processes. Parameters ---------- name : str Name of the variable. io : str Either 'input' or 'output'. Returns ------- tuple A tuple of the form (is_duplicated, num_zeros, is_distributed). """ nz = np.count_nonzero(self._var_sizes[io][:, self._var_allprocs_abs2idx[name]]) if self._var_allprocs_abs2meta[io][name]['distributed']: return False, self._var_sizes[io].shape[0] - nz, True # distributed vars are never dups return nz > 1, self._var_sizes[io].shape[0] - nz, False
[docs] def get_var_sizes(self, name, io): """ Return the sizes of the given variable on all procs. Parameters ---------- name : str Name of the variable. io : str Either 'input' or 'output'. Returns ------- ndarray Array of sizes of the variable on all procs. """ return self._var_sizes[io][:, self._var_allprocs_abs2idx[name]]
[docs] def get_self_statics(self): """ Override this in derived classes if compute_primal references static values. Do NOT include self._discrete_inputs in the returned tuple. Include things like self.options['opt_name'], etc., that are used in compute_primal but are assumed to be constant during derivative computation. Return value MUST be a tuple. Don't forget the trailing comma if tuple has only one item. Return value MUST be hashable. The order of these values doesn't matter. They are only checked (by computing their hash) to see if they have changed since the last time compute_primal was jitted, and if so, compute_primal will be re-jitted. Returns ------- tuple Tuple containing all static values required by compute_primal. """ return ()
def _setup_jax(self, from_group=False): pass def _sys_tree_visitor(self, func, predicate=None, recurse=True, include_self=True, yield_none=False, *args, **kwargs): """ Yield the result of applying the given function to each System that satisfies the predicate. The object yielded must be picklable if any System is running in a different process. Parameters ---------- func : callable A callable that takes a System and args and kwargs and returns an object. predicate : callable or None A callable that takes a System as its only argument and returns -1, 0, or 1. If it returns 1, apply the function to the system. If it returns 0, don't apply the function, but continue on to the system's subsystems. If it returns -1, don't apply the function and don't continue on to the system's subsystems. If predicate is None, the function is always applied. recurse : bool If True, function is applied to all subsystems of subsystems. include_self : bool If True, apply the function to the Group itself. yield_none : bool If False, don't yield None results. args : tuple Additional positional args to be passed to the function. kwargs : dict Additional keyword args to be passed to the function. Yields ------ object The result of the function. """ if include_self: pred = 1 if predicate is None else predicate(self) if pred == 1: if yield_none: yield func(self, *args, **kwargs) else: res = func(self, *args, **kwargs) if res is not None: yield res elif pred == -1: return if recurse: for s in self._subsystems_myproc: yield from s._sys_tree_visitor(func, predicate, recurse=True, include_self=True, *args, **kwargs) else: for s in self._subsystems_myproc: if pred is None or predicate(s) == 1: if yield_none: yield func(s, *args, **kwargs) else: res = func(s, *args, **kwargs) if res is not None: yield res def _allprocs_exec_order(self): """ Return a list of system pathnames in order of execution across all processes. Returns ------- list of str List of system pathnames in order of execution """ from openmdao.core.component import Component seen = set() for path in self._sys_tree_visitor(lambda s: s.pathname, predicate=lambda s: isinstance(s, Component)): if path not in seen: seen.add(path) yield path