Driver Debug Printing

When working with a model, it may sometimes be helpful to print out the design variables, constraints, and objectives as the Driver iterates. OpenMDAO provides options on the Driver to let you do that.

Driver Options

Option Default Acceptable Values Acceptable Types Description
debug_print[] N/A ['list'] List of what type of Driver variables to print at each iteration. Valid items in list are 'desvars', 'ln_cons', 'nl_cons', 'objs', 'totals'

Usage

This example shows how to use the Driver debug printing options. The debug_print option is a list of strings. Valid strings include ‘desvars’, ‘ln_cons’, ‘nl_cons’, and ‘objs’. Note that the values for the design variables printed are unscaled, physical values.

import openmdao.api as om
from openmdao.test_suite.components.paraboloid import Paraboloid

prob = om.Problem()
model = prob.model

model.add_subsystem('comp', Paraboloid(), promotes=['*'])
model.add_subsystem('con', om.ExecComp('c = - x + y'), promotes=['*'])

model.set_input_defaults('x', 50.0)
model.set_input_defaults('y', 50.0)

prob.set_solver_print(level=0)

prob.driver = om.ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'
prob.driver.options['tol'] = 1e-9
prob.driver.options['disp'] = False

prob.driver.options['debug_print'] = ['desvars','ln_cons','nl_cons','objs']

model.add_design_var('x', lower=-50.0, upper=50.0)
model.add_design_var('y', lower=-50.0, upper=50.0)
model.add_objective('f_xy')
model.add_constraint('c', upper=-15.0)

prob.setup()

prob.run_driver()
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|0
--------------------------------------------------------------
Design Vars
{'x': array([50.]), 'y': array([50.])}
Nonlinear constraints
{'con.c': array([0.])}

Linear constraints
None

Objectives
{'comp.f_xy': array([7622.])}
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|1
--------------------------------------------------------------
Design Vars
{'x': array([50.]), 'y': array([50.])}
Nonlinear constraints
{'con.c': array([0.])}

Linear constraints
None

Objectives
{'comp.f_xy': array([7622.])}
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|2
--------------------------------------------------------------
Design Vars
{'x': array([-35.]), 'y': array([-50.])}
Nonlinear constraints
{'con.c': array([-15.])}

Linear constraints
None

Objectives
{'comp.f_xy': array([5307.])}
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|3
--------------------------------------------------------------
Design Vars
{'x': array([7.16706813]), 'y': array([-7.83293187])}
Nonlinear constraints
{'con.c': array([-15.])}

Linear constraints
None

Objectives
{'comp.f_xy': array([-27.08333285])}
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|4
--------------------------------------------------------------
Design Vars
{'x': array([7.16666667]), 'y': array([-7.83333333])}
Nonlinear constraints
{'con.c': array([-15.])}

Linear constraints
None

Objectives
{'comp.f_xy': array([-27.08333333])}
False

We can also use the debug printing to print some basic information about the derivative calculations so that you can see which derivative is being solved, how long it takes, and the computed values by including the ‘totals’ string in the “debug_print” list.

import openmdao.api as om
from openmdao.test_suite.components.paraboloid import Paraboloid

prob = om.Problem()
model = prob.model

model.add_subsystem('comp', Paraboloid(), promotes=['*'])
model.add_subsystem('con', om.ExecComp('c = - x + y'), promotes=['*'])

model.set_input_defaults('x', 50.0)
model.set_input_defaults('y', 50.0)

prob.set_solver_print(level=0)

prob.driver = om.ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'
prob.driver.options['tol'] = 1e-9
prob.driver.options['disp'] = False

prob.driver.options['debug_print'] = ['totals']

model.add_design_var('x', lower=-50.0, upper=50.0)
model.add_design_var('y', lower=-50.0, upper=50.0)
model.add_objective('f_xy')
model.add_constraint('c', upper=-15.0)

prob.setup()

prob.run_driver()
Driver total derivatives for iteration: 2
-----------------------------------------

In mode: fwd.
('x', [0])
Elapsed Time: 0.0018494129180908203 secs
In mode: fwd.
('y', [1])
Elapsed Time: 0.0011172294616699219 secs
{('comp.f_xy', 'x'): array([[144.]])}
{('comp.f_xy', 'y'): array([[158.]])}
{('con.c', 'x'): array([[-1.]])}
{('con.c', 'y'): array([[1.]])}
Driver total derivatives for iteration: 3
-----------------------------------------

In mode: fwd.
('x', [0])
Elapsed Time: 0.0002703666687011719 secs
In mode: fwd.
('y', [1])
Elapsed Time: 0.0002777576446533203 secs
{('comp.f_xy', 'x'): array([[-126.]])}
{('comp.f_xy', 'y'): array([[-127.]])}
{('con.c', 'x'): array([[-1.]])}
{('con.c', 'y'): array([[1.]])}
Driver total derivatives for iteration: 4
-----------------------------------------

In mode: fwd.
('x', [0])
Elapsed Time: 0.00024890899658203125 secs
In mode: fwd.
('y', [1])
Elapsed Time: 0.0024271011352539062 secs
{('comp.f_xy', 'x'): array([[0.50120438]])}
{('comp.f_xy', 'y'): array([[-0.49879562]])}
{('con.c', 'x'): array([[-1.]])}
{('con.c', 'y'): array([[1.]])}
Driver total derivatives for iteration: 5
-----------------------------------------

In mode: fwd.
('x', [0])
Elapsed Time: 0.00027489662170410156 secs
In mode: fwd.
('y', [1])
Elapsed Time: 0.0016016960144042969 secs
{('comp.f_xy', 'x'): array([[0.5]])}
{('comp.f_xy', 'y'): array([[-0.5]])}
{('con.c', 'x'): array([[-1.]])}
{('con.c', 'y'): array([[1.]])}
False