Driver Debug Printing

Driver Debug Printing

When working with a model, it may sometimes be helpful to print out the design variables, constraints, and objectives as the Driver iterates. OpenMDAO provides options on the Driver to let you do that.

Driver Options

Option Default Acceptable Values Acceptable Types Description
debug_print[] ['desvars', 'nl_cons', 'ln_cons', 'objs', 'totals']['list'] List of what type of Driver variables to print at each iteration.

Usage

This example shows how to use the Driver debug printing options. The debug_print option is a list of strings. Valid strings include ‘desvars’, ‘ln_cons’, ‘nl_cons’, and ‘objs’. Note that the values for the design variables printed are unscaled, physical values.

import openmdao.api as om
from openmdao.test_suite.components.paraboloid import Paraboloid

prob = om.Problem()
model = prob.model

model.add_subsystem('comp', Paraboloid(), promotes=['*'])
model.add_subsystem('con', om.ExecComp('c = - x + y'), promotes=['*'])

model.set_input_defaults('x', 50.0)
model.set_input_defaults('y', 50.0)

prob.set_solver_print(level=0)

prob.driver = om.ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'
prob.driver.options['tol'] = 1e-9
prob.driver.options['disp'] = False

prob.driver.options['debug_print'] = ['desvars','ln_cons','nl_cons','objs']

model.add_design_var('x', lower=-50.0, upper=50.0)
model.add_design_var('y', lower=-50.0, upper=50.0)
model.add_objective('f_xy')
model.add_constraint('c', upper=-15.0)

prob.setup()

prob.run_driver()
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|0
--------------------------------------------------------------
Design Vars
{'x': array([50.]), 'y': array([50.])}
Nonlinear constraints
{'con.c': array([0.])}

Linear constraints
None

Objectives
{'comp.f_xy': array([7622.])}
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|1
--------------------------------------------------------------
Design Vars
{'x': array([50.]), 'y': array([50.])}
Nonlinear constraints
{'con.c': array([0.])}

Linear constraints
None

Objectives
{'comp.f_xy': array([7622.])}
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|2
--------------------------------------------------------------
Design Vars
{'x': array([-35.]), 'y': array([-50.])}
Nonlinear constraints
{'con.c': array([-15.])}

Linear constraints
None

Objectives
{'comp.f_xy': array([5307.])}
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|3
--------------------------------------------------------------
Design Vars
{'x': array([7.16706813]), 'y': array([-7.83293187])}
Nonlinear constraints
{'con.c': array([-15.])}

Linear constraints
None

Objectives
{'comp.f_xy': array([-27.08333285])}
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|4
--------------------------------------------------------------
Design Vars
{'x': array([7.16666667]), 'y': array([-7.83333333])}
Nonlinear constraints
{'con.c': array([-15.])}

Linear constraints
None

Objectives
{'comp.f_xy': array([-27.08333333])}
False

We can also use the debug printing to print some basic information about the derivative calculations so that you can see which derivative is being solved, how long it takes, and the computed values by including the ‘totals’ string in the “debug_print” list.

import openmdao.api as om
from openmdao.test_suite.components.paraboloid import Paraboloid

prob = om.Problem()
model = prob.model

model.add_subsystem('comp', Paraboloid(), promotes=['*'])
model.add_subsystem('con', om.ExecComp('c = - x + y'), promotes=['*'])

model.set_input_defaults('x', 50.0)
model.set_input_defaults('y', 50.0)

prob.set_solver_print(level=0)

prob.driver = om.ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'
prob.driver.options['tol'] = 1e-9
prob.driver.options['disp'] = False

prob.driver.options['debug_print'] = ['totals']

model.add_design_var('x', lower=-50.0, upper=50.0)
model.add_design_var('y', lower=-50.0, upper=50.0)
model.add_objective('f_xy')
model.add_constraint('c', upper=-15.0)

prob.setup()

prob.run_driver()
Driver total derivatives for iteration: 2
-----------------------------------------

In mode: fwd.
('x', [0])
Elapsed Time: 0.0004057884216308594 secs
In mode: fwd.
('y', [1])
Elapsed Time: 0.0004343986511230469 secs
{('comp.f_xy', 'x'): array([[144.]])}
{('comp.f_xy', 'y'): array([[158.]])}
{('con.c', 'x'): array([[-1.]])}
{('con.c', 'y'): array([[1.]])}
Driver total derivatives for iteration: 3
-----------------------------------------

In mode: fwd.
('x', [0])
Elapsed Time: 0.0002918243408203125 secs
In mode: fwd.
('y', [1])
Elapsed Time: 0.0004260540008544922 secs
{('comp.f_xy', 'x'): array([[-126.]])}
{('comp.f_xy', 'y'): array([[-127.]])}
{('con.c', 'x'): array([[-1.]])}
{('con.c', 'y'): array([[1.]])}
Driver total derivatives for iteration: 4
-----------------------------------------

In mode: fwd.
('x', [0])
Elapsed Time: 0.000537872314453125 secs
In mode: fwd.
('y', [1])
Elapsed Time: 0.00043487548828125 secs
{('comp.f_xy', 'x'): array([[0.50120438]])}
{('comp.f_xy', 'y'): array([[-0.49879562]])}
{('con.c', 'x'): array([[-1.]])}
{('con.c', 'y'): array([[1.]])}
Driver total derivatives for iteration: 5
-----------------------------------------

In mode: fwd.
('x', [0])
Elapsed Time: 0.0003457069396972656 secs
In mode: fwd.
('y', [1])
Elapsed Time: 0.00027680397033691406 secs
{('comp.f_xy', 'x'): array([[0.5]])}
{('comp.f_xy', 'y'): array([[-0.5]])}
{('con.c', 'x'): array([[-1.]])}
{('con.c', 'y'): array([[1.]])}
False