Driver Debug Printing#
When working with a model, it may sometimes be helpful to print out the design variables, constraints, and objectives as the Driver
iterates. OpenMDAO provides options on the Driver to let you do that.
Driver Options#
Option | Default | Acceptable Values | Acceptable Types | Description |
---|---|---|---|---|
debug_print | [] | ['desvars', 'nl_cons', 'ln_cons', 'objs', 'totals'] | ['list'] | List of what type of Driver variables to print at each iteration. |
invalid_desvar_behavior | warn | ['warn', 'raise', 'ignore'] | N/A | Behavior of driver if the initial value of a design variable exceeds its bounds. The default value may beset using the `OPENMDAO_INVALID_DESVAR_BEHAVIOR` environment variable to one of the valid options. |
Usage#
This example shows how to use the Driver
debug printing options. The debug_print
option is a list of strings. Valid strings include ‘desvars’, ‘ln_cons’, ‘nl_cons’, and ‘objs’. Note that the values for the design variables printed are unscaled, physical values.
Paraboloid
class definition
class Paraboloid(om.ExplicitComponent):
"""
Evaluates the equation f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3.
"""
def setup(self):
self.add_input('x', val=0.0)
self.add_input('y', val=0.0)
self.add_output('f_xy', val=0.0)
def setup_partials(self):
self.declare_partials('*', '*')
def compute(self, inputs, outputs):
"""
f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3
Optimal solution (minimum): x = 6.6667; y = -7.3333
"""
x = inputs['x']
y = inputs['y']
outputs['f_xy'] = (x-3.0)**2 + x*y + (y+4.0)**2 - 3.0
def compute_partials(self, inputs, partials):
"""
Jacobian for our paraboloid.
"""
x = inputs['x']
y = inputs['y']
partials['f_xy', 'x'] = 2.0*x - 6.0 + y
partials['f_xy', 'y'] = 2.0*y + 8.0 + x
import openmdao.api as om
from openmdao.test_suite.components.paraboloid import Paraboloid
prob = om.Problem()
model = prob.model
model.add_subsystem('comp', Paraboloid(), promotes=['*'])
model.add_subsystem('con', om.ExecComp('c = - x + y'), promotes=['*'])
model.set_input_defaults('x', 50.0)
model.set_input_defaults('y', 50.0)
prob.set_solver_print(level=0)
prob.driver = om.ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'
prob.driver.options['tol'] = 1e-9
prob.driver.options['disp'] = False
prob.driver.options['debug_print'] = ['desvars','ln_cons','nl_cons','objs']
model.add_design_var('x', lower=-50.0, upper=50.0)
model.add_design_var('y', lower=-50.0, upper=50.0)
model.add_objective('f_xy')
model.add_constraint('c', upper=-15.0)
prob.setup()
prob.run_driver()
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|0
--------------------------------------------------------------
Design Vars
{'x': array([50.]), 'y': array([50.])}
Nonlinear constraints
{'c': array([0.])}
Linear constraints
None
Objectives
{'f_xy': array([7622.])}
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|1
--------------------------------------------------------------
Design Vars
{'x': array([50.]), 'y': array([50.])}
Nonlinear constraints
{'c': array([0.])}
Linear constraints
None
Objectives
{'f_xy': array([7622.])}
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|2
--------------------------------------------------------------
Design Vars
{'x': array([-35.]), 'y': array([-50.])}
Nonlinear constraints
{'c': array([-15.])}
Linear constraints
None
Objectives
{'f_xy': array([5307.])}
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|3
--------------------------------------------------------------
Design Vars
{'x': array([7.16706813]), 'y': array([-7.83293187])}
Nonlinear constraints
{'c': array([-15.])}
Linear constraints
None
Objectives
{'f_xy': array([-27.08333285])}
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|4
--------------------------------------------------------------
Design Vars
{'x': array([7.16666667]), 'y': array([-7.83333333])}
Nonlinear constraints
{'c': array([-15.])}
Linear constraints
None
Objectives
{'f_xy': array([-27.08333333])}
Problem: problem
Driver: ScipyOptimizeDriver
success : True
iterations : 5
runtime : 1.3579E-02 s
model_evals : 5
model_time : 1.0307E-03 s
deriv_evals : 4
deriv_time : 3.3619E-03 s
exit_status : SUCCESS
We can also use the debug printing to print some basic information about the derivative calculations so that you can see which derivative is being solved, how long it takes, and the computed values by including the ‘totals’ string in the “debug_print” list.
import openmdao.api as om
from openmdao.test_suite.components.paraboloid import Paraboloid
prob = om.Problem()
model = prob.model
model.add_subsystem('comp', Paraboloid(), promotes=['*'])
model.add_subsystem('con', om.ExecComp('c = - x + y'), promotes=['*'])
model.set_input_defaults('x', 50.0)
model.set_input_defaults('y', 50.0)
prob.set_solver_print(level=0)
prob.driver = om.ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'
prob.driver.options['tol'] = 1e-9
prob.driver.options['disp'] = False
prob.driver.options['debug_print'] = ['totals']
model.add_design_var('x', lower=-50.0, upper=50.0)
model.add_design_var('y', lower=-50.0, upper=50.0)
model.add_objective('f_xy')
model.add_constraint('c', upper=-15.0)
prob.setup()
prob.run_driver()
Driver total derivatives for iteration: 2
-----------------------------------------
In mode: fwd.
('x', [0])
Elapsed Time: 0.0002547050000885065 secs
In mode: fwd.
('y', [1])
Elapsed Time: 0.00020707700014099828 secs
{('f_xy', 'x'): array([[144.]])}
{('f_xy', 'y'): array([[158.]])}
{('c', 'x'): array([[-1.]])}
{('c', 'y'): array([[1.]])}
Driver total derivatives for iteration: 3
-----------------------------------------
In mode: fwd.
('x', [0])
Elapsed Time: 0.00015951799991853477 secs
In mode: fwd.
('y', [1])
Elapsed Time: 0.00024049000012382749 secs
{('f_xy', 'x'): array([[-126.]])}
{('f_xy', 'y'): array([[-127.]])}
{('c', 'x'): array([[-1.]])}
{('c', 'y'): array([[1.]])}
Driver total derivatives for iteration: 4
-----------------------------------------
In mode: fwd.
('x', [0])
Elapsed Time: 0.0002640029999838589 secs
In mode: fwd.
('y', [1])
Elapsed Time: 0.00026441399995746906 secs
{('f_xy', 'x'): array([[0.50120438]])}
{('f_xy', 'y'): array([[-0.49879562]])}
{('c', 'x'): array([[-1.]])}
{('c', 'y'): array([[1.]])}
Driver total derivatives for iteration: 5
-----------------------------------------
In mode: fwd.
('x', [0])
Elapsed Time: 0.0002449179999075568 secs
In mode: fwd.
('y', [1])
Elapsed Time: 0.00023858600002313324 secs
{('f_xy', 'x'): array([[0.5]])}
{('f_xy', 'y'): array([[-0.5]])}
{('c', 'x'): array([[-1.]])}
{('c', 'y'): array([[1.]])}
Problem: problem2
Driver: ScipyOptimizeDriver
success : True
iterations : 5
runtime : 1.7869E-02 s
model_evals : 5
model_time : 1.8189E-03 s
deriv_evals : 4
deriv_time : 1.2817E-02 s
exit_status : SUCCESS