Driver Debug Printing#

When working with a model, it may sometimes be helpful to print out the design variables, constraints, and objectives as the Driver iterates. OpenMDAO provides options on the Driver to let you do that.

Driver Options#

OptionDefaultAcceptable ValuesAcceptable TypesDescription
debug_print[]['desvars', 'nl_cons', 'ln_cons', 'objs', 'totals']['list']List of what type of Driver variables to print at each iteration.
invalid_desvar_behaviorwarn['warn', 'raise', 'ignore']N/ABehavior of driver if the initial value of a design variable exceeds its bounds. The default value may beset using the `OPENMDAO_INVALID_DESVAR_BEHAVIOR` environment variable to one of the valid options.

Usage#

This example shows how to use the Driver debug printing options. The debug_print option is a list of strings. Valid strings include ‘desvars’, ‘ln_cons’, ‘nl_cons’, and ‘objs’. Note that the values for the design variables printed are unscaled, physical values.

import openmdao.api as om
from openmdao.test_suite.components.paraboloid import Paraboloid

prob = om.Problem()
model = prob.model

model.add_subsystem('comp', Paraboloid(), promotes=['*'])
model.add_subsystem('con', om.ExecComp('c = - x + y'), promotes=['*'])

model.set_input_defaults('x', 50.0)
model.set_input_defaults('y', 50.0)

prob.set_solver_print(level=0)

prob.driver = om.ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'
prob.driver.options['tol'] = 1e-9
prob.driver.options['disp'] = False

prob.driver.options['debug_print'] = ['desvars','ln_cons','nl_cons','objs']

model.add_design_var('x', lower=-50.0, upper=50.0)
model.add_design_var('y', lower=-50.0, upper=50.0)
model.add_objective('f_xy')
model.add_constraint('c', upper=-15.0)

prob.setup()

prob.run_driver()
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|0
--------------------------------------------------------------
Design Vars
{'x': array([50.]), 'y': array([50.])}
Nonlinear constraints
{'c': array([0.])}

Linear constraints
None

Objectives
{'f_xy': array([7622.])}
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|1
--------------------------------------------------------------
Design Vars
{'x': array([50.]), 'y': array([50.])}
Nonlinear constraints
{'c': array([0.])}

Linear constraints
None

Objectives
{'f_xy': array([7622.])}
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|2
--------------------------------------------------------------
Design Vars
{'x': array([-35.]), 'y': array([-50.])}
Nonlinear constraints
{'c': array([-15.])}

Linear constraints
None

Objectives
{'f_xy': array([5307.])}
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|3
--------------------------------------------------------------
Design Vars
{'x': array([7.16706813]), 'y': array([-7.83293187])}
Nonlinear constraints
{'c': array([-15.])}

Linear constraints
None

Objectives
{'f_xy': array([-27.08333285])}
Driver debug print for iter coord: rank0:ScipyOptimize_SLSQP|4
--------------------------------------------------------------
Design Vars
{'x': array([7.16666667]), 'y': array([-7.83333333])}
Nonlinear constraints
{'c': array([-15.])}

Linear constraints
None

Objectives
{'f_xy': array([-27.08333333])}
Problem: problem
Driver:  ScipyOptimizeDriver
  success     : True
  iterations  : 5
  runtime     : 1.1797E-02 s
  model_evals : 5
  model_time  : 7.5884E-04 s
  deriv_evals : 4
  deriv_time  : 2.6344E-03 s
  exit_status : SUCCESS

We can also use the debug printing to print some basic information about the derivative calculations so that you can see which derivative is being solved, how long it takes, and the computed values by including the ‘totals’ string in the “debug_print” list.

import openmdao.api as om
from openmdao.test_suite.components.paraboloid import Paraboloid

prob = om.Problem()
model = prob.model

model.add_subsystem('comp', Paraboloid(), promotes=['*'])
model.add_subsystem('con', om.ExecComp('c = - x + y'), promotes=['*'])

model.set_input_defaults('x', 50.0)
model.set_input_defaults('y', 50.0)

prob.set_solver_print(level=0)

prob.driver = om.ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'
prob.driver.options['tol'] = 1e-9
prob.driver.options['disp'] = False

prob.driver.options['debug_print'] = ['totals']

model.add_design_var('x', lower=-50.0, upper=50.0)
model.add_design_var('y', lower=-50.0, upper=50.0)
model.add_objective('f_xy')
model.add_constraint('c', upper=-15.0)

prob.setup()

prob.run_driver()
Driver total derivatives for iteration: 2
-----------------------------------------

In mode: fwd.
('x', [0])
Elapsed Time: 0.00018609899984767253 secs
In mode: fwd.
('y', [1])
Elapsed Time: 0.00014044199997442774 secs
{('f_xy', 'x'): array([[144.]])}
{('f_xy', 'y'): array([[158.]])}
{('c', 'x'): array([[-1.]])}
{('c', 'y'): array([[1.]])}
Driver total derivatives for iteration: 3
-----------------------------------------

In mode: fwd.
('x', [0])
Elapsed Time: 0.0009601770000244869 secs
In mode: fwd.
('y', [1])
Elapsed Time: 0.00016962700010481058 secs
{('f_xy', 'x'): array([[-126.]])}
{('f_xy', 'y'): array([[-127.]])}
{('c', 'x'): array([[-1.]])}
{('c', 'y'): array([[1.]])}
Driver total derivatives for iteration: 4
-----------------------------------------

In mode: fwd.
('x', [0])
Elapsed Time: 0.00016065099998741061 secs
In mode: fwd.
('y', [1])
Elapsed Time: 0.0005529349998596444 secs
{('f_xy', 'x'): array([[0.50120438]])}
{('f_xy', 'y'): array([[-0.49879562]])}
{('c', 'x'): array([[-1.]])}
{('c', 'y'): array([[1.]])}
Driver total derivatives for iteration: 5
-----------------------------------------

In mode: fwd.
('x', [0])
Elapsed Time: 0.00028792900002372335 secs
In mode: fwd.
('y', [1])
Elapsed Time: 0.00013121599999976752 secs
{('f_xy', 'x'): array([[0.5]])}
{('f_xy', 'y'): array([[-0.5]])}
{('c', 'x'): array([[-1.]])}
{('c', 'y'): array([[1.]])}
Problem: problem2
Driver:  ScipyOptimizeDriver
  success     : True
  iterations  : 5
  runtime     : 1.7921E-02 s
  model_evals : 5
  model_time  : 6.2013E-04 s
  deriv_evals : 4
  deriv_time  : 1.3722E-02 s
  exit_status : SUCCESS