system.py

Define the base System class.

class openmdao.core.system.System(num_par_fd=1, **kwargs)[source]

Bases: object

Base class for all systems in OpenMDAO.

Never instantiated; subclassed by <Group> or <Component>. All subclasses have their attributes defined here.

In attribute names:

abs / abs_name: absolute, unpromoted variable name, seen from root (unique). rel / rel_name: relative, unpromoted variable name, seen from current system (unique). prom / prom_name: relative, promoted variable name, seen from current system (non-unique). idx: global variable index among variables on all procs (I/O indices separate). my_idx: index among variables in this system, on this processor (I/O indices separate). io: indicates explicitly that input and output variables are combined in the same dict.

Attributes
namestr

Name of the system, must be different from siblings.

pathnamestr

Global name of the system, including the path.

commMPI.Comm or <FakeComm>

MPI communicator object.

optionsOptionsDictionary

options dictionary

recording_optionsOptionsDictionary

Recording options dictionary

_problem_metadict

Problem level metadata.

under_complex_stepbool

When True, this system is undergoing complex step.

under_finite_differencebool

When True, this system is undergoing finite differencing.

under_approxbool

When True, this system is undergoing approximation.

iter_countint

Counts the number of times this system has called _solve_nonlinear. This also corresponds to the number of times that the system’s outputs are recorded if a recorder is present.

iter_count_applyint

Counts the number of times the system has called _apply_nonlinear. For ExplicitComponent, calls to apply_nonlinear also call compute, so number of executions can be found by adding this and iter_count together. Recorders do no record calls to apply_nonlinear.

iter_count_without_approxint

Counts the number of times the system has iterated but excludes any that occur during approximation of derivatives.

citestr

Listing of relevant citations that should be referenced when publishing work that uses this class.

_full_commMPI.Comm or None

MPI communicator object used when System’s comm is split for parallel FD.

_solver_print_cachelist

Allows solver iprints to be set to requested values after setup calls.

_subsystems_allprocsOrderedDict

Dict mapping subsystem name to SysInfo(system, index) for children of this system.

_subsystems_myproc[<System>, …]

List of local subsystems that exist on this proc.

_var_promotes{ ‘any’: [], ‘input’: [], ‘output’: [] }

Dictionary of lists of variable names/wildcards specifying promotion (used to calculate promoted names)

_var_prom2indsdict

Maps promoted name to src_indices in scope of system.

_var_allprocs_prom2abs_list{‘input’: dict, ‘output’: dict}

Dictionary mapping promoted names to list of all absolute names. For outputs, the list will have length one since promoted output names are unique.

_var_abs2prom{‘input’: dict, ‘output’: dict}

Dictionary mapping absolute names to promoted names, on current proc.

_var_allprocs_abs2prom{‘input’: dict, ‘output’: dict}

Dictionary mapping absolute names to promoted names, on all procs.

_var_allprocs_abs2metadict

Dictionary mapping absolute names to metadata dictionaries for allprocs variables. The keys are (‘units’, ‘shape’, ‘size’) for inputs and (‘units’, ‘shape’, ‘size’, ‘ref’, ‘ref0’, ‘res_ref’, ‘distributed’) for outputs.

_var_abs2metadict

Dictionary mapping absolute names to metadata dictionaries for myproc variables.

_var_discretedict

Dictionary of discrete var metadata and values local to this process.

_var_allprocs_discretedict

Dictionary of discrete var metadata and values for all processes.

_discrete_inputsdict-like or None

Storage for discrete input values.

_discrete_outputsdict-like or None

Storage for discrete output values.

_var_allprocs_abs2idxdict

Dictionary mapping absolute names to their indices among this system’s allprocs variables. Therefore, the indices range from 0 to the total number of this system’s variables.

_var_sizes{‘input’: ndarray, ‘output’: ndarray}

Array of local sizes of this system’s allprocs variables. The array has size nproc x num_var where nproc is the number of processors owned by this system and num_var is the number of allprocs variables.

_owned_sizesndarray

Array of local sizes for ‘owned’ or distributed vars only.

_var_offsets{<vecname>: {‘input’: dict of ndarray, ‘output’: dict of ndarray}, …} or None

Dict of distributed offsets, keyed by var name. Offsets are stored in an array of size nproc x num_var where nproc is the number of processors in this System’s communicator and num_var is the number of allprocs variables in the given system. This is only defined in a Group that owns one or more interprocess connections or a top level Group or System that is used to compute total derivatives across multiple processes.

_vars_to_gatherdict

Contains names of non-distributed variables that are remote on at least one proc in the comm

_conn_global_abs_in2out{‘abs_in’: ‘abs_out’}

Dictionary containing all explicit & implicit connections (continuous and discrete) owned by this system or any descendant system. The data is the same across all processors.

_vectors{‘input’: dict, ‘output’: dict, ‘residual’: dict}

Dictionaries of vectors keyed by vec_name.

_inputs<Vector>

The inputs vector; points to _vectors[‘input’][‘nonlinear’].

_outputs<Vector>

The outputs vector; points to _vectors[‘output’][‘nonlinear’].

_residuals<Vector>

The residuals vector; points to _vectors[‘residual’][‘nonlinear’].

_nonlinear_solver<NonlinearSolver>

Nonlinear solver to be used for solve_nonlinear.

_linear_solver<LinearSolver>

Linear solver to be used for solve_linear; not the Newton system.

_approx_schemesOrderedDict

A mapping of approximation types to the associated ApproximationScheme.

_jacobian<Jacobian>

<Jacobian> object to be used in apply_linear.

_owns_approx_jacbool

If True, this system approximated its Jacobian

_owns_approx_jac_metadict

Stores approximation metadata (e.g., step_size) from calls to approx_totals

_owns_approx_oflist or None

Overrides aproximation outputs. This is set when calculating system derivatives, and serves as a way to communicate the driver’s output quantities to the approximation objects so that we only take derivatives of variables that the driver needs.

_owns_approx_of_idxdict

Index for override ‘of’ approximations if declared. When the user calls add_objective or add_constraint, they may optionally specify an “indices” argument. This argument must also be communicated to the approximations when they are set up so that 1) the Jacobian is the correct size, and 2) we don’t perform any extra unnecessary calculations.

_owns_approx_wrtlist or None

Overrides aproximation inputs. This is set when calculating system derivatives, and serves as a way to communicate the driver’s input quantities to the approximation objects so that we only take derivatives with respect to variables that the driver needs.

_owns_approx_wrt_idxdict

Index for override ‘wrt’ approximations if declared. When the user calls add_designvar they may optionally specify an “indices” argument. This argument must also be communicated to the approximations when they are set up so that 1) the Jacobian is the correct size, and 2) we don’t perform any extra unnecessary calculations.

_subjacs_infodict of dict

Sub-jacobian metadata for each (output, input) pair added using declare_partials. Members of each pair may be glob patterns.

_approx_subjac_keyslist

List of subjacobian keys used for approximated derivatives.

_design_varsdict of dict

dict of all driver design vars added to the system.

_responsesdict of dict

dict of all driver responses added to the system.

_rec_mgr<RecordingManager>

object that manages all recorders added to this system.

_static_subsystems_allprocsOrderedDict

Dict of SysInfo(subsys, index) that stores all subsystems added outside of setup.

_static_design_varsdict of dict

Driver design variables added outside of setup.

_static_responsesdict of dict

Driver responses added outside of setup.

matrix_freebool

This is set to True if the component overrides the appropriate function with a user-defined matrix vector product with the Jacobian or any of its subsystems do.

_relevantdict

Mapping of a VOI to a tuple containing dependent inputs, dependent outputs, and dependent systems.

_voisdict

Either design vars or responses metadata, depending on the direction of derivatives.

_modestr

Indicates derivative direction for the model, either ‘fwd’ or ‘rev’.

_scope_cachedict

Cache for variables in the scope of various mat-vec products.

_has_guessbool

True if this system has or contains a system with a guess_nonlinear method defined.

_has_output_scalingbool

True if this system has output scaling.

_has_output_adderbool

True if this system has scaling that includes an adder term.

_has_resid_scalingbool

True if this system has resid scaling.

_has_input_scalingbool

True if this system has input scaling.

_has_input_adderbool

True if this system has scaling that includes an adder term.

_has_boundsbool

True if this system has upper or lower bounds on outputs.

_has_distrib_varsbool

If True, this System contains at least one distributed variable. Used to determine if a parallel group or distributed component is below a DirectSolver so that we can raise an exception.

_owning_rankdict

Dict mapping var name to the lowest rank where that variable is local.

_filtered_vars_to_recordDict

Dict of list of var names to record

_vector_classclass

Class to use for data vectors. After setup will contain the value of either _problem_meta[‘distributed_vector_class’] or _problem_meta[‘local_vector_class’].

_assembled_jacAssembledJacobian or None

If not None, this is the AssembledJacobian owned by this system’s linear_solver.

_num_par_fdint

If FD is active, and the value is > 1, turns on parallel FD and specifies the number of concurrent FD solves.

_par_fd_idint

ID used to determine which columns in the jacobian will be computed when using parallel FD.

_has_approxbool

If True, this system or its descendent has declared approximated partial or semi-total derivatives.

_coloring_infotuple

Metadata that defines how to perform coloring of this System’s approx jacobian. Not used if this System does no partial or semi-total coloring.

_first_call_to_linearizebool

If True, this is the first call to _linearize.

_is_localbool

If True, this system is local to this mpi process.

_tot_jac__TotalJacInfo or None

If a total jacobian is being computed and this is the top level System, this will be a reference to the _TotalJacInfo object.

__init__(num_par_fd=1, **kwargs)[source]

Initialize all attributes.

Parameters
num_par_fdint

If FD is active, number of concurrent FD solves.

**kwargsdict of keyword arguments

Keyword arguments that will be mapped into the System options.

abs_name_iter(iotype, local=True, cont=True, discrete=False)[source]

Iterate over absolute variable names for this System.

By setting appropriate values for ‘cont’ and ‘discrete’, yielded variable names can be continuous only, discrete only, or both.

Parameters
iotypestr

Either ‘input’ or ‘output’.

localbool

If True, include only names of local variables. Default is True.

contbool

If True, include names of continuous variables. Default is True.

discretebool

If True, include names of discrete variables. Default is False.

add_constraint(name, lower=None, upper=None, equals=None, ref=None, ref0=None, adder=None, scaler=None, units=None, indices=None, linear=False, parallel_deriv_color=None, cache_linear_solution=False)[source]

Add a constraint variable to this system.

Parameters
namestring

Name of the response variable in the system.

lowerfloat or ndarray, optional

Lower boundary for the variable

upperfloat or ndarray, optional

Upper boundary for the variable

equalsfloat or ndarray, optional

Equality constraint value for the variable

reffloat or ndarray, optional

Value of response variable that scales to 1.0 in the driver.

ref0float or ndarray, optional

Value of response variable that scales to 0.0 in the driver.

adderfloat or ndarray, optional

Value to add to the model value to get the scaled value for the driver. adder is first in precedence. adder and scaler are an alterantive to using ref and ref0.

scalerfloat or ndarray, optional

value to multiply the model value to get the scaled value for the driver. scaler is second in precedence. adder and scaler are an alterantive to using ref and ref0.

unitsstr, optional

Units to convert to before applying scaling.

indicessequence of int, optional

If variable is an array, these indicate which entries are of interest for this particular response. These may be positive or negative integers.

linearbool

Set to True if constraint is linear. Default is False.

parallel_deriv_colorstring

If specified, this design var will be grouped for parallel derivative calculations with other variables sharing the same parallel_deriv_color.

cache_linear_solutionbool

If True, store the linear solution vectors for this variable so they can be used to start the next linear solution with an initial guess equal to the solution from the previous linear solve.

Notes

The response can be scaled using ref and ref0. The argument ref0 represents the physical value when the scaled value is 0. The argument ref represents the physical value when the scaled value is 1. The arguments (lower, upper, equals) can not be strings or variable names.

add_design_var(name, lower=None, upper=None, ref=None, ref0=None, indices=None, adder=None, scaler=None, units=None, parallel_deriv_color=None, cache_linear_solution=False)[source]

Add a design variable to this system.

Parameters
namestring

Name of the design variable in the system.

lowerfloat or ndarray, optional

Lower boundary for the input

upperupper or ndarray, optional

Upper boundary for the input

reffloat or ndarray, optional

Value of design var that scales to 1.0 in the driver.

ref0float or ndarray, optional

Value of design var that scales to 0.0 in the driver.

indicesiter of int, optional

If an input is an array, these indicate which entries are of interest for this particular design variable. These may be positive or negative integers.

unitsstr, optional

Units to convert to before applying scaling.

adderfloat or ndarray, optional

Value to add to the model value to get the scaled value for the driver. adder is first in precedence. adder and scaler are an alterantive to using ref and ref0.

scalerfloat or ndarray, optional

value to multiply the model value to get the scaled value for the driver. scaler is second in precedence. adder and scaler are an alterantive to using ref and ref0.

parallel_deriv_colorstring

If specified, this design var will be grouped for parallel derivative calculations with other variables sharing the same parallel_deriv_color.

cache_linear_solutionbool

If True, store the linear solution vectors for this variable so they can be used to start the next linear solution with an initial guess equal to the solution from the previous linear solve.

Notes

The response can be scaled using ref and ref0. The argument ref0 represents the physical value when the scaled value is 0. The argument ref represents the physical value when the scaled value is 1.

add_objective(name, ref=None, ref0=None, index=None, units=None, adder=None, scaler=None, parallel_deriv_color=None, cache_linear_solution=False)[source]

Add a response variable to this system.

Parameters
namestring

Name of the response variable in the system.

reffloat or ndarray, optional

Value of response variable that scales to 1.0 in the driver.

ref0float or ndarray, optional

Value of response variable that scales to 0.0 in the driver.

indexint, optional

If variable is an array, this indicates which entry is of interest for this particular response. This may be a positive or negative integer.

unitsstr, optional

Units to convert to before applying scaling.

adderfloat or ndarray, optional

Value to add to the model value to get the scaled value for the driver. adder is first in precedence. adder and scaler are an alterantive to using ref and ref0.

scalerfloat or ndarray, optional

value to multiply the model value to get the scaled value for the driver. scaler is second in precedence. adder and scaler are an alterantive to using ref and ref0.

parallel_deriv_colorstring

If specified, this design var will be grouped for parallel derivative calculations with other variables sharing the same parallel_deriv_color.

cache_linear_solutionbool

If True, store the linear solution vectors for this variable so they can be used to start the next linear solution with an initial guess equal to the solution from the previous linear solve.

Notes

The objective can be scaled using scaler and adder, where

\[x_{scaled} = scaler(x + adder)\]

or through the use of ref/ref0, which map to scaler and adder through the equations:

\[ \begin{align}\begin{aligned}0 = scaler(ref_0 + adder)\\1 = scaler(ref + adder)\end{aligned}\end{align} \]

which results in:

\[ \begin{align}\begin{aligned}adder = -ref_0\\scaler = \frac{1}{ref + adder}\end{aligned}\end{align} \]
add_recorder(recorder, recurse=False)[source]

Add a recorder to the system.

Parameters
recorder<CaseRecorder>

A recorder instance.

recurseboolean

Flag indicating if the recorder should be added to all the subsystems.

add_response(name, type_, lower=None, upper=None, equals=None, ref=None, ref0=None, indices=None, index=None, units=None, adder=None, scaler=None, linear=False, parallel_deriv_color=None, cache_linear_solution=False)[source]

Add a response variable to this system.

The response can be scaled using ref and ref0. The argument ref0 represents the physical value when the scaled value is 0. The argument ref represents the physical value when the scaled value is 1.

Parameters
namestring

Name of the response variable in the system.

type_string

The type of response. Supported values are ‘con’ and ‘obj’

lowerfloat or ndarray, optional

Lower boundary for the variable

upperupper or ndarray, optional

Upper boundary for the variable

equalsequals or ndarray, optional

Equality constraint value for the variable

reffloat or ndarray, optional

Value of response variable that scales to 1.0 in the driver.

ref0upper or ndarray, optional

Value of response variable that scales to 0.0 in the driver.

indicessequence of int, optional

If variable is an array, these indicate which entries are of interest for this particular response.

indexint, optional

If variable is an array, this indicates which entry is of interest for this particular response.

unitsstr, optional

Units to convert to before applying scaling.

adderfloat or ndarray, optional

Value to add to the model value to get the scaled value for the driver. adder is first in precedence. adder and scaler are an alterantive to using ref and ref0.

scalerfloat or ndarray, optional

value to multiply the model value to get the scaled value for the driver. scaler is second in precedence. adder and scaler are an alterantive to using ref and ref0.

linearbool

Set to True if constraint is linear. Default is False.

parallel_deriv_colorstring

If specified, this design var will be grouped for parallel derivative calculations with other variables sharing the same parallel_deriv_color.

cache_linear_solutionbool

If True, store the linear solution vectors for this variable so they can be used to start the next linear solution with an initial guess equal to the solution from the previous linear solve.

all_connected_nodes(graph, start, local=False)[source]

Yield all downstream nodes starting at the given node.

Parameters
graphnetwork.DiGraph

Graph being traversed.

starthashable object

Identifier of the starting node.

localbool

If True and a non-local node is encountered in the traversal, the traversal ends on that branch.

Yields
str

Each node found when traversal starts at start.

check_config(logger)[source]

Perform optional error checks.

Parameters
loggerobject

The object that manages logging output.

cleanup()[source]

Clean up resources prior to exit.

convert2units(name, val, units)[source]

Convert the given value to the specified units.

Parameters
namestr

Name of the variable.

valfloat or ndarray of float

The value of the variable.

unitsstr

The units to convert to.

Returns
float or ndarray of float

The value converted to the specified units.

convert_from_units(name, val, units)[source]

Convert the given value from the specified units to those of the named variable.

Parameters
namestr

Name of the variable.

valfloat or ndarray of float

The value of the variable.

unitsstr

The units to convert to.

Returns
float or ndarray of float

The value converted to the specified units.

convert_units(name, val, units_from, units_to)[source]

Wrap the utility convert_units and give a good error message.

Parameters
namestr

Name of the variable.

valfloat or ndarray of float

The value of the variable.

units_fromstr

The units to convert from.

units_tostr

The units to convert to.

Returns
float or ndarray of float

The value converted to the specified units.

declare_coloring(wrt=('*'), method='fd', form=None, step=None, per_instance=True, num_full_jacs=3, tol=1e-25, orders=None, perturb_size=1e-09, min_improve_pct=5.0, show_summary=True, show_sparsity=False)[source]

Set options for deriv coloring of a set of wrt vars matching the given pattern(s).

Parameters
wrtstr or list of str

The name or names of the variables that derivatives are taken with respect to. This can contain input names, output names, or glob patterns.

methodstr

Method used to compute derivative: “fd” for finite difference, “cs” for complex step.

formstr

Finite difference form, can be “forward”, “central”, or “backward”. Leave undeclared to keep unchanged from previous or default value.

stepfloat

Step size for finite difference. Leave undeclared to keep unchanged from previous or default value.

per_instancebool

If True, a separate coloring will be generated for each instance of a given class. Otherwise, only one coloring for a given class will be generated and all instances of that class will use it.

num_full_jacsint

Number of times to repeat partial jacobian computation when computing sparsity.

tolfloat

Tolerance used to determine if an array entry is nonzero during sparsity determination.

ordersint

Number of orders above and below the tolerance to check during the tolerance sweep.

perturb_sizefloat

Size of input/output perturbation during generation of sparsity.

min_improve_pctfloat

If coloring does not improve (decrease) the number of solves more than the given percentage, coloring will not be used.

show_summarybool

If True, display summary information after generating coloring.

show_sparsitybool

If True, display sparsity with coloring info after generating coloring.

get_approx_coloring_fname()[source]

Return the full pathname to a coloring file.

Parameters
systemSystem

The System having its coloring saved or loaded.

Returns
str

Full pathname of the coloring file.

get_constraints(recurse=True)[source]

Get the Constraint settings from this system.

Retrieve the constraint settings for the current system as a dict, keyed by variable name.

Parameters
recursebool, optional

If True, recurse through the subsystems and return the path of all constraints relative to the this system.

Returns
dict

The constraints defined in the current system.

get_design_vars(recurse=True, get_sizes=True, use_prom_ivc=True)[source]

Get the DesignVariable settings from this system.

Retrieve all design variable settings from the system and, if recurse is True, all of its subsystems.

Parameters
recursebool

If True, recurse through the subsystems and return the path of all design vars relative to the this system.

get_sizesbool, optional

If True, compute the size of each design variable.

use_prom_ivcbool

Translate auto_ivc_names to their promoted input names.

Returns
dict

The design variables defined in the current system and, if recurse=True, its subsystems.

get_io_metadata(iotypes=('input', 'output'), metadata_keys=None, includes=None, excludes=None, tags=(), get_remote=False, rank=None, return_rel_names=True)[source]

Retrieve metdata for a filtered list of variables.

Parameters
iotypesstr or iter of str

Will contain either ‘input’, ‘output’, or both. Defaults to both.

metadata_keysiter of str or None

Names of metadata entries to be retrieved or None, meaning retrieve all available ‘allprocs’ metadata. If ‘val’ or ‘src_indices’ are required, their keys must be provided explicitly since they are not found in the ‘allprocs’ metadata and must be retrieved from local metadata located in each process.

includesstr, iter of str or None

Collection of glob patterns for pathnames of variables to include. Default is None, which includes all variables.

excludesstr, iter of str or None

Collection of glob patterns for pathnames of variables to exclude. Default is None.

tagsstr or iter of strs

User defined tags that can be used to filter what gets listed. Only inputs with the given tags will be listed. Default is None, which means there will be no filtering based on tags.

get_remotebool

If True, retrieve variables from other MPI processes as well.

rankint or None

If None, and get_remote is True, retrieve values from all MPI process to all other MPI processes. Otherwise, if get_remote is True, retrieve values from all MPI processes only to the specified rank.

return_rel_namesbool

If True, the names returned will be relative to the scope of this System. Otherwise they will be absolute names.

Returns
dict

A dict of metadata keyed on name, where name is either absolute or relative based on the value of the return_rel_names arg, and metadata is a dict containing entries based on the value of the metadata_keys arg. Every metadata dict will always contain two entries, ‘promoted_name’ and ‘discrete’, to indicate a given variable’s promoted name and whether or not it is discrete.

get_linear_vectors()[source]

Return the linear inputs, outputs, and residuals vectors.

Returns
(inputs, outputs, residuals): tuple of <Vector> instances

Yields the linear inputs, outputs, and residuals vectors.

get_nonlinear_vectors()[source]

Return the inputs, outputs, and residuals vectors.

Returns
(inputs, outputs, residuals)tuple of <Vector> instances

Yields the inputs, outputs, and residuals nonlinear vectors.

get_objectives(recurse=True)[source]

Get the Objective settings from this system.

Retrieve all objectives settings from the system as a dict, keyed by variable name.

Parameters
recursebool, optional

If True, recurse through the subsystems and return the path of all objective relative to the this system.

Returns
dict

The objectives defined in the current system.

get_relevant_vars(desvars, responses, mode)[source]

Find all relevant vars between desvars and responses.

Both vars are assumed to be outputs (either design vars or responses).

Parameters
desvarsdict

Dictionary of design variable metadata.

responsesdict

Dictionary of response variable metadata.

modestr

Direction of derivatives, either ‘fwd’ or ‘rev’.

Returns
dict

Dict of ({‘outputs’: dep_outputs, ‘inputs’: dep_inputs}, dep_systems) keyed by design vars and responses.

get_responses(recurse=True, get_sizes=True, use_prom_ivc=False)[source]

Get the response variable settings from this system.

Retrieve all response variable settings from the system as a dict, keyed by variable name.

Parameters
recursebool, optional

If True, recurse through the subsystems and return the path of all responses relative to the this system.

get_sizesbool, optional

If True, compute the size of each response.

use_prom_ivcbool

Translate auto_ivc_names to their promoted input names.

Returns
dict

The responses defined in the current system and, if recurse=True, its subsystems.

get_source(name)[source]

Return the source variable connected to the given named variable.

The name can be a promoted name or an absolute name. If the given variable is an input, the absolute name of the connected source will be returned. If the given variable itself is a source, its own absolute name will be returned.

Parameters
namestr

Absolute or promoted name of the variable.

Returns
str

The absolute name of the source variable.

get_val(name, units=None, indices=None, get_remote=False, rank=None, vec_name='nonlinear', kind=None, flat=False, from_src=True)[source]

Get an output/input/residual variable.

Function is used if you want to specify display units.

Parameters
namestr

Promoted or relative variable name in the root system’s namespace.

unitsstr, optional

Units to convert to before return.

indicesint or list of ints or tuple of ints or int ndarray or Iterable or None, optional

Indices or slice to return.

get_remotebool or None

If True, retrieve the value even if it is on a remote process. Note that if the variable is remote on ANY process, this function must be called on EVERY process in the Problem’s MPI communicator. If False, only retrieve the value if it is on the current process, or only the part of the value that’s on the current process for a distributed variable. If None and the variable is remote or distributed, a RuntimeError will be raised.

rankint or None

If not None, only gather the value to this rank.

vec_namestr

Name of the vector to use. Defaults to ‘nonlinear’.

kindstr or None

Kind of variable (‘input’, ‘output’, or ‘residual’). If None, returned value will be either an input or output.

flatbool

If True, return the flattened version of the value.

from_srcbool

If True, retrieve value of an input variable from its connected source.

Returns
object

The value of the requested output/input variable.

initialize()[source]

Perform any one-time initialization run at instantiation.

is_active()[source]

Determine if the system is active on this rank.

Returns
bool

If running under MPI, returns True if this System has a valid communicator. Always returns True if not running under MPI.

property linear_solver

Get the linear solver for this system.

list_inputs(val=True, prom_name=False, units=False, shape=False, global_shape=False, desc=False, hierarchical=True, print_arrays=False, tags=None, includes=None, excludes=None, all_procs=False, out_stream=DEFAULT_OUT_STREAM, values=None)[source]

Write a list of input names and other optional information to a specified stream.

Parameters
valbool, optional

When True, display/return input values. Default is True.

prom_namebool, optional

When True, display/return the promoted name of the variable. Default is False.

unitsbool, optional

When True, display/return units. Default is False.

shapebool, optional

When True, display/return the shape of the value. Default is False.

global_shapebool, optional

When True, display/return the global shape of the value. Default is False.

descbool, optional

When True, display/return description. Default is False.

hierarchicalbool, optional

When True, human readable output shows variables in hierarchical format.

print_arraysbool, optional

When False, in the columnar display, just display norm of any ndarrays with size > 1. The norm is surrounded by vertical bars to indicate that it is a norm. When True, also display full values of the ndarray below the row. Format is affected by the values set with numpy.set_printoptions Default is False.

tagsstr or list of strs

User defined tags that can be used to filter what gets listed. Only inputs with the given tags will be listed. Default is None, which means there will be no filtering based on tags.

includesNone, str, or iter of str

Collection of glob patterns for pathnames of variables to include. Default is None, which includes all input variables.

excludesNone, str, or iter of str

Collection of glob patterns for pathnames of variables to exclude. Default is None.

all_procsbool, optional

When True, display output on all ranks. Default is False, which will display output only from rank 0.

out_streamfile-like object

Where to send human readable output. Default is sys.stdout. Set to None to suppress.

valuesbool, optional

This argument has been deprecated and will be removed in 4.0.

Returns
list of (name, metadata)

List of input names and other optional information about those inputs.

list_outputs(explicit=True, implicit=True, val=True, prom_name=False, residuals=False, residuals_tol=None, units=False, shape=False, global_shape=False, bounds=False, scaling=False, desc=False, hierarchical=True, print_arrays=False, tags=None, includes=None, excludes=None, all_procs=False, list_autoivcs=False, out_stream=DEFAULT_OUT_STREAM, values=None)[source]

Write a list of output names and other optional information to a specified stream.

Parameters
explicitbool, optional

include outputs from explicit components. Default is True.

implicitbool, optional

include outputs from implicit components. Default is True.

valbool, optional

When True, display output values. Default is True.

prom_namebool, optional

When True, display the promoted name of the variable. Default is False.

residualsbool, optional

When True, display residual values. Default is False.

residuals_tolfloat, optional

If set, limits the output of list_outputs to only variables where the norm of the resids array is greater than the given ‘residuals_tol’. Default is None.

unitsbool, optional

When True, display units. Default is False.

shapebool, optional

When True, display/return the shape of the value. Default is False.

global_shapebool, optional

When True, display/return the global shape of the value. Default is False.

boundsbool, optional

When True, display/return bounds (lower and upper). Default is False.

scalingbool, optional

When True, display/return scaling (ref, ref0, and res_ref). Default is False.

descbool, optional

When True, display/return description. Default is False.

hierarchicalbool, optional

When True, human readable output shows variables in hierarchical format.

print_arraysbool, optional

When False, in the columnar display, just display norm of any ndarrays with size > 1. The norm is surrounded by vertical bars to indicate that it is a norm. When True, also display full values of the ndarray below the row. Format is affected by the values set with numpy.set_printoptions Default is False.

tagsstr or list of strs

User defined tags that can be used to filter what gets listed. Only outputs with the given tags will be listed. Default is None, which means there will be no filtering based on tags.

includesNone, str, or iter of str

Collection of glob patterns for pathnames of variables to include. Default is None, which includes all output variables.

excludesNone, str, or iter of str

Collection of glob patterns for pathnames of variables to exclude. Default is None.

all_procsbool, optional

When True, display output on all processors. Default is False.

list_autoivcsbool

If True, include auto_ivc outputs in the listing. Defaults to False.

out_streamfile-like

Where to send human readable output. Default is sys.stdout. Set to None to suppress.

valuesbool, optional

This argument has been deprecated and will be removed in 4.0.

Returns
list of (name, metadata)

List of output names and other optional information about those outputs.

property msginfo

Our instance pathname, if available, or our class name. For use in error messages.

Returns
str

Either our instance pathname or class name.

property nonlinear_solver

Get the nonlinear solver for this system.

record_iteration()[source]

Record an iteration of the current System.

run_apply_linear(mode, scope_out=None, scope_in=None)[source]

Compute jac-vec product.

This calls _apply_linear, but with the model assumed to be in an unscaled state.

Parameters
modestr

‘fwd’ or ‘rev’.

scope_outset or None

Set of absolute output names in the scope of this mat-vec product. If None, all are in the scope.

scope_inset or None

Set of absolute input names in the scope of this mat-vec product. If None, all are in the scope.

run_apply_nonlinear()[source]

Compute residuals.

This calls _apply_nonlinear, but with the model assumed to be in an unscaled state.

run_linearize(sub_do_ln=True)[source]

Compute jacobian / factorization.

This calls _linearize, but with the model assumed to be in an unscaled state.

Parameters
sub_do_lnboolean

Flag indicating if the children should call linearize on their linear solvers.

run_solve_linear(mode)[source]

Apply inverse jac product.

This calls _solve_linear, but with the model assumed to be in an unscaled state.

Parameters
modestr

‘fwd’ or ‘rev’.

run_solve_nonlinear()[source]

Compute outputs.

This calls _solve_nonlinear, but with the model assumed to be in an unscaled state.

set_initial_values()[source]

Set all input and output variables to their declared initial values.

set_solver_print(level=2, depth=1e+99, type_='all')[source]

Control printing for solvers and subsolvers in the model.

Parameters
levelint

iprint level. Set to 2 to print residuals each iteration; set to 1 to print just the iteration totals; set to 0 to disable all printing except for failures, and set to -1 to disable all printing including failures.

depthint

How deep to recurse. For example, you can set this to 0 if you only want to print the top level linear and nonlinear solver messages. Default prints everything.

type_str

Type of solver to set: ‘LN’ for linear, ‘NL’ for nonlinear, or ‘all’ for all.

system_iter(include_self=False, recurse=True, typ=None)[source]

Yield a generator of local subsystems of this system.

Parameters
include_selfbool

If True, include this system in the iteration.

recursebool

If True, iterate over the whole tree under this system.

typtype

If not None, only yield Systems that match that are instances of the given type.

use_fixed_coloring(coloring=<object object>, recurse=True)[source]

Use a precomputed coloring for this System.

Parameters
coloringstr

A coloring filename. If no arg is passed, filename will be determined automatically.

recursebool

If True, set fixed coloring in all subsystems that declare a coloring. Ignored if a specific coloring is passed in.