Source code for openmdao.drivers.scipy_optimizer

"""
OpenMDAO Wrapper for the scipy.optimize.minimize family of local optimizers.
"""

import sys
from packaging.version import Version

import numpy as np
from scipy import __version__ as scipy_version
from scipy.optimize import minimize

from openmdao.core.constants import INF_BOUND
from openmdao.core.driver import Driver, RecordingDebugging
from openmdao.core.group import Group
from openmdao.utils.class_util import WeakMethodWrapper
from openmdao.utils.mpi import MPI


# Optimizers in scipy.minimize
_optimizers = {'Nelder-Mead', 'Powell', 'CG', 'BFGS', 'Newton-CG', 'L-BFGS-B',
               'TNC', 'COBYLA', 'SLSQP'}
if Version(scipy_version) >= Version("1.1"):  # Only available in newer versions
    _optimizers.add('trust-constr')

# For 'basinhopping' and 'shgo' gradients are used only in the local minimization
_gradient_optimizers = {'CG', 'BFGS', 'Newton-CG', 'L-BFGS-B', 'TNC', 'SLSQP', 'dogleg',
                        'trust-ncg', 'trust-constr', 'basinhopping', 'shgo'}
_hessian_optimizers = {'trust-constr', 'trust-ncg'}
_bounds_optimizers = {'L-BFGS-B', 'TNC', 'SLSQP', 'trust-constr', 'dual_annealing', 'shgo',
                      'differential_evolution', 'basinhopping', 'Nelder-Mead'}
if Version(scipy_version) >= Version("1.11"):
    # COBYLA supports bounds starting with SciPy Version 1.11
    _bounds_optimizers |= {'COBYLA'}

_constraint_optimizers = {'COBYLA', 'SLSQP', 'trust-constr', 'shgo'}
_constraint_grad_optimizers = _gradient_optimizers & _constraint_optimizers
if Version(scipy_version) >= Version("1.4"):
    _constraint_optimizers.add('differential_evolution')
    _constraint_grad_optimizers.add('differential_evolution')

_eq_constraint_optimizers = {'SLSQP', 'trust-constr'}
_global_optimizers = {'differential_evolution', 'basinhopping'}
if Version(scipy_version) >= Version("1.2"):  # Only available in newer versions
    _global_optimizers |= {'shgo', 'dual_annealing'}

# Global optimizers and optimizers in minimize
_all_optimizers = _optimizers | _global_optimizers

# These require Hessian or Hessian-vector product, so they are not supported
# right now.
# dual-annealing and basinhopping not supported yet
_unsupported_optimizers = {'dogleg', 'trust-ncg'}

# With "old-style" a constraint is a dictionary, with "new-style" an object
# With "old-style" a bound is a tuple, with "new-style" a Bounds instance
# In principle now everything can work with "old-style"
# These settings have no effect to the optimizers implemented before SciPy 1.1
_supports_new_style = {'trust-constr'}
if Version(scipy_version) >= Version("1.4"):
    _supports_new_style.add('differential_evolution')
_use_new_style = True  # Recommended to set to True

CITATIONS = """
@article{Hwang_maud_2018
 author = {Hwang, John T. and Martins, Joaquim R.R.A.},
 title = "{A Computational Architecture for Coupling Heterogeneous
          Numerical Models and Computing Coupled Derivatives}",
 journal = "{ACM Trans. Math. Softw.}",
 volume = {44},
 number = {4},
 month = jun,
 year = {2018},
 pages = {37:1--37:39},
 articleno = {37},
 numpages = {39},
 doi = {10.1145/3182393},
 publisher = {ACM},
"""


[docs]class ScipyOptimizeDriver(Driver): """ Driver wrapper for the scipy.optimize.minimize family of local optimizers. Inequality constraints are supported by COBYLA and SLSQP, but equality constraints are only supported by SLSQP. None of the other optimizers support constraints. ScipyOptimizeDriver supports the following: equality_constraints inequality_constraints Parameters ---------- **kwargs : dict of keyword arguments Keyword arguments that will be mapped into the Driver options. Attributes ---------- fail : bool Flag that indicates failure of most recent optimization. iter_count : int Counter for function evaluations. _scipy_optimize_result : OptimizeResult Result returned from scipy.optimize call. opt_settings : dict Dictionary of solver-specific options. See the scipy.optimize.minimize documentation. _check_jac : bool Used internally to control when to perform singular checks on computed total derivs. _con_cache : dict Cached result of constraint evaluations because scipy asks for them in a separate function. _con_idx : dict Used for constraint bookkeeping in the presence of 2-sided constraints. _grad_cache : {} Cached result of nonlinear constraint derivatives because scipy asks for them in a separate function. _exc_info : 3 item tuple Storage for exception and traceback information. _obj_and_nlcons : list List of objective + nonlinear constraints. Used to compute total derivatives for all except linear constraints. _dvlist : list Copy of _designvars. _lincongrad_cache : np.ndarray Pre-calculated gradients of linear constraints. _desvar_array_cache : np.ndarray Cached array for setting design variables. """
[docs] def __init__(self, **kwargs): """ Initialize the ScipyOptimizeDriver. """ super().__init__(**kwargs) # What we support self.supports['optimization'] = True self.supports['inequality_constraints'] = True self.supports['equality_constraints'] = True self.supports['two_sided_constraints'] = True self.supports['linear_constraints'] = True self.supports['simultaneous_derivatives'] = True # What we don't support self.supports['multiple_objectives'] = False self.supports['active_set'] = False self.supports['integer_design_vars'] = False self.supports['distributed_design_vars'] = False self.supports._read_only = True # The user places optimizer-specific settings in here. self.opt_settings = {} self._scipy_optimize_result = None self._grad_cache = None self._con_cache = None self._con_idx = {} self._obj_and_nlcons = None self._dvlist = None self._lincongrad_cache = None self._desvar_array_cache = None self.fail = False self.iter_count = 0 self._check_jac = False self._exc_info = None self._total_jac_format = 'array' self.cite = CITATIONS
def _declare_options(self): """ Declare options before kwargs are processed in the init method. """ self.options.declare('optimizer', 'SLSQP', values=_all_optimizers, desc='Name of optimizer to use') self.options.declare('tol', 1.0e-6, lower=0.0, desc='Tolerance for termination. For detailed ' 'control, use solver-specific options.') self.options.declare('maxiter', 200, lower=0, desc='Maximum number of iterations.') self.options.declare('disp', True, types=bool, desc='Set to False to prevent printing of Scipy convergence messages') self.options.declare('singular_jac_behavior', default='warn', values=['error', 'warn', 'ignore'], desc='Defines behavior of a zero row/col check after first call to' 'compute_totals:' 'error - raise an error.' 'warn - raise a warning.' "ignore - don't perform check.") self.options.declare('singular_jac_tol', default=1e-16, desc='Tolerance for zero row/column check.') def _get_name(self): """ Get name of current optimizer. Returns ------- str The name of the current optimizer. """ return "ScipyOptimize_" + self.options['optimizer'] def _setup_driver(self, problem): """ Prepare the driver for execution. This is the final thing to run during setup. Parameters ---------- problem : <Problem> Pointer """ super()._setup_driver(problem) opt = self.options['optimizer'] self.supports._read_only = False self.supports['gradients'] = opt in _gradient_optimizers self.supports['inequality_constraints'] = opt in _constraint_optimizers self.supports['two_sided_constraints'] = opt in _constraint_optimizers self.supports['equality_constraints'] = opt in _eq_constraint_optimizers self.supports._read_only = True self._check_jac = self.options['singular_jac_behavior'] in ['error', 'warn'] # Raises error if multiple objectives are not supported, but more objectives were defined. if not self.supports['multiple_objectives'] and len(self._objs) > 1: msg = '{} currently does not support multiple objectives.' raise RuntimeError(msg.format(self.msginfo)) # Since COBYLA did not support bounds in versions of SciPy prior to 1.11, we need to # add to the _cons metadata for any bounds that need to be translated into a constraint if opt == 'COBYLA' and Version(scipy_version) < Version("1.11"): for name, meta in self._designvars.items(): lower = meta['lower'] upper = meta['upper'] if isinstance(lower, np.ndarray) or lower > -INF_BOUND \ or isinstance(upper, np.ndarray) or upper < INF_BOUND: self._cons[name] = meta.copy() self._cons[name]['equals'] = None self._cons[name]['linear'] = True self._cons[name]['alias'] = None
[docs] def run(self): """ Optimize the problem using selected Scipy optimizer. Returns ------- bool Failure flag; True if failed to converge, False is successful. """ self.result.reset() prob = self._problem() opt = self.options['optimizer'] model = prob.model self.iter_count = 0 self._total_jac = None self._total_jac_linear = None self._desvar_array_cache = None self._check_for_missing_objective() self._check_for_invalid_desvar_values() # Initial Run with RecordingDebugging(self._get_name(), self.iter_count, self): with model._relevance.nonlinear_active('iter'): self._run_solve_nonlinear() self.iter_count += 1 self._con_cache = self.get_constraint_values() desvar_vals = self.get_design_var_values() self._dvlist = list(self._designvars) # maxiter and disp get passed into scipy with all the other options. if 'maxiter' not in self.opt_settings: # lets you override the value in options self.opt_settings['maxiter'] = self.options['maxiter'] self.opt_settings['disp'] = self.options['disp'] # Size Problem ndesvar = 0 for desvar in self._designvars.values(): size = desvar['global_size'] if desvar['distributed'] else desvar['size'] ndesvar += size x_init = np.empty(ndesvar) # Initial Design Vars i = 0 use_bounds = (opt in _bounds_optimizers) if use_bounds: bounds = [] else: bounds = None for name, meta in self._designvars.items(): size = meta['global_size'] if meta['distributed'] else meta['size'] x_init[i:i + size] = desvar_vals[name] i += size # Bounds if our optimizer supports them if use_bounds: meta_low = meta['lower'] meta_high = meta['upper'] for j in range(size): if isinstance(meta_low, np.ndarray): p_low = meta_low[j] else: p_low = meta_low if isinstance(meta_high, np.ndarray): p_high = meta_high[j] else: p_high = meta_high bounds.append((p_low, p_high)) if use_bounds and (opt in _supports_new_style) and _use_new_style: # For 'trust-constr' it is better to use the new type bounds, because it seems to work # better (for the current examples in the tests) with the "keep_feasible" option try: from scipy.optimize import Bounds from scipy.optimize._constraints import old_bound_to_new except ImportError: msg = ('The "trust-constr" optimizer is supported for SciPy 1.1.0 and above. ' 'The installed version is {}') raise ImportError(msg.format(scipy_version)) # Convert "old-style" bounds to "new_style" bounds lower, upper = old_bound_to_new(bounds) # tuple, tuple keep_feasible = self.opt_settings.get('keep_feasible_bounds', True) bounds = Bounds(lb=lower, ub=upper, keep_feasible=keep_feasible) # Constraints constraints = [] nl_i = 1 # start at 1 since row 0 is the objective. Constraints start at row 1. lin_i = 0 # counter for linear constraint jacobian lincons = [] # list of linear constraints self._obj_and_nlcons = list(self._objs) if opt in _constraint_optimizers: # get list of linear constraints and precalculate gradients for them (if any) if opt in _constraint_grad_optimizers: lincons = [name for name, meta in self._cons.items() if meta.get('linear')] else: lincons = [] if lincons: lincongrad = self._lincongrad_cache = \ self._compute_totals(of=lincons, wrt=self._dvlist, return_format='array') else: self._lincongrad_cache = None # map constraints to index and instantiate constraints for scipy for name, meta in self._cons.items(): if meta['indices'] is not None: meta['size'] = size = meta['indices'].indexed_src_size else: size = meta['global_size'] if meta['distributed'] else meta['size'] upper = meta['upper'] lower = meta['lower'] equals = meta['equals'] linear = name in lincons if linear: self._con_idx[name] = lin_i lin_i += size else: self._obj_and_nlcons.append(name) self._con_idx[name] = nl_i nl_i += size # In scipy constraint optimizers take constraints in two separate formats if opt in _supports_new_style and _use_new_style: # Type of constraints is list of NonlinearConstraint and/or LinearConstraint try: from scipy.optimize import NonlinearConstraint, LinearConstraint except ImportError: msg = ('The "trust-constr" optimizer is supported for SciPy 1.1.0 and' 'above. The installed version is {}') raise ImportError(msg.format(scipy_version)) if equals is not None: lb = ub = equals else: lb = lower ub = upper if linear: # LinearConstraint con = LinearConstraint(A=lincongrad[self._con_idx[name]], lb=lower, ub=upper, keep_feasible=True) else: # NonlinearConstraint # Loop over every index separately, # because scipy calls each constraint by index. for j in range(size): # TODO add option for Hessian # Double-sided constraints are accepted by the algorithm args = [name, False, j] con = NonlinearConstraint( fun=signature_extender( WeakMethodWrapper(self, '_con_val_func'), args), lb=lb, ub=ub, jac=signature_extender( WeakMethodWrapper(self, '_congradfunc'), args) ) constraints.append(con) else: # Type of constraints is list of dict # Loop over every index separately, # because scipy calls each constraint by index. for j in range(size): con_dict = {} if meta['equals'] is not None: con_dict['type'] = 'eq' else: con_dict['type'] = 'ineq' con_dict['fun'] = WeakMethodWrapper(self, '_confunc') if opt in _constraint_grad_optimizers: con_dict['jac'] = WeakMethodWrapper(self, '_congradfunc') con_dict['args'] = [name, False, j] constraints.append(con_dict) if isinstance(upper, np.ndarray): upper = upper[j] if isinstance(lower, np.ndarray): lower = lower[j] dblcon = (upper < INF_BOUND) and (lower > -INF_BOUND) # Add extra constraint if double-sided if dblcon: dcon_dict = {} dcon_dict['type'] = 'ineq' dcon_dict['fun'] = WeakMethodWrapper(self, '_confunc') if opt in _constraint_grad_optimizers: dcon_dict['jac'] = WeakMethodWrapper(self, '_congradfunc') dcon_dict['args'] = [name, True, j] constraints.append(dcon_dict) # Provide gradients for optimizers that support it if opt in _gradient_optimizers: jac = self._gradfunc else: jac = None # Hessian calculation method for optimizers, which require it if opt in _hessian_optimizers: if 'hess' in self.opt_settings: hess = self.opt_settings.pop('hess') else: # Defaults to BFGS, if not in opt_settings from scipy.optimize import BFGS hess = BFGS() else: hess = None # compute dynamic simul deriv coloring if option is set prob.get_total_coloring(self._coloring_info, run_model=False) # optimize try: if opt in _optimizers: if prob.comm.rank != 0: self.opt_settings['disp'] = False result = minimize(self._objfunc, x_init, # args=(), method=opt, jac=jac, hess=hess, # hessp=None, bounds=bounds, constraints=constraints, tol=self.options['tol'], # callback=None, options=self.opt_settings) elif opt == 'basinhopping': from scipy.optimize import basinhopping def fun(x): return self._objfunc(x), jac(x) if 'minimizer_kwargs' not in self.opt_settings: self.opt_settings['minimizer_kwargs'] = {"method": "L-BFGS-B", "jac": True} self.opt_settings.pop('maxiter') # It does not have this argument def accept_test(f_new, x_new, f_old, x_old): # Used to implement bounds besides the original functionality if bounds is not None: bound_check = all([b[0] <= xi <= b[1] for xi, b in zip(x_new, bounds)]) user_test = self.opt_settings.pop('accept_test', None) # callable # has to satisfy both the bounds and the acceptance test defined by the # user if user_test is not None: test_res = user_test(f_new, x_new, f_old, x_old) if test_res == 'force accept': return test_res else: # result is boolean return bound_check and test_res else: # no user acceptance test, check only the bounds return bound_check else: return True result = basinhopping(fun, x_init, accept_test=accept_test, **self.opt_settings) elif opt == 'dual_annealing': from scipy.optimize import dual_annealing self.opt_settings.pop('disp') # It does not have this argument # There is no "options" param, so "opt_settings" can be used to set the (many) # keyword arguments result = dual_annealing(self._objfunc, bounds=bounds, **self.opt_settings) elif opt == 'differential_evolution': from scipy.optimize import differential_evolution # There is no "options" param, so "opt_settings" can be used to set the (many) # keyword arguments result = differential_evolution(self._objfunc, bounds=bounds, constraints=constraints, **self.opt_settings) elif opt == 'shgo': from scipy.optimize import shgo kwargs = dict() for option in ('minimizer_kwargs', 'sampling_method ', 'n', 'iters'): if option in self.opt_settings: kwargs[option] = self.opt_settings[option] # Set the Jacobian and the Hessian to the value calculated in OpenMDAO if 'minimizer_kwargs' not in kwargs or kwargs['minimizer_kwargs'] is None: kwargs['minimizer_kwargs'] = {} kwargs['minimizer_kwargs'].setdefault('jac', jac) kwargs['minimizer_kwargs'].setdefault('hess', hess) # Objective function tolerance self.opt_settings['f_tol'] = self.options['tol'] result = shgo(self._objfunc, bounds=bounds, constraints=constraints, options=self.opt_settings, **kwargs) else: msg = 'Optimizer "{}" is not implemented yet. Choose from: {}' raise NotImplementedError(msg.format(opt, _all_optimizers)) # If an exception was swallowed in one of our callbacks, we want to raise it # rather than the cryptic message from scipy. except Exception as msg: if self._exc_info is None: raise if self._exc_info is not None: self._reraise() self._scipy_optimize_result = result if hasattr(result, 'success'): self.fail = not result.success if self.fail: if prob.comm.rank == 0: print('Optimization FAILED.') print(result.message) print('-' * 35) elif self.options['disp']: if prob.comm.rank == 0: print('Optimization Complete') print('-' * 35) else: self.fail = True # It is not known, so the worst option is assumed if prob.comm.rank == 0: print('Optimization Complete (success not known)') print(result.message) print('-' * 35) return self.fail
def _update_design_vars(self, x_new): """ Update the design variables in the model. Parameters ---------- x_new : ndarray Array containing input values at new design point. """ i = 0 for name, meta in self._designvars.items(): size = meta['size'] self.set_design_var(name, x_new[i:i + size]) i += size def _objfunc(self, x_new): """ Evaluate and return the objective function. Model is executed here. Parameters ---------- x_new : ndarray Array containing input values at new design point. Returns ------- float Value of the objective function evaluated at the new design point. """ model = self._problem().model try: # Pass in new inputs if MPI: model.comm.Bcast(x_new, root=0) if self._desvar_array_cache is None: self._desvar_array_cache = np.empty(x_new.shape, dtype=x_new.dtype) self._desvar_array_cache[:] = x_new self._update_design_vars(x_new) with RecordingDebugging(self._get_name(), self.iter_count, self): self.iter_count += 1 with model._relevance.nonlinear_active('iter'): self._run_solve_nonlinear() # Get the objective function evaluations for obj in self.get_objective_values().values(): f_new = obj break self._con_cache = self.get_constraint_values() except Exception: if self._exc_info is None: # only record the first one self._exc_info = sys.exc_info() return 0 # print("Functions calculated") # rank = MPI.COMM_WORLD.rank if MPI else 0 # print(rank, ' xnew', x_new) # print(rank, ' fnew', f_new) return f_new def _con_val_func(self, x_new, name, dbl, idx): """ Return the value of the constraint function requested in args. The lower or upper bound is **not** subtracted from the value. Used for optimizers, which take the bounds of the constraints (e.g. trust-constr) Parameters ---------- x_new : ndarray Array containing input values at new design point. name : str Name of the constraint to be evaluated. dbl : bool True if double sided constraint. idx : float Contains index into the constraint array. Returns ------- float Value of the constraint function. """ if self.options['optimizer'] == 'differential_evolution': # the DE opt will not have called this, so we do it here to update DV/resp values self._objfunc(x_new) return self._con_cache[name][idx] def _confunc(self, x_new, name, dbl, idx): """ Return the value of the constraint function requested in args. Note that this function is called for each constraint, so the model is only run when the objective is evaluated. Parameters ---------- x_new : ndarray Array containing input values at new design point. name : str Name of the constraint to be evaluated. dbl : bool True if double sided constraint. idx : float Contains index into the constraint array. Returns ------- float Value of the constraint function. """ if self._exc_info is not None: self._reraise() cons = self._con_cache meta = self._cons[name] # Equality constraints equals = meta['equals'] if equals is not None: if isinstance(equals, np.ndarray): equals = equals[idx] return cons[name][idx] - equals # Note, scipy defines constraints to be satisfied when positive, # which is the opposite of OpenMDAO. upper = meta['upper'] if isinstance(upper, np.ndarray): upper = upper[idx] lower = meta['lower'] if isinstance(lower, np.ndarray): lower = lower[idx] if dbl or (lower <= -INF_BOUND): return upper - cons[name][idx] else: return cons[name][idx] - lower def _gradfunc(self, x_new): """ Evaluate and return the gradient for the objective. Gradients for the constraints are also calculated and cached here. Parameters ---------- x_new : ndarray Array containing input values at new design point. Returns ------- ndarray Gradient of objective with respect to input array. """ prob = self._problem() model = prob.model try: grad = self._compute_totals(of=self._obj_and_nlcons, wrt=self._dvlist, return_format=self._total_jac_format) self._grad_cache = grad # First time through, check for zero row/col. if self._check_jac and self._total_jac is not None: for subsys in model.system_iter(include_self=True, recurse=True, typ=Group): if subsys._has_approx: break else: raise_error = self.options['singular_jac_behavior'] == 'error' self._total_jac.check_total_jac(raise_error=raise_error, tol=self.options['singular_jac_tol']) self._check_jac = False except Exception: if self._exc_info is None: # only record the first one self._exc_info = sys.exc_info() return np.array([[]]) # print("Gradients calculated for objective") # print(' xnew', x_new) # print(' grad', grad[0, :]) return grad[0, :] def _congradfunc(self, x_new, name, dbl, idx): """ Return the cached gradient of the constraint function. Note, scipy calls the constraints one at a time, so the gradient is cached when the objective gradient is called. Parameters ---------- x_new : ndarray Array containing input values at new design point. name : str Name of the constraint to be evaluated. dbl : bool Denotes if a constraint is double-sided or not. idx : float Contains index into the constraint array. Returns ------- float Gradient of the constraint function wrt all inputs. """ if self._exc_info is not None: self._reraise() meta = self._cons[name] if meta['linear']: grad = self._lincongrad_cache else: if self._grad_cache is None: # _gradfunc has not been called, meaning gradients are not # used for the objective but are needed for the constraints self._gradfunc(x_new) grad = self._grad_cache grad_idx = self._con_idx[name] + idx # print("Constraint Gradient returned") # print(' xnew', x_new) # print(' grad', name, 'idx', idx, grad[grad_idx, :]) # Equality constraints if meta['equals'] is not None: return grad[grad_idx, :] # Note, scipy defines constraints to be satisfied when positive, # which is the opposite of OpenMDAO. lower = meta['lower'] if isinstance(lower, np.ndarray): lower = lower[idx] if dbl or (lower <= -INF_BOUND): return -grad[grad_idx, :] else: return grad[grad_idx, :] def _reraise(self): """ Reraise any exception encountered when scipy calls back into our method. """ exc_info = self._exc_info self._exc_info = None # clear since we're done with it raise exc_info[1].with_traceback(exc_info[2])
[docs]def signature_extender(fcn, extra_args): """ Closure function, which appends extra arguments to the original function call. The first argument is the design vector. The possible extra arguments from the callback of :func:`scipy.optimize.minimize` are not passed to the function. Some algorithms take a sequence of :class:`~scipy.optimize.NonlinearConstraint` as input for the constraints. For this class it is not possible to pass additional arguments. With this function the signature will be correct for both scipy and the driver. Parameters ---------- fcn : callable Function, which takes the design vector as the first argument. extra_args : tuple or list Extra arguments for the function. Returns ------- callable The function with the signature expected by the driver. """ def closure(x, *args): return fcn(x, *extra_args) return closure