paraboloid_distributed.py

paraboloid_distributed.py#

A distributed version of the paraboloid model with an extra input that can be used to shift each index.

This version is used for testing, so it will have different options.

class openmdao.test_suite.components.paraboloid_distributed.DistParab(**kwargs)[source]

Bases: ExplicitComponent

Attributes:
checking

Return True if check_partials or check_totals is executing.

comm

Return the MPI communicator object for the system.

linear_solver

Get the linear solver for this system.

msginfo

Our instance pathname, if available, or our class name.

nonlinear_solver

Get the nonlinear solver for this system.

under_approx

Return True if under complex step or finite difference.

Methods

abs_meta_iter(iotype[, local, cont, discrete])

Iterate over absolute variable names and their metadata for this System.

add_constraint(name[, lower, upper, equals, ...])

Add a constraint variable to this system.

add_design_var(name[, lower, upper, ref, ...])

Add a design variable to this system.

add_discrete_input(name, val[, desc, tags, ...])

Add a discrete input variable to the component.

add_discrete_output(name, val[, desc, tags, ...])

Add an output variable to the component.

add_input(name[, val, shape, units, desc, ...])

Add an input variable to the component.

add_objective(name[, ref, ref0, index, ...])

Add a response variable to this system.

add_output(name[, val, shape, units, ...])

Add an output variable to the component.

add_recorder(recorder[, recurse])

Add a recorder to the system.

add_response(name, type_[, lower, upper, ...])

Add a response variable to this system.

best_partial_deriv_direction()

Return the best direction for partial deriv calculations based on input and output sizes.

check_config(logger)

Perform optional error checks.

check_partials([out_stream, compact_print, ...])

Check partial derivatives comprehensively for this component.

check_sparsity([method, max_nz, out_stream])

Check the sparsity of the computed jacobian against the declared sparsity.

cleanup()

Clean up resources prior to exit.

comm_info_iter()

Yield comm size for this system and all subsystems.

compute(inputs, outputs)

Compute outputs given inputs.

compute_fd_jac(jac[, method])

Force the use of finite difference to compute a jacobian.

compute_fd_sparsity([method, num_full_jacs, ...])

Use finite difference to compute a sparsity matrix.

compute_jacvec_product(inputs, d_inputs, ...)

Compute jac-vector product.

compute_partials(inputs, partials)

Compute sub-jacobian parts.

compute_sparsity([direction, num_iters, ...])

Compute the sparsity of the partial jacobian.

convert2units(name, val, units)

Convert the given value to the specified units.

convert_from_units(name, val, units)

Convert the given value from the specified units to those of the named variable.

convert_units(name, val, units_from, units_to)

Wrap the utility convert_units and give a good error message.

declare_coloring([wrt, method, form, step, ...])

Set options for deriv coloring of a set of wrt vars matching the given pattern(s).

declare_partials(of, wrt[, dependent, rows, ...])

Declare information about this component's subjacobians.

dist_size_iter(io, top_comm)

Yield names and distributed ranges of all local and remote variables in this system.

get_coloring_fname(mode)

Return the full pathname to a coloring file.

get_conn_graph()

Return the model connection graph.

get_constraints([recurse, get_sizes, ...])

Get the Constraint settings from this system.

get_declare_partials_calls([sparsity])

Return a string containing declare_partials() calls based on the subjac sparsity.

get_design_vars([recurse, get_sizes, ...])

Get the DesignVariable settings from this system.

get_io_metadata([iotypes, metadata_keys, ...])

Retrieve metadata for a filtered list of variables.

get_linear_vectors()

Return the linear inputs, outputs, and residuals vectors.

get_nonlinear_vectors()

Return the inputs, outputs, and residuals vectors.

get_objectives([recurse, get_sizes, ...])

Get the Objective settings from this system.

get_outputs_dir(*subdirs[, mkdir])

Get the path under which all output files of this system are to be placed.

get_promotions([inprom, outprom])

Return all promotions for the given promoted variable(s).

get_reports_dir()

Get the path to the directory where the report files should go.

get_responses([recurse, get_sizes, use_prom_ivc])

Get the response variable settings from this system.

get_self_statics()

Override this in derived classes if compute_primal references static values.

get_source(name)

Return the source variable connected to the given named variable.

get_val(name[, units, indices, get_remote, ...])

Get an output/input/residual variable.

get_var_dup_info(name, io)

Return information about how the given variable is duplicated across MPI processes.

get_var_sizes(name, io)

Return the sizes of the given variable on all procs.

has_vectors()

Check if the system vectors have been initialized.

initialize()

Perform any one-time initialization run at instantiation.

is_explicit([is_comp])

Return True if this is an explicit component.

list_inputs([val, prom_name, units, shape, ...])

Write a list of input names and other optional information to a specified stream.

list_options([include_default, ...])

Write a list of output names and other optional information to a specified stream.

list_outputs([explicit, implicit, val, ...])

Write a list of output names and other optional information to a specified stream.

list_vars([val, prom_name, residuals, ...])

Write a list of inputs and outputs sorted by component in execution order.

load_case(case)

Pull all input and output variables from a Case into this System.

load_model_options()

Load the relevant model options from Problem._metadata['model_options'].

override_method(name, method)

Dynamically add a method to this component instance.

record_iteration()

Record an iteration of the current System.

run_apply_linear(mode[, scope_out, scope_in])

Compute jac-vec product.

run_apply_nonlinear()

Compute residuals.

run_linearize([sub_do_ln])

Compute jacobian / factorization.

run_solve_linear(mode)

Apply inverse jac product.

run_solve_nonlinear()

Compute outputs.

run_validation()

Run validate method on all systems below this system.

set_check_partial_options(wrt[, method, ...])

Set options that will be used for checking partial derivatives.

set_constraint_options(name[, ref, ref0, ...])

Set options for constraints in the model.

set_design_var_options(name[, lower, upper, ...])

Set options for design vars in the model.

set_objective_options(name[, ref, ref0, ...])

Set options for objectives in the model.

set_output_solver_options(name[, lower, ...])

Set solver output options.

set_solver_print([level, depth, type_, ...])

Control printing for solvers and subsolvers in the model.

set_val(name, val[, units, indices])

Set an input or output variable.

setup()

Declare inputs and outputs.

setup_partials()

Declare partials.

sparsity_matches_fd([direction, outstream])

Compare the sparsity computed by this system vs.

subjac_sparsity_iter(sparsity[, wrt_matches])

Iterate over sparsity for each subjac in the jacobian.

system_iter([include_self, recurse, typ, ...])

Yield a generator of local subsystems of this system.

total_local_size(io)

Return the total local size of the given variable.

use_fixed_coloring([coloring, recurse])

Use a precomputed coloring for this System.

uses_approx()

Return True if the system uses approximations to compute derivatives.

validate(inputs, outputs[, discrete_inputs, ...])

Check any final input / output values after a run.

compute(inputs, outputs)[source]

Compute outputs given inputs. The model is assumed to be in an unscaled state.

An inherited component may choose to either override this function or to define a compute_primal function.

Parameters:
inputsVector

Unscaled, dimensional input variables read via inputs[key].

outputsVector

Unscaled, dimensional output variables read via outputs[key].

discrete_inputsdict-like or None

If not None, dict-like object containing discrete input values.

discrete_outputsdict-like or None

If not None, dict-like object containing discrete output values.

compute_partials(inputs, partials)[source]

Compute sub-jacobian parts. The model is assumed to be in an unscaled state.

Parameters:
inputsVector

Unscaled, dimensional input variables read via inputs[key].

partialsJacobian

Sub-jac components written to partials[output_name, input_name]..

discrete_inputsdict or None

If not None, dict containing discrete input values.

initialize()[source]

Perform any one-time initialization run at instantiation.

setup()[source]

Declare inputs and outputs.

Available attributes:

name pathname comm options

class openmdao.test_suite.components.paraboloid_distributed.DistParabDeprecated(**kwargs)[source]

Bases: ExplicitComponent

Attributes:
checking

Return True if check_partials or check_totals is executing.

comm

Return the MPI communicator object for the system.

linear_solver

Get the linear solver for this system.

msginfo

Our instance pathname, if available, or our class name.

nonlinear_solver

Get the nonlinear solver for this system.

under_approx

Return True if under complex step or finite difference.

Methods

abs_meta_iter(iotype[, local, cont, discrete])

Iterate over absolute variable names and their metadata for this System.

add_constraint(name[, lower, upper, equals, ...])

Add a constraint variable to this system.

add_design_var(name[, lower, upper, ref, ...])

Add a design variable to this system.

add_discrete_input(name, val[, desc, tags, ...])

Add a discrete input variable to the component.

add_discrete_output(name, val[, desc, tags, ...])

Add an output variable to the component.

add_input(name[, val, shape, units, desc, ...])

Add an input variable to the component.

add_objective(name[, ref, ref0, index, ...])

Add a response variable to this system.

add_output(name[, val, shape, units, ...])

Add an output variable to the component.

add_recorder(recorder[, recurse])

Add a recorder to the system.

add_response(name, type_[, lower, upper, ...])

Add a response variable to this system.

best_partial_deriv_direction()

Return the best direction for partial deriv calculations based on input and output sizes.

check_config(logger)

Perform optional error checks.

check_partials([out_stream, compact_print, ...])

Check partial derivatives comprehensively for this component.

check_sparsity([method, max_nz, out_stream])

Check the sparsity of the computed jacobian against the declared sparsity.

cleanup()

Clean up resources prior to exit.

comm_info_iter()

Yield comm size for this system and all subsystems.

compute(inputs, outputs)

Compute outputs given inputs.

compute_fd_jac(jac[, method])

Force the use of finite difference to compute a jacobian.

compute_fd_sparsity([method, num_full_jacs, ...])

Use finite difference to compute a sparsity matrix.

compute_jacvec_product(inputs, d_inputs, ...)

Compute jac-vector product.

compute_partials(inputs, partials)

Compute sub-jacobian parts.

compute_sparsity([direction, num_iters, ...])

Compute the sparsity of the partial jacobian.

convert2units(name, val, units)

Convert the given value to the specified units.

convert_from_units(name, val, units)

Convert the given value from the specified units to those of the named variable.

convert_units(name, val, units_from, units_to)

Wrap the utility convert_units and give a good error message.

declare_coloring([wrt, method, form, step, ...])

Set options for deriv coloring of a set of wrt vars matching the given pattern(s).

declare_partials(of, wrt[, dependent, rows, ...])

Declare information about this component's subjacobians.

dist_size_iter(io, top_comm)

Yield names and distributed ranges of all local and remote variables in this system.

get_coloring_fname(mode)

Return the full pathname to a coloring file.

get_conn_graph()

Return the model connection graph.

get_constraints([recurse, get_sizes, ...])

Get the Constraint settings from this system.

get_declare_partials_calls([sparsity])

Return a string containing declare_partials() calls based on the subjac sparsity.

get_design_vars([recurse, get_sizes, ...])

Get the DesignVariable settings from this system.

get_io_metadata([iotypes, metadata_keys, ...])

Retrieve metadata for a filtered list of variables.

get_linear_vectors()

Return the linear inputs, outputs, and residuals vectors.

get_nonlinear_vectors()

Return the inputs, outputs, and residuals vectors.

get_objectives([recurse, get_sizes, ...])

Get the Objective settings from this system.

get_outputs_dir(*subdirs[, mkdir])

Get the path under which all output files of this system are to be placed.

get_promotions([inprom, outprom])

Return all promotions for the given promoted variable(s).

get_reports_dir()

Get the path to the directory where the report files should go.

get_responses([recurse, get_sizes, use_prom_ivc])

Get the response variable settings from this system.

get_self_statics()

Override this in derived classes if compute_primal references static values.

get_source(name)

Return the source variable connected to the given named variable.

get_val(name[, units, indices, get_remote, ...])

Get an output/input/residual variable.

get_var_dup_info(name, io)

Return information about how the given variable is duplicated across MPI processes.

get_var_sizes(name, io)

Return the sizes of the given variable on all procs.

has_vectors()

Check if the system vectors have been initialized.

initialize()

Perform any one-time initialization run at instantiation.

is_explicit([is_comp])

Return True if this is an explicit component.

list_inputs([val, prom_name, units, shape, ...])

Write a list of input names and other optional information to a specified stream.

list_options([include_default, ...])

Write a list of output names and other optional information to a specified stream.

list_outputs([explicit, implicit, val, ...])

Write a list of output names and other optional information to a specified stream.

list_vars([val, prom_name, residuals, ...])

Write a list of inputs and outputs sorted by component in execution order.

load_case(case)

Pull all input and output variables from a Case into this System.

load_model_options()

Load the relevant model options from Problem._metadata['model_options'].

override_method(name, method)

Dynamically add a method to this component instance.

record_iteration()

Record an iteration of the current System.

run_apply_linear(mode[, scope_out, scope_in])

Compute jac-vec product.

run_apply_nonlinear()

Compute residuals.

run_linearize([sub_do_ln])

Compute jacobian / factorization.

run_solve_linear(mode)

Apply inverse jac product.

run_solve_nonlinear()

Compute outputs.

run_validation()

Run validate method on all systems below this system.

set_check_partial_options(wrt[, method, ...])

Set options that will be used for checking partial derivatives.

set_constraint_options(name[, ref, ref0, ...])

Set options for constraints in the model.

set_design_var_options(name[, lower, upper, ...])

Set options for design vars in the model.

set_objective_options(name[, ref, ref0, ...])

Set options for objectives in the model.

set_output_solver_options(name[, lower, ...])

Set solver output options.

set_solver_print([level, depth, type_, ...])

Control printing for solvers and subsolvers in the model.

set_val(name, val[, units, indices])

Set an input or output variable.

setup()

Declare inputs and outputs.

setup_partials()

Declare partials.

sparsity_matches_fd([direction, outstream])

Compare the sparsity computed by this system vs.

subjac_sparsity_iter(sparsity[, wrt_matches])

Iterate over sparsity for each subjac in the jacobian.

system_iter([include_self, recurse, typ, ...])

Yield a generator of local subsystems of this system.

total_local_size(io)

Return the total local size of the given variable.

use_fixed_coloring([coloring, recurse])

Use a precomputed coloring for this System.

uses_approx()

Return True if the system uses approximations to compute derivatives.

validate(inputs, outputs[, discrete_inputs, ...])

Check any final input / output values after a run.

compute(inputs, outputs)[source]

Compute outputs given inputs. The model is assumed to be in an unscaled state.

An inherited component may choose to either override this function or to define a compute_primal function.

Parameters:
inputsVector

Unscaled, dimensional input variables read via inputs[key].

outputsVector

Unscaled, dimensional output variables read via outputs[key].

discrete_inputsdict-like or None

If not None, dict-like object containing discrete input values.

discrete_outputsdict-like or None

If not None, dict-like object containing discrete output values.

compute_partials(inputs, partials)[source]

Compute sub-jacobian parts. The model is assumed to be in an unscaled state.

Parameters:
inputsVector

Unscaled, dimensional input variables read via inputs[key].

partialsJacobian

Sub-jac components written to partials[output_name, input_name]..

discrete_inputsdict or None

If not None, dict containing discrete input values.

initialize()[source]

Perform any one-time initialization run at instantiation.

setup()[source]

Declare inputs and outputs.

Available attributes:

name pathname comm options

class openmdao.test_suite.components.paraboloid_distributed.DistParabFeature(**kwargs)[source]

Bases: ExplicitComponent

Attributes:
checking

Return True if check_partials or check_totals is executing.

comm

Return the MPI communicator object for the system.

linear_solver

Get the linear solver for this system.

msginfo

Our instance pathname, if available, or our class name.

nonlinear_solver

Get the nonlinear solver for this system.

under_approx

Return True if under complex step or finite difference.

Methods

abs_meta_iter(iotype[, local, cont, discrete])

Iterate over absolute variable names and their metadata for this System.

add_constraint(name[, lower, upper, equals, ...])

Add a constraint variable to this system.

add_design_var(name[, lower, upper, ref, ...])

Add a design variable to this system.

add_discrete_input(name, val[, desc, tags, ...])

Add a discrete input variable to the component.

add_discrete_output(name, val[, desc, tags, ...])

Add an output variable to the component.

add_input(name[, val, shape, units, desc, ...])

Add an input variable to the component.

add_objective(name[, ref, ref0, index, ...])

Add a response variable to this system.

add_output(name[, val, shape, units, ...])

Add an output variable to the component.

add_recorder(recorder[, recurse])

Add a recorder to the system.

add_response(name, type_[, lower, upper, ...])

Add a response variable to this system.

best_partial_deriv_direction()

Return the best direction for partial deriv calculations based on input and output sizes.

check_config(logger)

Perform optional error checks.

check_partials([out_stream, compact_print, ...])

Check partial derivatives comprehensively for this component.

check_sparsity([method, max_nz, out_stream])

Check the sparsity of the computed jacobian against the declared sparsity.

cleanup()

Clean up resources prior to exit.

comm_info_iter()

Yield comm size for this system and all subsystems.

compute(inputs, outputs)

Compute outputs given inputs.

compute_fd_jac(jac[, method])

Force the use of finite difference to compute a jacobian.

compute_fd_sparsity([method, num_full_jacs, ...])

Use finite difference to compute a sparsity matrix.

compute_jacvec_product(inputs, d_inputs, ...)

Compute jac-vector product.

compute_partials(inputs, partials[, ...])

Compute sub-jacobian parts.

compute_sparsity([direction, num_iters, ...])

Compute the sparsity of the partial jacobian.

convert2units(name, val, units)

Convert the given value to the specified units.

convert_from_units(name, val, units)

Convert the given value from the specified units to those of the named variable.

convert_units(name, val, units_from, units_to)

Wrap the utility convert_units and give a good error message.

declare_coloring([wrt, method, form, step, ...])

Set options for deriv coloring of a set of wrt vars matching the given pattern(s).

declare_partials(of, wrt[, dependent, rows, ...])

Declare information about this component's subjacobians.

dist_size_iter(io, top_comm)

Yield names and distributed ranges of all local and remote variables in this system.

get_coloring_fname(mode)

Return the full pathname to a coloring file.

get_conn_graph()

Return the model connection graph.

get_constraints([recurse, get_sizes, ...])

Get the Constraint settings from this system.

get_declare_partials_calls([sparsity])

Return a string containing declare_partials() calls based on the subjac sparsity.

get_design_vars([recurse, get_sizes, ...])

Get the DesignVariable settings from this system.

get_io_metadata([iotypes, metadata_keys, ...])

Retrieve metadata for a filtered list of variables.

get_linear_vectors()

Return the linear inputs, outputs, and residuals vectors.

get_nonlinear_vectors()

Return the inputs, outputs, and residuals vectors.

get_objectives([recurse, get_sizes, ...])

Get the Objective settings from this system.

get_outputs_dir(*subdirs[, mkdir])

Get the path under which all output files of this system are to be placed.

get_promotions([inprom, outprom])

Return all promotions for the given promoted variable(s).

get_reports_dir()

Get the path to the directory where the report files should go.

get_responses([recurse, get_sizes, use_prom_ivc])

Get the response variable settings from this system.

get_self_statics()

Override this in derived classes if compute_primal references static values.

get_source(name)

Return the source variable connected to the given named variable.

get_val(name[, units, indices, get_remote, ...])

Get an output/input/residual variable.

get_var_dup_info(name, io)

Return information about how the given variable is duplicated across MPI processes.

get_var_sizes(name, io)

Return the sizes of the given variable on all procs.

has_vectors()

Check if the system vectors have been initialized.

initialize()

Perform any one-time initialization run at instantiation.

is_explicit([is_comp])

Return True if this is an explicit component.

list_inputs([val, prom_name, units, shape, ...])

Write a list of input names and other optional information to a specified stream.

list_options([include_default, ...])

Write a list of output names and other optional information to a specified stream.

list_outputs([explicit, implicit, val, ...])

Write a list of output names and other optional information to a specified stream.

list_vars([val, prom_name, residuals, ...])

Write a list of inputs and outputs sorted by component in execution order.

load_case(case)

Pull all input and output variables from a Case into this System.

load_model_options()

Load the relevant model options from Problem._metadata['model_options'].

override_method(name, method)

Dynamically add a method to this component instance.

record_iteration()

Record an iteration of the current System.

run_apply_linear(mode[, scope_out, scope_in])

Compute jac-vec product.

run_apply_nonlinear()

Compute residuals.

run_linearize([sub_do_ln])

Compute jacobian / factorization.

run_solve_linear(mode)

Apply inverse jac product.

run_solve_nonlinear()

Compute outputs.

run_validation()

Run validate method on all systems below this system.

set_check_partial_options(wrt[, method, ...])

Set options that will be used for checking partial derivatives.

set_constraint_options(name[, ref, ref0, ...])

Set options for constraints in the model.

set_design_var_options(name[, lower, upper, ...])

Set options for design vars in the model.

set_objective_options(name[, ref, ref0, ...])

Set options for objectives in the model.

set_output_solver_options(name[, lower, ...])

Set solver output options.

set_solver_print([level, depth, type_, ...])

Control printing for solvers and subsolvers in the model.

set_val(name, val[, units, indices])

Set an input or output variable.

setup()

Declare inputs and outputs.

setup_partials()

Declare partials.

sparsity_matches_fd([direction, outstream])

Compare the sparsity computed by this system vs.

subjac_sparsity_iter(sparsity[, wrt_matches])

Iterate over sparsity for each subjac in the jacobian.

system_iter([include_self, recurse, typ, ...])

Yield a generator of local subsystems of this system.

total_local_size(io)

Return the total local size of the given variable.

use_fixed_coloring([coloring, recurse])

Use a precomputed coloring for this System.

uses_approx()

Return True if the system uses approximations to compute derivatives.

validate(inputs, outputs[, discrete_inputs, ...])

Check any final input / output values after a run.

compute(inputs, outputs)[source]

Compute outputs given inputs. The model is assumed to be in an unscaled state.

An inherited component may choose to either override this function or to define a compute_primal function.

Parameters:
inputsVector

Unscaled, dimensional input variables read via inputs[key].

outputsVector

Unscaled, dimensional output variables read via outputs[key].

discrete_inputsdict-like or None

If not None, dict-like object containing discrete input values.

discrete_outputsdict-like or None

If not None, dict-like object containing discrete output values.

initialize()[source]

Perform any one-time initialization run at instantiation.

setup()[source]

Declare inputs and outputs.

Available attributes:

name pathname comm options