matrix_vector_product_comp.py#
Definition of the Matrix Vector Product Component.
- class openmdao.components.matrix_vector_product_comp.MatrixVectorProductComp(**kwargs)[source]
Bases:
ExplicitComponentComputes a vectorized matrix-vector product.
- math::
b = np.dot(A, x)
- where A is of shape (vec_size, n, m)
x is of shape (vec_size, m) b is of shape (vec_size, m)
if vec_size > 1 and
- where A is of shape (n, m)
x is of shape (m,) b is of shape (m,)
otherwise.
The size of vectors x and b is determined by the number of rows in m at each point.
- Parameters:
- **kwargsdict of keyword arguments
Keyword arguments that will be mapped into the Component options.
- Attributes:
- _productslist
Cache the data provided during add_product so everything can be saved until setup is called.
Methods
abs_meta_iter(iotype[, local, cont, discrete])Iterate over absolute variable names and their metadata for this System.
add_constraint(name[, lower, upper, equals, ...])Add a constraint variable to this system.
add_design_var(name[, lower, upper, ref, ...])Add a design variable to this system.
add_discrete_input(name, val[, desc, tags, ...])Add a discrete input variable to the component.
add_discrete_output(name, val[, desc, tags, ...])Add an output variable to the component.
add_input(name[, val, shape, units, desc, ...])Add an input variable to the component.
add_objective(name[, ref, ref0, index, ...])Add a response variable to this system.
add_output(name[, val, shape, units, ...])Add an output variable to the component.
add_product(b_name[, A_name, x_name, ...])Add a new output product to the matrix vector product component.
add_recorder(recorder[, recurse])Add a recorder to the system.
add_response(name, type_[, lower, upper, ...])Add a response variable to this system.
best_partial_deriv_direction()Return the best direction for partial deriv calculations based on input and output sizes.
check_config(logger)Perform optional error checks.
check_partials([out_stream, compact_print, ...])Check partial derivatives comprehensively for this component.
check_sparsity([method, max_nz, out_stream])Check the sparsity of the computed jacobian against the declared sparsity.
cleanup()Clean up resources prior to exit.
comm_info_iter()Yield comm size for this system and all subsystems.
compute(inputs, outputs)Compute the matrix vector product of inputs A and x using np.einsum.
compute_fd_jac(jac[, method])Force the use of finite difference to compute a jacobian.
compute_fd_sparsity([method, num_full_jacs, ...])Use finite difference to compute a sparsity matrix.
compute_jacvec_product(inputs, d_inputs, ...)Compute jac-vector product.
compute_partials(inputs, partials)Compute the sparse partials for the matrix vector product w.r.t.
compute_sparsity([direction, num_iters, ...])Compute the sparsity of the partial jacobian.
convert2units(name, val, units)Convert the given value to the specified units.
convert_from_units(name, val, units)Convert the given value from the specified units to those of the named variable.
convert_units(name, val, units_from, units_to)Wrap the utility convert_units and give a good error message.
declare_coloring([wrt, method, form, step, ...])Set options for deriv coloring of a set of wrt vars matching the given pattern(s).
declare_partials(of, wrt[, dependent, rows, ...])Declare information about this component's subjacobians.
dist_size_iter(io, top_comm)Yield names and distributed ranges of all local and remote variables in this system.
get_coloring_fname(mode)Return the full pathname to a coloring file.
get_conn_graph()Return the model connection graph.
get_constraints([recurse, get_sizes, ...])Get the Constraint settings from this system.
get_declare_partials_calls([sparsity])Return a string containing declare_partials() calls based on the subjac sparsity.
get_design_vars([recurse, get_sizes, ...])Get the DesignVariable settings from this system.
get_io_metadata([iotypes, metadata_keys, ...])Retrieve metadata for a filtered list of variables.
get_linear_vectors()Return the linear inputs, outputs, and residuals vectors.
get_nonlinear_vectors()Return the inputs, outputs, and residuals vectors.
get_objectives([recurse, get_sizes, ...])Get the Objective settings from this system.
get_outputs_dir(*subdirs[, mkdir])Get the path under which all output files of this system are to be placed.
get_promotions([inprom, outprom])Return all promotions for the given promoted variable(s).
get_reports_dir()Get the path to the directory where the report files should go.
get_responses([recurse, get_sizes, use_prom_ivc])Get the response variable settings from this system.
get_self_statics()Override this in derived classes if compute_primal references static values.
get_source(name)Return the source variable connected to the given named variable.
get_val(name[, units, indices, get_remote, ...])Get an output/input/residual variable.
get_var_dup_info(name, io)Return information about how the given variable is duplicated across MPI processes.
get_var_sizes(name, io)Return the sizes of the given variable on all procs.
has_vectors()Check if the system vectors have been initialized.
initialize()Declare options.
is_explicit([is_comp])Return True if this is an explicit component.
list_inputs([val, prom_name, units, shape, ...])Write a list of input names and other optional information to a specified stream.
list_options([include_default, ...])Write a list of output names and other optional information to a specified stream.
list_outputs([explicit, implicit, val, ...])Write a list of output names and other optional information to a specified stream.
list_vars([val, prom_name, residuals, ...])Write a list of inputs and outputs sorted by component in execution order.
load_case(case)Pull all input and output variables from a Case into this System.
load_model_options()Load the relevant model options from Problem._metadata['model_options'].
override_method(name, method)Dynamically add a method to this component instance.
record_iteration()Record an iteration of the current System.
run_apply_linear(mode[, scope_out, scope_in])Compute jac-vec product.
run_apply_nonlinear()Compute residuals.
run_linearize([sub_do_ln])Compute jacobian / factorization.
run_solve_linear(mode)Apply inverse jac product.
run_solve_nonlinear()Compute outputs.
run_validation()Run validate method on all systems below this system.
set_check_partial_options(wrt[, method, ...])Set options that will be used for checking partial derivatives.
set_constraint_options(name[, ref, ref0, ...])Set options for constraints in the model.
set_design_var_options(name[, lower, upper, ...])Set options for design vars in the model.
set_objective_options(name[, ref, ref0, ...])Set options for objectives in the model.
set_output_solver_options(name[, lower, ...])Set solver output options.
set_solver_print([level, depth, type_, ...])Control printing for solvers and subsolvers in the model.
set_val(name, val[, units, indices])Set an input or output variable.
setup()Declare inputs and outputs.
setup_partials()Declare partials.
sparsity_matches_fd([direction, outstream])Compare the sparsity computed by this system vs.
subjac_sparsity_iter(sparsity[, wrt_matches])Iterate over sparsity for each subjac in the jacobian.
system_iter([include_self, recurse, typ, ...])Yield a generator of local subsystems of this system.
total_local_size(io)Return the total local size of the given variable.
use_fixed_coloring([coloring, recurse])Use a precomputed coloring for this System.
uses_approx()Return True if the system uses approximations to compute derivatives.
validate(inputs, outputs[, discrete_inputs, ...])Check any final input / output values after a run.
- __init__(**kwargs)[source]
Initialize the Matrix Vector Product component.
- add_product(b_name, A_name='A', x_name='x', A_units=None, x_units=None, b_units=None, vec_size=1, A_shape=(3, 3))[source]
Add a new output product to the matrix vector product component.
- Parameters:
- b_namestr
The name of the vector product output.
- A_namestr
The name of the matrix input.
- x_namestr
The name of the vector input.
- A_unitsstr or None
The units of the input matrix.
- x_unitsstr or None
The units of the input vector.
- b_unitsstr or None
The units of the output matrix.
- vec_sizeint
The number of points at which the matrix vector product should be computed simultaneously.
- A_shapetuple of (int, int)
The shape of the matrix at each point. The first element also specifies the size of the output at each point. The second element specifies the size of the input vector at each point. For example, if vec_size=10 and shape is (5, 3), then the input matrix will have a shape of (10, 5, 3), the input vector will have a shape of (10, 3), and the output vector will have shape of (10, 5).
- compute(inputs, outputs)[source]
Compute the matrix vector product of inputs A and x using np.einsum.
- Parameters:
- inputsVector
Unscaled, dimensional input variables read via inputs[key].
- outputsVector
Unscaled, dimensional output variables read via outputs[key].
- compute_partials(inputs, partials)[source]
Compute the sparse partials for the matrix vector product w.r.t. the inputs.
- Parameters:
- inputsVector
Unscaled, dimensional input variables read via inputs[key].
- partialsJacobian
Sub-jac components written to partials[output_name, input_name].
- initialize()[source]
Declare options.