implicit_func_comp.py#
Define the ImplicitFuncComp class.
- class openmdao.components.implicit_func_comp.ImplicitFuncComp(apply_nonlinear, solve_nonlinear=None, linearize=None, solve_linear=None, **kwargs)[source]
Bases:
ImplicitComponentAn implicit component that wraps a python function.
- Parameters:
- apply_nonlinearfunction
The function to be wrapped by this Component.
- solve_nonlinearfunction or None
Optional function to perform a nonlinear solve.
- linearizefunction or None
Optional function to compute partial derivatives.
- solve_linearfunction or None
Optional function to perform a linear solve.
- **kwargsnamed args
Args passed down to ImplicitComponent.
- Attributes:
- _apply_nonlinear_funccallable
The function wrapper used by this component.
- _apply_nonlinear_func_jaxcallable
Function decorated to ensure use of jax numpy.
- _solve_nonlinear_funcfunction or None
Optional function to do a nonlinear solve.
solve_nonlinearmethodCompute outputs given inputs.
- _solve_linear_funcfunction or None
Optional function to do a linear solve.
solve_linearmethodApply inverse jac product.
- _linearize_funcfunction or None
Optional function to compute partial derivatives.
linearizemethodCompute sub-jacobian parts and any applicable matrix factorizations.
- _linearize_infoobject
Some state information to compute in _linearize_func and pass to _solve_linear_func
- _tangentstuple
Tuple of parts of the tangent matrix cached for jax derivative computation.
- _tangent_directionstr
Direction of the last tangent computation.
- _jac2func_indsndarray
Translation array from jacobian indices to function array indices.
Methods
abs_meta_iter(iotype[, local, cont, discrete])Iterate over absolute variable names and their metadata for this System.
add_constraint(name[, lower, upper, equals, ...])Add a constraint variable to this system.
add_design_var(name[, lower, upper, ref, ...])Add a design variable to this system.
add_discrete_input(name, val[, desc, tags, ...])Add a discrete input variable to the component.
add_discrete_output(name, val[, desc, tags, ...])Add an output variable to the component.
add_input(name[, val, shape, units, desc, ...])Add an input variable to the component.
add_objective(name[, ref, ref0, index, ...])Add a response variable to this system.
add_output(name[, val])Add an output variable to the component.
add_recorder(recorder[, recurse])Add a recorder to the system.
add_residual(name[, shape, units, desc, ref])Add a residual variable to the component.
add_response(name, type_[, lower, upper, ...])Add a response variable to this system.
apply_linear(inputs, outputs, d_inputs, ...)Compute jac-vector product.
apply_nonlinear(inputs, outputs, residuals)R = Ax - b.
best_partial_deriv_direction()Return the best direction for partial deriv calculations based on input and output sizes.
check_config(logger)Perform optional error checks.
check_partials([out_stream, compact_print, ...])Check partial derivatives comprehensively for this component.
check_sparsity([method, max_nz, out_stream])Check the sparsity of the computed jacobian against the declared sparsity.
cleanup()Clean up resources prior to exit.
comm_info_iter()Yield comm size for this system and all subsystems.
compute_fd_jac(jac[, method])Force the use of finite difference to compute a jacobian.
compute_fd_sparsity([method, num_full_jacs, ...])Use finite difference to compute a sparsity matrix.
compute_sparsity([direction, num_iters, ...])Compute the sparsity of the partial jacobian.
convert2units(name, val, units)Convert the given value to the specified units.
convert_from_units(name, val, units)Convert the given value from the specified units to those of the named variable.
convert_units(name, val, units_from, units_to)Wrap the utility convert_units and give a good error message.
declare_coloring([wrt, method, form, step, ...])Set options for deriv coloring of a set of wrt vars matching the given pattern(s).
declare_partials(*args, **kwargs)Declare information about this component's subjacobians.
dist_size_iter(io, top_comm)Yield names and distributed ranges of all local and remote variables in this system.
get_coloring_fname(mode)Return the full pathname to a coloring file.
get_conn_graph()Return the model connection graph.
get_constraints([recurse, get_sizes, ...])Get the Constraint settings from this system.
get_declare_partials_calls([sparsity])Return a string containing declare_partials() calls based on the subjac sparsity.
get_design_vars([recurse, get_sizes, ...])Get the DesignVariable settings from this system.
get_io_metadata([iotypes, metadata_keys, ...])Retrieve metadata for a filtered list of variables.
get_linear_vectors()Return the linear inputs, outputs, and residuals vectors.
get_nonlinear_vectors()Return the inputs, outputs, and residuals vectors.
get_objectives([recurse, get_sizes, ...])Get the Objective settings from this system.
get_outputs_dir(*subdirs[, mkdir])Get the path under which all output files of this system are to be placed.
get_promotions([inprom, outprom])Return all promotions for the given promoted variable(s).
get_reports_dir()Get the path to the directory where the report files should go.
get_responses([recurse, get_sizes, use_prom_ivc])Get the response variable settings from this system.
get_self_statics()Override this in derived classes if compute_primal references static values.
get_source(name)Return the source variable connected to the given named variable.
get_val(name[, units, indices, get_remote, ...])Get an output/input/residual variable.
get_var_dup_info(name, io)Return information about how the given variable is duplicated across MPI processes.
get_var_sizes(name, io)Return the sizes of the given variable on all procs.
guess_nonlinear(inputs, outputs, residuals)Provide initial guess for states.
has_vectors()Check if the system vectors have been initialized.
initialize()Perform any one-time initialization run at instantiation.
is_explicit([is_comp])Return True if this is an explicit component.
linearize(inputs, outputs, jacobian[, ...])Compute sub-jacobian parts and any applicable matrix factorizations.
list_inputs([val, prom_name, units, shape, ...])Write a list of input names and other optional information to a specified stream.
list_options([include_default, ...])Write a list of output names and other optional information to a specified stream.
list_outputs([explicit, implicit, val, ...])Write a list of output names and other optional information to a specified stream.
list_vars([val, prom_name, residuals, ...])Write a list of inputs and outputs sorted by component in execution order.
load_case(case)Pull all input and output variables from a Case into this System.
load_model_options()Load the relevant model options from Problem._metadata['model_options'].
override_method(name, method)Dynamically add a method to this component instance.
record_iteration()Record an iteration of the current System.
run_apply_linear(mode[, scope_out, scope_in])Compute jac-vec product.
run_apply_nonlinear()Compute residuals.
run_linearize([sub_do_ln])Compute jacobian / factorization.
run_solve_linear(mode)Apply inverse jac product.
run_solve_nonlinear()Compute outputs.
run_validation()Run validate method on all systems below this system.
set_check_partial_options(wrt[, method, ...])Set options that will be used for checking partial derivatives.
set_constraint_options(name[, ref, ref0, ...])Set options for constraints in the model.
set_design_var_options(name[, lower, upper, ...])Set options for design vars in the model.
set_objective_options(name[, ref, ref0, ...])Set options for objectives in the model.
set_output_solver_options(name[, lower, ...])Set solver output options.
set_solver_print([level, depth, type_, ...])Control printing for solvers and subsolvers in the model.
set_val(name, val[, units, indices])Set an input or output variable.
setup()Define our inputs and outputs.
setup_partials()Declare partials.
setup_residuals()User hook for adding named residuals to this component.
solve_linear(d_outputs, d_residuals, mode)Apply inverse jac product.
solve_nonlinear(inputs, outputs)Compute outputs given inputs.
sparsity_matches_fd([direction, outstream])Compare the sparsity computed by this system vs.
subjac_sparsity_iter(sparsity[, wrt_matches])Iterate over sparsity for each subjac in the jacobian.
system_iter([include_self, recurse, typ, ...])Yield a generator of local subsystems of this system.
total_local_size(io)Return the total local size of the given variable.
use_fixed_coloring([coloring, recurse])Use a precomputed coloring for this System.
uses_approx()Return True if the system uses approximations to compute derivatives.
validate(inputs, outputs[, discrete_inputs, ...])Check any final input / output values after a run.
- __init__(apply_nonlinear, solve_nonlinear=None, linearize=None, solve_linear=None, **kwargs)[source]
Initialize attributes.
- apply_nonlinear(inputs, outputs, residuals, discrete_inputs=None, discrete_outputs=None)[source]
R = Ax - b.
- Parameters:
- inputsVector
Unscaled, dimensional input variables read via inputs[key].
- outputsVector
Unscaled, dimensional output variables read via outputs[key].
- residualsVector
Unscaled, dimensional residuals written to via residuals[key].
- discrete_inputs_DictValues or None
Dict-like object containing discrete inputs.
- discrete_outputs_DictValues or None
Dict-like object containing discrete outputs.
- declare_partials(*args, **kwargs)[source]
Declare information about this component’s subjacobians.
- Parameters:
- *argslist
Positional args to be passed to base class version of declare_partials.
- **kwargsdict
Keyword args to be passed to base class version of declare_partials.
- Returns:
- dict
Metadata dict for the specified partial(s).
- setup()[source]
Define our inputs and outputs.