Source code for openmdao.visualization.opt_report.opt_report

"""
Generate report on the results of the optimization.
"""
import base64
import datetime
from functools import partial
import io
import os
import pathlib
import sys
import time

import numpy as np

from openmdao.utils.reports_system import register_report

try:
    import matplotlib as mpl
    from matplotlib import pyplot as plt
    from matplotlib import patches
except ImportError:
    mpl = None


from openmdao.core.constants import INF_BOUND
from openmdao.utils.mpi import MPI
from openmdao.utils.om_warnings import issue_warning, DriverWarning
from openmdao.visualization.tables.table_builder import generate_table


# Report file constants
_default_optimizer_report_filename = 'opt_report.html'
_optimizer_report_template = 'opt_report_template.html'

MAX_VARNAME_LENGTH = 48

# value tolerances
_bounds_tolerance = 1.0E-4
_near_bounds_tolerance = 1.0E-4
_equality_constraint_tolerance = 1e-4

# Colors
#     from https://jfly.uni-koeln.de/color/ some colorblind friendly colors
_out_of_bounds_test_color = 'rgb(213, 94, 0)'
_out_of_bounds_plot_color = (0.83529, 0.36862, 0.)
_out_of_bounds_plot_alpha = 0.2

_out_of_bounds_plot_hatch_pattern = 'xxxxx'
_out_of_bounds_constraint_visual_hatch_pattern = 'xxxxxxxxx'

_out_of_bounds_hatch_color = (0., 0., 0.)
_out_of_bounds_hatch_width = 0.3

_in_bounds_plot_color = (0., 0.61960, 0.45098)
_in_bounds_plot_alpha = 0.2
_in_bounds_constraint_visual_alpha = 0.2

_value_plot_color = 'black'
_plot_marker_size = 0.1
_plot_value_linewidth = 0.5
_equality_constraint_dot_size = 3

# overall image parameters and layout
_sparkline_figsize = (3, 0.8)
_scalar_visual_figsize = (2.0, .2)
_plot_dpi = 150
_plot_pad_inches = 0
_plot_padding_fraction = 0.2

# Font sizes
_sparkline_font_size = 7
_scalar_visual_font_size = 4

# variable value formatting
_variable_label_format = '5.3g'

# https://jfly.uni-koeln.de/color/
# scalar visual parameters
_plot_x_max = 1.0
_plot_y_max = 1.0
_plot_y_margin = 0.2
_lower_plot = _plot_x_max / 3.
_upper_plot = 2 * _plot_x_max / 3.
_pointer_half_width = 0.04
_pointer_height = 0.4
_text_height = 0.3
_pointer_line_width = 0.05
_near_bound_highlight_half_width = 0.05
_near_bound_highlight_half_width_y_min = 0.0
_near_bound_highlight_half_width_y_max = _plot_y_max
_near_bound_highlight_alpha = 0.7
_equality_bound_width = 0.01
# For the ellipsis that are displayed when scalar is way outside of bounds
_ellipsis_x_offset = 0.2
_ellipse_width = 0.01
_ellipse_height = 0.15


def _optimizer_report_register():
    register_report('optimizer', opt_report, 'Summary of optimization',
                    'Problem', 'run_driver', 'post')


[docs]def opt_report(prob, outfile=None): """ Write a summary of the optimization to the given file. Parameters ---------- prob : Problem The Problem for which the optimization report is being generated. outfile : str or None The path to the HTML file to be written. If None (default), write to the default report output path. """ driver = prob.driver if not driver.supports['optimization']: driver_class = type(driver).__name__ issue_warning(f"The optimizer report is not applicable for Driver type '{driver_class}', " "which does not support optimization", category=DriverWarning) return # only create report on rank 0 create = MPI is None or MPI.COMM_WORLD.rank == 0 if not outfile: outfile = _default_optimizer_report_filename driver_scaling = True get_prom_name = prob.model._get_prom_name # Collect the entire array of array valued desvars and constraints (ignore indices) objs_vals = {} desvars_vals = {} cons_vals = {} objs_meta = {} desvars_meta = {} cons_meta = {} with prob.model._scaled_context_all(): for abs_name, meta in driver._objs.items(): prom_name = get_prom_name(abs_name) objs_meta[prom_name] = meta objs_vals[prom_name] = \ driver.get_objective_values(driver_scaling=driver_scaling)[abs_name] for abs_name, meta in driver._designvars.items(): prom_name = get_prom_name(abs_name) desvars_meta[prom_name] = meta desvars_vals[prom_name] = \ driver.get_design_var_values(driver_scaling=driver_scaling)[abs_name] for abs_name, meta in prob.driver._cons.items(): if meta.get('alias') is not None: prom_name = abs_name else: prom_name = get_prom_name(abs_name) cons_meta[prom_name] = meta cons_vals[prom_name] = \ driver.get_constraint_values(driver_scaling=driver_scaling)[abs_name] header_html = _make_header_table(prob) objs_html = _make_obj_table(objs_meta=objs_meta, objs_vals=objs_vals, cols=['val', 'ref', 'ref0', 'adder', 'scaler', 'units']) desvars_html = _make_dvcons_table(meta_dict=desvars_meta, vals_dict=desvars_vals, kind='desvar', cols=['min', 'max', 'mean', 'lower', 'upper', 'equals', 'ref', 'ref0', 'units', 'visual']) cons_html = _make_dvcons_table(meta_dict=cons_meta, vals_dict=cons_vals, kind='constraint', cols=['min', 'max', 'mean', 'lower', 'upper', 'equals', 'ref', 'ref0', 'units', 'visual']) driver_info_html = _make_opt_value_table(driver) if create: this_dir = os.path.dirname(os.path.abspath(__file__)) with open(os.path.join(this_dir, _optimizer_report_template), 'r', encoding='utf-8') as f: template = f.read() outfilepath = pathlib.Path(prob.get_reports_dir(force=True)).joinpath(outfile) with open(outfilepath, 'w') as f: s = template.format(title=prob._name, header=header_html, objs=objs_html, desvars=desvars_html, cons=cons_html, driver=driver_info_html, driver_class=type(driver).__name__) f.write(s)
def _make_header_table(prob): """ Make the HTML table at the top of the report with basic info about the optimization run. Parameters ---------- prob : OpenMDAO Problem object The report will be run on this Problem. Returns ------- str HTML table that displays basic optimization run info. """ t = datetime.datetime.now() time_stamp = t.strftime("%Y-%m-%d %H:%M:%S %Z") runtime = prob.driver.result.runtime runtime_ms = (runtime * 1000.0) % 1000.0 runtime_formatted = \ f"{time.strftime('%H hours %M minutes %S seconds', time.gmtime(runtime))} " \ f"{runtime_ms:.1f} milliseconds" rows = list() rows.append(['Problem:', prob._name]) rows.append(['Script:', sys.argv[0]]) rows.append(['Optimizer:', prob.driver._get_name()]) rows.append(['Number of driver iterations:', prob.driver.result.iter_count]) rows.append(['Number of model evals:', prob.driver.result.model_evals]) rows.append(['Number of deriv evals:', prob.driver.result.deriv_evals]) rows.append(['Execution start time:', time_stamp]) rows.append(['Wall clock run time:', runtime_formatted]) rows.append(['Exit status:', prob.driver.result.exit_status]) return generate_table(rows, tablefmt='html') def _make_opt_value_table(driver): """ Make the HTML table that summarizes the optimizer settings. Parameters ---------- driver : OpenMDAO Driver object The table will include info on the settings for this driver. Returns ------- str HTML table that displays driver settings info. """ opt_settings = [] for key, meta in driver.options.items(): meta = driver.options._dict[key] opt_settings.append((key, meta['val'], meta['desc'])) opt_settings_table = generate_table(opt_settings, headers=['Setting', 'Val', 'Description'], tablefmt='html') html = '' if opt_settings_table is not None: html += f'\n{opt_settings_table}' return html def _make_obj_table(objs_meta, objs_vals, cols=['size', 'index', 'val', 'ref', 'ref0', 'adder', 'scaler', 'units']): """ Make a table of info about the objective. Parameters ---------- objs_meta : dict Dictionary of metadata about the objectives. objs_vals : dict Dictionary of values for the objectives. cols : list List of columns to be displayed in the table. Returns ------- str An HTML image tag containing the table holding the info about the variable. """ _col_names = cols if cols is not None else [] col_names = ['name'] + _col_names # Get the values for all the elements in the tables rows = [] for prom_name, meta in objs_meta.items(): row = {} if meta['ref0'] is None and meta['ref'] is None and meta['scaler'] is None and \ meta['adder'] is None: meta['ref'] = 1.0 meta['ref0'] = 0.0 for col_name in col_names: if col_name == 'name': row[col_name] = prom_name if len(row[col_name]) > MAX_VARNAME_LENGTH: split_name = row[col_name].split('.') row[col_name] = '.'.join(split_name[:2]) + '...' + split_name[-1] elif col_name == 'val': row[col_name] = objs_vals[prom_name] elif col_name == 'units': if meta['units'] is not None: row[col_name] = meta[col_name] else: row[col_name] = objs_meta[prom_name][col_name] else: row[col_name] = meta[col_name] rows.append(row) return generate_table(rows, headers='keys', tablefmt='html') def _make_dvcons_table(meta_dict, vals_dict, kind, cols=['lower', 'upper', 'ref', 'ref0', 'adder', 'scaler', 'units', 'min', 'max', 'visual']): """ Make a table of info about either design variables or constraints. Parameters ---------- meta_dict : dict Dictionary of metadata about the variables. vals_dict : dict Dictionary of values for the variables. kind : str, must be 'desvar' or 'constraint' Indicates whether table is for 'desvar' or 'constraint'. cols : list List of columns to be displayed in the table. Returns ------- str An HTML image tag containing the table holding the info about the variable. """ _col_names = cols if cols is not None else [] col_names = ['name', 'alias', 'size'] + _col_names # Get the values for all the elements in the tables rows = [] for name, meta in meta_dict.items(): row = {} if meta['ref0'] is None and meta['ref'] is None and meta['scaler'] is None and \ meta['adder'] is None: meta['ref'] = 1.0 meta['ref0'] = 0.0 alias = meta.get('alias', '') # the scipy optimizer, when using COBYLA, creates constraints under the hood. # But the values are not given by the driver, so use this as a sign that this # variable should be skipped if name not in vals_dict: continue for col_name in col_names: if col_name == 'name': row[col_name] = name if len(row[col_name]) > MAX_VARNAME_LENGTH: split_name = row[col_name].split('.') row[col_name] = '.'.join(split_name[:2]) + '...' + split_name[-1] elif col_name == 'alias': row[col_name] = alias elif col_name == 'mean': mean_val = np.mean(vals_dict[name]) row[col_name] = _indicate_value_is_derived_from_array(mean_val, vals_dict[name]) elif col_name == 'min': if isinstance(vals_dict[name], np.ndarray): min_val = min(vals_dict[name]) # get min. Could be an array min_val_as_str = _indicate_value_is_derived_from_array(min_val, vals_dict[name]) else: min_val_as_str = str(vals_dict[name]) comp = (vals_dict[name] - meta['lower']) < _bounds_tolerance if np.any(comp): row[col_name] = \ f'<span style="color:{_out_of_bounds_test_color}">({min_val_as_str})</span>' else: row[col_name] = min_val_as_str elif col_name == 'max': if isinstance(vals_dict[name], np.ndarray): max_val = max(vals_dict[name]) # get max. Could be an array max_val_as_str = _indicate_value_is_derived_from_array(max_val, vals_dict[name]) else: max_val_as_str = str(vals_dict[name]) comp = (meta['upper'] - vals_dict[name]) < _bounds_tolerance if np.any(comp): row[col_name] = \ f'<span style="color:{_out_of_bounds_test_color}">({max_val_as_str})</span>' else: row[col_name] = max_val_as_str elif col_name == 'lower': if np.all(meta[col_name] == -INF_BOUND): row[col_name] = None else: lower_val = np.mean(meta[col_name]) row[col_name] = _indicate_value_is_derived_from_array(lower_val, meta[col_name]) elif col_name == 'upper': if np.all(meta[col_name] == INF_BOUND): row[col_name] = None else: upper_val = np.mean(meta[col_name]) row[col_name] = _indicate_value_is_derived_from_array(upper_val, meta[col_name]) elif col_name == 'equals': if 'equals' not in meta or meta['equals'] is None: row[col_name] = '' else: equals_val = np.mean(meta[col_name]) row[col_name] = _indicate_value_is_derived_from_array(equals_val, meta[col_name]) elif col_name == 'units': if meta['units'] is not None: row[col_name] = meta[col_name] else: if alias: row[col_name] = meta_dict[alias][col_name] else: row[col_name] = meta_dict[name][col_name] elif col_name == 'visual': if mpl: val = vals_dict[name] if np.isscalar(val) or val.shape == (1,): row['visual'] = _constraint_plot(meta=meta, val=vals_dict[name], kind=kind) else: row['visual'] = _sparkline(meta=meta, val=vals_dict[name], kind=kind) else: row['visual'] = \ '<span class="plot-unavailable">Visuals require matplotlib</span>' elif col_name == 'size': row[col_name] = int(meta[col_name]) # sometimes size in the meta data is a numpy # array so generate_table does different formatting for that elif col_name in ['ref', 'ref0']: if meta[col_name] is not None: derived_val = np.mean(meta[col_name]) row[col_name] = _indicate_value_is_derived_from_array(derived_val, meta[col_name]) else: row[col_name] = 'None' else: row[col_name] = meta[col_name] rows.append(row) return generate_table(rows, headers='keys', tablefmt='html', safe=False, precision='.4e') def _sparkline(kind, meta, val, width=300): """ Given the metadata & value of design variable or constraint, make an html-embeddable sparkline. Parameters ---------- kind : str One of 'desvar' or 'constraint' to specify which type of sparkline is being made. This has a slight impact on how the bounds are plotted. meta : dict-like The metadata associated with the design variable or constraint. val : np.array The value of the design variable or constraint. width : int The width of the figure in the returned HTML tag. Returns ------- str An HTML image tag containing the encoded sparkline image. """ # Prepare the matplotlib figure/axes _backend = mpl.get_backend() # Save it so we can set it back at the end mpl.use('Agg') fig, ax = plt.subplots(nrows=1, ncols=1, figsize=_sparkline_figsize, tight_layout=False, dpi=_plot_dpi) # settings across all plots ax.yaxis.set_major_formatter(mpl.ticker.FormatStrFormatter(f"%{_variable_label_format}")) ax.tick_params(axis='x', labelsize=_sparkline_font_size) ax.tick_params(axis='y', labelsize=_sparkline_font_size) try: if kind == 'desvar': _desvar_or_ineq_constraint_sparkline(ax, meta, val) elif 'equals' not in meta or meta['equals'] is None: _desvar_or_ineq_constraint_sparkline(ax, meta, val) else: _eq_constraint_sparkline(ax, meta, val) except (ValueError, IndexError): plt.close() mpl.use(_backend) # set it back return '<span class="plot-unavailable">Plot unavailable</span>' tmpfile = io.BytesIO() fig.patch.set_alpha(0.0) # So that the figures are transparent fig.savefig(tmpfile, format='png', bbox_inches='tight', pad_inches=_plot_pad_inches) encoded = base64.b64encode(tmpfile.getvalue()).decode('utf-8') html = f'<img width={width} src=\'data:image/png;base64,{encoded}\'>' plt.close() mpl.use(_backend) # set it back return html def _desvar_or_ineq_constraint_sparkline(ax, meta, val): """ Use matplotlib to plot a visual showing the values of the desvar or constraint and any bounds. Parameters ---------- ax : Matplotlib Axes instance Contains most of the figure elements. meta : dict The metadata associated with the design variable. val : np.array The value of the design variable. """ indices = np.s_[...] if meta['indices'] is None else meta['indices']() _val = np.asarray(val).ravel() # get array for the lower and upper bounds if isinstance(meta['lower'], float): _lower = (meta['lower'] * np.ones_like(val)[indices]).ravel() else: _lower = np.asarray(meta['lower']).ravel() if isinstance(meta['upper'], float): _upper = (meta['upper'] * np.ones_like(val)[indices]).ravel() else: _upper = np.asarray(meta['upper']).ravel() # Get the x values and their range ar = np.arange(_val.size) x_min = 0 x_max = val.size - 1 _lower, _lower_no_inf_min, _lower_no_inf_max = _get_bound_array_min_max(_lower, indices) _upper, _upper_no_inf_min, _upper_no_inf_max = _get_bound_array_min_max(_upper, indices) # get y min and max y_min = min(_lower_no_inf_min, _upper_no_inf_min, np.min(_val)) y_max = max(_lower_no_inf_max, _upper_no_inf_max, np.max(_val)) # add a little to the top and bottom of the plot yrange = y_max - y_min ymin_plot = y_min - yrange * _plot_padding_fraction ymax_plot = y_max + yrange * _plot_padding_fraction xrange = x_max - x_min xmin_plot = x_min - xrange * _plot_padding_fraction xmax_plot = x_max + xrange * _plot_padding_fraction # set plot limits ax.set_xlim([xmin_plot, xmax_plot]) ax.set_ylim([ymin_plot, ymax_plot]) # set ticks ax.set_xticks([x_min, x_max]) ax.set_yticks([y_min, y_max]) # plot actual values ax.plot(ar, _val, '-o', markersize=_plot_marker_size, color=_value_plot_color, linewidth=_plot_value_linewidth) # Need to do this because of a bug in matplotlib. If the upper or lowers include INF_BOUND # it affects how the other side of the fill_between is drawn _lower = np.clip(_lower, ymin_plot, ymax_plot) _upper = np.clip(_upper, ymin_plot, ymax_plot) # plot lower area, if exists if not (isinstance(meta['lower'], float) and meta['lower'] == -INF_BOUND): ax.fill_between(ar, ymin_plot, _lower, color=_out_of_bounds_plot_color, hatch=_out_of_bounds_plot_hatch_pattern, alpha=_out_of_bounds_plot_alpha) ax.plot(ar, _lower, color=_out_of_bounds_plot_color, linewidth=_plot_value_linewidth) # plot upper area, if exists if not (isinstance(meta['upper'], float) and meta['upper'] == INF_BOUND): ax.fill_between(ar, _upper, ymax_plot, color=_out_of_bounds_plot_color, hatch=_out_of_bounds_plot_hatch_pattern, alpha=_out_of_bounds_plot_alpha) ax.plot(ar, _upper, color=_out_of_bounds_plot_color, linewidth=_plot_value_linewidth) # Plot area where bounds are satisfied ax.fill_between(ar, _lower, _upper, color=_in_bounds_plot_color, alpha=_in_bounds_plot_alpha) def _eq_constraint_sparkline(ax, meta, val): """ Plot to matplotlib a visual showing the values of the equality constraint and also the value. Parameters ---------- ax : Matplotlib Axes instance Contains most of the figure elements. meta : dict The metadata associated with the variables, including info about the constraint. val : np.array The value of the variable. """ indices = np.s_[...] if meta['indices'] is None else meta['indices'] # get value array flattened _val = np.asarray(val).ravel() # get equal constraint array if 'equals' not in meta: raise ValueError("Equality constraint sparkline cannot be " "drawn without equality constraint value") elif isinstance(meta['equals'], float): _equals = (meta['equals'] * np.ones_like(val)[indices]).ravel() else: _equals = np.asarray(meta['equals']).ravel() # get x coordinate array and info ar = np.arange(val.size) x_min = 0 x_max = val.size - 1 xrange = x_max - x_min xmin_plot = x_min - xrange * _plot_padding_fraction xmax_plot = x_max + xrange * _plot_padding_fraction ax.set_xlim([xmin_plot, xmax_plot]) ax.set_xticks([x_min, x_max]) # Get y coordinate plotting info y_min = min(np.min(_val), np.min(_equals)) y_max = max(np.max(_val), np.max(_equals)) yrange = y_max - y_min ymin_plot = y_min - yrange * _plot_padding_fraction ymax_plot = y_max + yrange * _plot_padding_fraction ax.set_ylim([ymin_plot, ymax_plot]) ax.set_yticks([y_min, y_max]) # plot the constraint as a line ax.plot(ar, _equals, color=_value_plot_color, linewidth=_plot_value_linewidth) # plot the actual values as dots colored by whether they satisfy the constraint err = _val - _equals colors = [] for e in err: if np.abs(e) < _equality_constraint_tolerance: colors.append(_in_bounds_plot_color) else: colors.append(_out_of_bounds_plot_color) ax.scatter(ar, _val, color=colors, s=_equality_constraint_dot_size) def _constraint_plot(kind, meta, val, width=300): """ Given the metadata and value of a design variable or constraint, make an html-embeddable plot. Only for scalars Parameters ---------- kind : str One of 'desvar' or 'constraint' to specify which type of sparkline is being made. This has a slight impact on how the bounds are plotted. meta : dict-like The metadata associated with the design variable or constraint. val : np.array The value of the design variable or constraint. width : int The width of the figure in the returned HTML tag. Returns ------- str An HTML image tag containing the encoded sparkline image. """ if not (np.isscalar(val) or val.shape == (1,)): raise ValueError("Value for the _constraint_plot function must be a " f"scalar. Variable {meta['name']} is not a scalar") else: try: val = val.item() except AttributeError: pass # handle other than ndarray, e.g. int # If lower and upper bounds are None, return an HTML snippet indicating the issue if kind == 'constraint' and meta['upper'] == INF_BOUND and meta['lower'] == -INF_BOUND: return '<span class="bounds-unavailable">Both lower and upper bounds are None.</span>' if kind == 'desvar' and meta['upper'] == INF_BOUND and meta['lower'] == -INF_BOUND: return # nothing to plot # Equality constraints are visualized differently equals = meta['equals'] if 'equals' in meta else None if equals is not None: if abs(val - equals) < _equality_constraint_tolerance: html = '<span class="equality-constraint equality-constraint-satisfied">&#10003;</span>' else: html = '<span class="equality-constraint equality-constraint-violated">&#10007;</span>' return html # If lower and upper are the same value, visualize the same as an equality constraint if ( 'lower' in meta and meta['lower'] != -INF_BOUND and 'upper' in meta and meta['upper'] != INF_BOUND and meta['lower'] == meta['upper'] ): if abs(val - meta['lower']) < _equality_constraint_tolerance: html = '<span class="equality-constraint equality-constraint-satisfied">&#10003;</span>' else: html = '<span class="equality-constraint equality-constraint-violated">&#10007;</span>' return html _backend = mpl.get_backend() mpl.use('Agg') fig, ax = plt.subplots(nrows=1, ncols=1, figsize=_scalar_visual_figsize, dpi=_plot_dpi) var_bounds_plot(kind, ax, float(val), meta['lower'], meta['upper']) tmpfile = io.BytesIO() fig.savefig(tmpfile, format='png', transparent=True, bbox_inches='tight', pad_inches=_plot_pad_inches) encoded = base64.b64encode(tmpfile.getvalue()).decode('utf-8') html = f'<img width={width} src=\'data:image/png;base64,{encoded}\'>' plt.close() mpl.use(_backend) return html def _indicate_value_is_derived_from_array(derived_value, original_value): """ Given a value or bound, & its derived value for use in report, format the output for the tables. Parameters ---------- derived_value : float The value of the variable to be shown in the table. original_value : float or np.ndarray The original value of the variable. Need this to know if it was a scalar. Returns ------- str A formatted string to be used to display the value of this variable in the tables. """ displayed_string = f'{derived_value:{_variable_label_format}}'.strip() if isinstance(original_value, np.ndarray) and original_value.size > 1: out = '|{}|'.format(displayed_string) else: out = displayed_string return out def _get_bound_array_min_max(bounds, indices): """ Given a bounds (either lower or upper) & indices, return the full array bounds, min,& max. Parameters ---------- bounds : float An array representing either lower or upper bounds of a desvar or constraint. indices : sequence of int If variable is an array, these indicate which entries are of interest for this particular response. Returns ------- _bounds An array representing the bounds. _bounds_min The minimum of the bounds, excluding any entries in the _bounds array that equal -INF_BOUND or INF_BOUND. If all the values are those, return INF_BOUND so that when mins are taken that include this value, it doesn't affect the result _bounds_max The maximum of the bounds, excluding any entries in the _bounds array that equal -INF_BOUND or INF_BOUND. If all the values are those, return -INF_BOUND so that when maxes are taken that include this value, it doesn't affect the result """ _bounds_no_inf = bounds[np.where(((bounds != -INF_BOUND) & (bounds != INF_BOUND)))] if _bounds_no_inf.size > 0: _bounds_min = np.min(_bounds_no_inf) _bounds_max = np.max(_bounds_no_inf) else: # so that when we do min and max on these they are not involved in getting the min/max _bounds_min = INF_BOUND _bounds_max = - INF_BOUND if isinstance(bounds, float): _bounds = (bounds * np.ones_like(bounds)[indices]).ravel() else: _bounds = np.asarray(bounds).ravel() return _bounds, _bounds_min, _bounds_max def var_bounds_plot(kind, ax, value, lower, upper): """ Make a plot to show where a variable is relative to constraints. Parameters ---------- kind : str One of 'desvar' or 'constraint' to specify which type of plot is being made. ax : Matplotlib Axes instance Contains most of the figure elements. value : float The design var value. lower : float or None Lower constraint. upper : float or None Upper constraint. """ # must handle 5 cases if both upper and lower are given: # - value much less than lower # - value a little less than lower # - value between lower and upper # - value a little greater than upper # - value much greater than upper # also need to handle one-sided constraints where only one of lower and upper is given # Basic plot setup plt.rcParams['hatch.linewidth'] = _out_of_bounds_hatch_width # can't seem to do this any other # way. Cannot control hatch # pattern in Rectangle with # set_linewidth plt.rcParams['hatch.color'] = _out_of_bounds_plot_color ax.set_axis_off() ax.set_xlim([-_pointer_half_width, _plot_x_max + _pointer_half_width]) ax.set_ylim(-_pointer_height - _text_height - _plot_y_margin, _plot_y_max + _text_height + _plot_y_margin) func_val_to_plot_coord = partial(_val_to_plot_coord, lower=lower, upper=upper) value_in_plot_coord = func_val_to_plot_coord(value) if upper == INF_BOUND: # there is a lower bound _draw_in_or_out_bound_section(ax, 0, _plot_x_max / 2, False) _draw_in_or_out_bound_section(ax, _plot_x_max / 2, _plot_x_max / 2, True) _draw_boundary_label(ax, _plot_x_max / 2, "lower = " + f"{lower:{_variable_label_format}}".strip()) if abs(value - lower) < _near_bounds_tolerance: pointer_plot_coord = _plot_x_max / 2 _draw_bound_highlight(ax, _plot_x_max / 2) pointer_color = _in_bounds_plot_color elif value >= lower: pointer_plot_coord = 3. * _plot_x_max / 4 pointer_color = _in_bounds_plot_color else: pointer_color = _out_of_bounds_plot_color pointer_plot_coord = 1. * _plot_x_max / 4 _draw_pointer_and_label(ax, pointer_plot_coord, pointer_color, value) return if lower == -INF_BOUND: # there is an upper bound _draw_in_or_out_bound_section(ax, 0, _plot_x_max / 2, True) _draw_in_or_out_bound_section(ax, _plot_x_max / 2, _plot_x_max / 2, False) _draw_boundary_label(ax, _plot_x_max / 2, "upper = " + f"{upper:{_variable_label_format}}".strip()) if abs(value - upper) < _near_bounds_tolerance: # value is close to bound pointer_plot_coord = _plot_x_max / 2 _draw_bound_highlight(ax, _plot_x_max / 2) pointer_color = _in_bounds_plot_color elif value <= upper: # value satisfies bound pointer_plot_coord = 1. * _plot_x_max / 4 pointer_color = _in_bounds_plot_color else: # value violates the bound pointer_plot_coord = 3. * _plot_x_max / 4 pointer_color = _out_of_bounds_plot_color _draw_pointer_and_label(ax, pointer_plot_coord, pointer_color, value) return # If we get this far, there are both lower and upper bounds # in bounds visual is always the same _draw_in_or_out_bound_section(ax, _lower_plot, _upper_plot - _lower_plot, True) # draw below bound if value_in_plot_coord >= 0.0: _draw_in_or_out_bound_section(ax, 0, _lower_plot, False) else: # value is off to the left of the plot _draw_in_or_out_bound_section(ax, _lower_plot / 3., 2 * _lower_plot / 3., False) _draw_ellipsis(ax, 0.0) # draw upper bound if value_in_plot_coord <= _plot_x_max: _draw_in_or_out_bound_section(ax, _upper_plot, _lower_plot, False) else: # value is off to the right of the plot _draw_in_or_out_bound_section(ax, _upper_plot, 2 * _lower_plot / 3., False) _draw_ellipsis(ax, _upper_plot + 2 * _lower_plot / 3) # draw upper and lower labels _draw_boundary_label(ax, func_val_to_plot_coord(lower), str(lower)) _draw_boundary_label(ax, func_val_to_plot_coord(upper), str(upper)) # add highlight if value near a bound if abs(value - lower) / abs(upper - lower) < _near_bounds_tolerance: _draw_bound_highlight(ax, func_val_to_plot_coord(lower)) elif abs(value - upper) / abs(upper - lower) < _near_bounds_tolerance: _draw_bound_highlight(ax, func_val_to_plot_coord(upper)) # pointer and pointer label if value_in_plot_coord < 0.0: pointer_plot_coord = 0.0 elif value_in_plot_coord > _plot_x_max: pointer_plot_coord = _plot_x_max else: pointer_plot_coord = value_in_plot_coord pointer_color = _in_bounds_plot_color if (lower <= value <= upper) \ else _out_of_bounds_plot_color _draw_pointer_and_label(ax, pointer_plot_coord, pointer_color, value) # A series of functions used to draw parts of the scalar constraints visual def _draw_in_or_out_bound_section(ax, x_left, width, is_in_bound): if is_in_bound: color = _in_bounds_plot_color hatch = None alpha = _in_bounds_plot_alpha else: color = _out_of_bounds_plot_color hatch = _out_of_bounds_constraint_visual_hatch_pattern # hatch = None alpha = _out_of_bounds_plot_alpha rectangle = patches.Rectangle((x_left, 0), width, _plot_y_max, facecolor=color, hatch=hatch, alpha=alpha) ax.add_patch(rectangle) def _draw_bound_highlight(ax, x): rectangle = patches.Rectangle(( x - _near_bound_highlight_half_width, _near_bound_highlight_half_width_y_min), 2 * _near_bound_highlight_half_width, _near_bound_highlight_half_width_y_max, edgecolor='black', facecolor='yellow', alpha=_near_bound_highlight_alpha) ax.add_patch(rectangle) def _draw_ellipsis(ax, x_left): # Draw three dots as an ellipsis to show that the value is beyond # either the left or right edge of the plot for i in [1, 2, 3]: circle = patches.Ellipse((x_left + i * _lower_plot / 12., _ellipsis_x_offset), _ellipse_width, _ellipse_height, facecolor=_out_of_bounds_plot_color) ax.add_patch(circle) def _draw_boundary_label(ax, pointer_plot_coord, s): ax.text(pointer_plot_coord, _plot_y_max + _text_height, s, horizontalalignment='center', verticalalignment='bottom', size=_scalar_visual_font_size ) def _draw_pointer_and_label(ax, pointer_plot_coord, pointer_color, value): pts = np.array([ [pointer_plot_coord - _pointer_half_width, -_pointer_height], [pointer_plot_coord + _pointer_half_width, -_pointer_height], [pointer_plot_coord, 0.0] ]) p = patches.Polygon(pts, closed=True, facecolor=pointer_color, edgecolor='black', linewidth=_pointer_line_width) ax.add_patch(p) plt.text(pointer_plot_coord, -_pointer_height - _text_height, f"{value:{_variable_label_format}}".strip(), horizontalalignment='center', verticalalignment='top', size=_scalar_visual_font_size) def _val_to_plot_coord(value, lower, upper): # need to get function that maps actual values to 0.0 to 1.0 # and where lower maps to 1./3 and upper to 2/3 # Used with Python's functools to make a Python function out of this plot_coord = 1. / 3. + (value - lower) / (upper - lower) * 1. / 3. if isinstance(plot_coord, np.ndarray): return plot_coord[0] return plot_coord