Source code for openmdao.visualization.n2_viewer.n2_viewer

"""Code for generating N2 diagram."""
import inspect
import os
import pathlib
import sys
from operator import itemgetter

import networkx as nx
import numpy as np

from openmdao.drivers.analysis_driver import AnalysisDriver
import openmdao.utils.hooks as hooks
from openmdao.core.explicitcomponent import ExplicitComponent
from openmdao.core.indepvarcomp import IndepVarComp
from openmdao.core.parallel_group import ParallelGroup
from openmdao.core.group import Group
from openmdao.core.problem import Problem, _SetupStatus
from openmdao.core.implicitcomponent import ImplicitComponent
from openmdao.core.constants import _UNDEFINED
from openmdao.components.exec_comp import ExecComp
from openmdao.components.meta_model_structured_comp import MetaModelStructuredComp
from openmdao.components.meta_model_unstructured_comp import MetaModelUnStructuredComp
from openmdao.drivers.doe_driver import DOEDriver
from openmdao.recorders.case_reader import CaseReader
from openmdao.solvers.nonlinear.newton import NewtonSolver
from openmdao.utils.array_utils import convert_ndarray_to_support_nans_in_json
from openmdao.utils.class_util import overrides_method
from openmdao.utils.general_utils import default_noraise, is_undefined
from openmdao.utils.mpi import MPI
from openmdao.utils.notebook_utils import notebook, display, HTML, IFrame, colab
from openmdao.utils.om_warnings import issue_warning
from openmdao.utils.reports_system import register_report_hook
from openmdao.utils.file_utils import _load_and_exec, _to_filename
from openmdao.visualization.htmlpp import HtmlPreprocessor
from openmdao import __version__ as openmdao_version

_MAX_ARRAY_SIZE_FOR_REPR_VAL = 1000  # If var has more elements than this do not pass to N2
_MAX_OPTION_SIZE = int(1e4)          # If option value is bigger than this do not pass to N2

_default_n2_filename = 'n2.html'


def _get_array_info(system, vec, name, prom, var_dict, from_src=True):
    ndarray_to_convert = vec._abs_get_val(name, flat=False) if vec else \
        system.get_val(prom, from_src=from_src)

    var_dict['val'] = convert_ndarray_to_support_nans_in_json(ndarray_to_convert)

    # Find the minimum indices and value
    min_indices = np.unravel_index(np.nanargmin(ndarray_to_convert, axis=None),
                                   ndarray_to_convert.shape)
    var_dict['val_min_indices'] = min_indices
    var_dict['val_min'] = ndarray_to_convert[min_indices]

    # Find the maximum indices and value
    max_indices = np.unravel_index(np.nanargmax(ndarray_to_convert, axis=None),
                                   ndarray_to_convert.shape)
    var_dict['val_max_indices'] = max_indices
    var_dict['val_max'] = ndarray_to_convert[max_indices]


def _get_var_dict(system, typ, name, is_parallel, is_implicit, values):
    if name in system._var_abs2meta[typ]:
        meta = system._var_abs2meta[typ][name]
        prom = system._resolver.abs2prom(name, typ)
        val = np.asarray(meta['val'])
        is_dist = MPI is not None and meta['distributed']

        var_dict = {
            'name': prom,
            'type': typ,
            'dtype': type(val).__name__,
            'is_discrete': False,
            'distributed': is_dist,
            'shape': str(meta['shape']),
            'desc': meta['desc']
        }

        if typ == 'output':
            var_dict['implicit'] = is_implicit
            vec = system._outputs
        else:  # input
            if MPI:
                # for inputs if we're under MPI, we only retrieve the value currently stored
                # in the input vector and not from the connected source because that source
                # could be remote.
                vec = system._inputs
            else:
                vec = None

        # if 'vec' is not None at this point, we can retrieve the value using vec._abs_get_val,
        # which is a faster call than system.get_val.

        if meta['units'] is None:
            var_dict['units'] = 'None'
        else:
            var_dict['units'] = meta['units']

        try:
            if values and val.size < _MAX_ARRAY_SIZE_FOR_REPR_VAL:
                if not MPI:
                    # Get the current value
                    _get_array_info(system, vec, name, prom, var_dict, from_src=True)

                elif is_parallel or is_dist:
                    # we can't access non-local values, so just get the initial value
                    var_dict['val'] = val
                    var_dict['initial_value'] = True
                else:
                    # get the current value but don't try to get it from the source,
                    # which could be remote under MPI
                    _get_array_info(system, vec, name, prom, var_dict, from_src=False)

        except Exception as err:
            issue_warning(str(err))
    else:  # discrete
        meta = system._var_discrete[typ][name]
        val = meta['val']
        var_dict = {
            'name': name,
            'type': typ,
            'dtype': type(val).__name__,
            'is_discrete': True,
        }
        if values:
            if MPI is None or isinstance(val, (int, str, list, dict, complex, np.ndarray)):
                var_dict['val'] = default_noraise(system.get_val(name))

    if 'surrogate_name' in meta:
        var_dict['surrogate_name'] = meta['surrogate_name']

    return var_dict


def _serialize_single_option(option):
    """
    Return a json-safe equivalent of the option.

    The default_noraise function performs the datatype serialization, while this function takes
    care of attributes specific to options dicts.

    Parameters
    ----------
    option : object
        Option to be serialized.

    Returns
    -------
    object
       JSON-safe serialized object.
    """
    if not option['recordable']:
        return 'Not Recordable'

    val = option['val']

    if is_undefined(val):
        return str(val)

    if sys.getsizeof(val) > _MAX_OPTION_SIZE:
        return 'Too Large to Display'

    return default_noraise(val)


def _get_tree_dict(system, values=True, is_parallel=False):
    """
    Get a dictionary representation of the system hierarchy.

    Parameters
    ----------
    system : System
        The System at the root of the hierarchy
    values : bool
        If True, include variable values. If False, all values will be None.
    is_parallel : bool
        If True, values can be remote and are not available.
    """
    tree_dict = {
        'name': system.name if system.name else 'root',
        'type': 'subsystem' if system.name else 'root',
        'class': ':'.join((type(system).__module__, type(system).__qualname__)),
        'expressions': None,
        'nonlinear_solver': "",
        'nonlinear_solver_options': None,
        'linear_solver': "",
        'linear_solver_options': None,
    }
    is_implicit = False

    if isinstance(system, Group):
        if MPI and isinstance(system, ParallelGroup):
            is_parallel = True
        tree_dict['component_type'] = None
        tree_dict['subsystem_type'] = 'group'
        tree_dict['is_parallel'] = is_parallel

        children = [_get_tree_dict(s, values, is_parallel)
                    for s in system._subsystems_myproc]

        if system.comm.size > 1:
            if system._subsystems_myproc:
                sub_comm = system._subsystems_myproc[0].comm
                if sub_comm.rank != 0:
                    children = []
            children_lists = system.comm.allgather(children)

            children = []
            for children_list in children_lists:
                children.extend(children_list)

        if system.linear_solver:
            tree_dict['linear_solver'] = system.linear_solver.SOLVER
            tree_dict['linear_solver_options'] = {
                k: _serialize_single_option(opt)
                for k, opt in system.linear_solver.options._dict.items()
            }

        if system.nonlinear_solver:
            tree_dict['nonlinear_solver'] = system.nonlinear_solver.SOLVER
            tree_dict['nonlinear_solver_options'] = {
                k: _serialize_single_option(opt)
                for k, opt in system.nonlinear_solver.options._dict.items()
            }

            if system.nonlinear_solver.SOLVER == NewtonSolver.SOLVER:
                tree_dict['solve_subsystems'] = system._nonlinear_solver.options['solve_subsystems']
    else:
        tree_dict['subsystem_type'] = 'component'
        tree_dict['is_parallel'] = is_parallel
        if isinstance(system, ImplicitComponent):
            is_implicit = True
            tree_dict['component_type'] = 'implicit'
            if overrides_method('solve_linear', system, ImplicitComponent):
                tree_dict['linear_solver'] = "solve_linear"
            elif system.linear_solver:
                tree_dict['linear_solver'] = system.linear_solver.SOLVER
                tree_dict['linear_solver_options'] = {
                    k: _serialize_single_option(opt)
                    for k, opt in system.linear_solver.options._dict.items()
                }

            if overrides_method('solve_nonlinear', system, ImplicitComponent):
                tree_dict['nonlinear_solver'] = "solve_nonlinear"
            elif system.nonlinear_solver:
                tree_dict['nonlinear_solver'] = system.nonlinear_solver.SOLVER
                tree_dict['nonlinear_solver_options'] = {
                    k: _serialize_single_option(opt)
                    for k, opt in system.nonlinear_solver.options._dict.items()
                }
        elif isinstance(system, ExecComp):
            tree_dict['component_type'] = 'exec'
            tree_dict['expressions'] = system._exprs
        elif isinstance(system, (MetaModelStructuredComp, MetaModelUnStructuredComp)):
            tree_dict['component_type'] = 'metamodel'
        elif isinstance(system, IndepVarComp):
            tree_dict['component_type'] = 'indep'
        elif isinstance(system, ExplicitComponent):
            tree_dict['component_type'] = 'explicit'
        else:
            tree_dict['component_type'] = None

        children = []
        for typ in ['input', 'output']:
            for abs_name in system._var_abs2meta[typ]:
                children.append(_get_var_dict(system, typ, abs_name,
                                              is_parallel, is_implicit, values))

            for prom_name in system._var_discrete[typ]:
                children.append(_get_var_dict(system, typ, prom_name,
                                              is_parallel, is_implicit, values))

    tree_dict['children'] = children

    options = {}
    slv = {'linear_solver', 'nonlinear_solver'}
    for k, opt in system.options._dict.items():
        if k in slv:
            # need to handle solver option separately because it can be a class, instance or None
            try:
                val = opt['val']
            except KeyError:
                val = opt['value']

            try:
                options[k] = val.SOLVER
            except AttributeError:
                options[k] = val
        else:
            options[k] = _serialize_single_option(opt)

    tree_dict['options'] = options

    return tree_dict


def _get_declare_partials(system):
    """
    Get a list of the declared partials.

    Parameters
    ----------
    system : <System>
        A System in the model.

    Returns
    -------
    list
        A list containing all the declared partials (strings in the form "of > wrt" )
        beginning from the given system on down.
    """
    return [f"{of} > {wrt}" for of, wrt in system._declared_partials_iter() if of != wrt]


def _get_viewer_data(data_source, values=_UNDEFINED, case_id=None):
    """
    Get the data needed by the N2 viewer as a dictionary.

    Parameters
    ----------
    data_source : <Problem> or <Group> or str or pathlib.Path
        A Problem or Group or case recorder filename containing the model or model data.
        If the case recorder file from a parallel run has separate metadata, the
        filenames can be specified with a comma, e.g.: case.sql_0,case.sql_meta
    values : bool or _UNDEFINED
        If True, include variable values. If False, all values will be None.
        If unspecified, this behaves as if set to True unless the data source is a Problem or
        model for which setup is not complete, in which case it behaves as if set to False.
    case_id : int or str or None
        Case name or index of case in SQL file.

    Returns
    -------
    dict
        A dictionary containing information about the model for use by the viewer.
    """
    if isinstance(data_source, Problem):
        # make sure at least setup_part2 has been run
        data_source.set_setup_status(_SetupStatus.POST_SETUP2)

        root_group = data_source.model

        driver = data_source.driver
        driver_name = driver.__class__.__name__
        if isinstance(driver, DOEDriver):
            driver_type = 'doe'
        elif isinstance(driver, AnalysisDriver):
            driver_type = 'analysis'
        else:
            driver_type = 'optimization'

        driver_options = {key: _serialize_single_option(driver.options._dict[key])
                          for key in driver.options}

        if driver_type == 'optimization' and hasattr(driver, 'opt_settings'):
            driver_opt_settings = driver.opt_settings
        else:
            driver_opt_settings = None

        driver_supports = driver.supports._dict

        # set default behavior for values flag
        if is_undefined(values):
            values = (data_source._metadata is not None and
                      data_source._metadata['setup_status'] >= _SetupStatus.POST_FINAL_SETUP)

    elif isinstance(data_source, Group):
        if not data_source.pathname:  # root group
            root_group = data_source
            driver_name = None
            driver_type = None
            driver_options = None
            driver_opt_settings = None
            driver_supports = None
        else:
            # this function only makes sense when it is at the root
            msg = f"Viewer data is not available for sub-Group '{data_source.pathname}'."
            raise TypeError(msg)

        if data_source._problem_meta is not None:
            if data_source._problem_meta['setup_status'] >= _SetupStatus.POST_SETUP:
                if data_source._problem_meta['setup_status'] < _SetupStatus.POST_SETUP2:
                    # run setup_part2 on the model
                    data_source._problem_meta['model_ref']()._setup_part2()

        # set default behavio r for values flag
        if is_undefined(values):
            values = (data_source._problem_meta is not None and
                      data_source._problem_meta['setup_status'] >= _SetupStatus.POST_FINAL_SETUP)

    elif isinstance(data_source, str) or isinstance(data_source, pathlib.Path):
        if isinstance(data_source, str) and ',' in data_source:
            filenames = data_source.split(',')
            cr = CaseReader(filenames[0], metadata_filename=filenames[1])
        else:
            cr = CaseReader(data_source)

        data_dict = cr.problem_metadata

        # set default behavior for values flag
        if is_undefined(values):
            values = True

        def set_values(children, stack, case):
            """
            Set variable values in model tree from the specified Case.

            If case is None, set all values to None.
            """
            for child in children:
                # if 'val' in child
                if child['type'] == 'subsystem':
                    stack.append(child['name'])
                    set_values(child['children'], stack, case)
                    stack.pop()
                elif child['type'] == 'input':
                    if case is None:
                        child.pop('val')
                        for key in ['val_min', 'val_max', 'val_min_indices', 'val_max_indices']:
                            del child[key]
                    elif case.inputs is None:
                        child['val'] = 'N/A'
                    else:
                        path = child['name'] if not stack else '.'.join(stack + [child['name']])
                        child['val'] = case.inputs[path]
                elif child['type'] == 'output':
                    if case is None:
                        child.pop('val')
                        for key in ['val_min', 'val_max', 'val_min_indices', 'val_max_indices']:
                            del child[key]
                    elif case.outputs is None:
                        child['val'] = 'N/A'
                    else:
                        path = child['name'] if not stack else '.'.join(stack + [child['name']])
                        try:
                            child['val'] = case.outputs[path]
                        except KeyError:
                            child['val'] = 'N/A'

        if values is False:
            set_values(data_dict['tree']['children'], [], None)
        elif case_id is not None:
            case = cr.get_case(case_id)
            print(f"Using source: {case.source}\nCase: {case.name}")
            set_values(data_dict['tree']['children'], [], case)

        # Delete the variables key since it's not used in N2
        if 'variables' in data_dict:
            del data_dict['variables']

        # Older recordings might not have this.
        if 'md5_hash' not in data_dict:
            data_dict['md5_hash'] = None

        return data_dict

    else:
        raise TypeError(f"Viewer data is not available for '{data_source}'."
                        "The source must be a Problem, model or the filename of a recording.")

    data_dict = {}
    data_dict['tree'] = _get_tree_dict(root_group, values=values)
    data_dict['md5_hash'] = root_group._generate_md5_hash()

    connections_list = []

    G = root_group.compute_sys_graph(comps_only=True)

    scc = nx.strongly_connected_components(G)

    strongdict = {}
    sys_idx_names = []

    for i, strong_comp in enumerate(scc):
        for c in strong_comp:
            strongdict[c] = i  # associate each comp with a strongly connected component

        if len(strong_comp) > 1:
            # these IDs are only used when back edges are present
            for name in strong_comp:
                sys_idx_names.append(name)

    sys_idx = {}  # map of pathnames to index of pathname in list (systems in cycles only)

    comp_orders = {name: i for i, name in enumerate(root_group._ordered_comp_name_iter())}
    for name in sorted(sys_idx_names):
        sys_idx[name] = len(sys_idx)

    # 1 is added to the indices of all edges in the matrix so that we can use 0 entries to
    # indicate that there is no connection.
    matrix = np.zeros((len(comp_orders), len(comp_orders)), dtype=np.int32)
    edge_ids = []
    for i, edge in enumerate(G.edges()):
        src, tgt = edge
        if strongdict[src] == strongdict[tgt]:
            matrix[comp_orders[src], comp_orders[tgt]] = i + 1  # bump edge index by 1
            edge_ids.append((sys_idx[src], sys_idx[tgt]))
        else:
            edge_ids.append(None)

    for edge_i, (src, tgt) in enumerate(G.edges()):
        if strongdict[src] == strongdict[tgt]:
            start = comp_orders[src]
            end = comp_orders[tgt]
            # get a view here so we can remove this edge from submat temporarily to eliminate
            # an 'if' check inside the nested list comprehension for edges_list
            rem = matrix[start:start + 1, end:end + 1]
            rem[0, 0] = 0

            if end < start:
                start, end = end, start

            submat = matrix[start:end + 1, start:end + 1]
            nz = submat[submat > 0]

            rem[0, 0] = edge_i + 1  # put removed edge back

            if nz.size > 1:
                nz -= 1  # convert back to correct edge index
                edges_list = [edge_ids[i] for i in nz]
                edges_list = sorted(edges_list, key=itemgetter(0, 1))

                for vsrc, vtgtlist in G.get_edge_data(src, tgt)['conns'].items():
                    for vtgt in vtgtlist:
                        connections_list.append({'src': vsrc, 'tgt': vtgt,
                                                 'cycle_arrows': edges_list})
                continue

        for vsrc, vtgtlist in G.get_edge_data(src, tgt)['conns'].items():
            for vtgt in vtgtlist:
                connections_list.append({'src': vsrc, 'tgt': vtgt})

    connections_list = sorted(connections_list, key=itemgetter('src', 'tgt'))

    data_dict['sys_pathnames_list'] = list(sys_idx)
    data_dict['connections_list'] = connections_list
    data_dict['abs2prom'] = {
        'input': {k: v for k, v in root_group._resolver.abs2prom_iter('input', local=True)},
        'output': {k: v for k, v in root_group._resolver.abs2prom_iter('output', local=True)},
    }

    data_dict['driver'] = {
        'name': driver_name,
        'type': driver_type,
        'options': driver_options,
        'opt_settings': driver_opt_settings,
        'supports': driver_supports,
    }
    data_dict['design_vars'] = root_group.get_design_vars(use_prom_ivc=False)
    data_dict['responses'] = root_group.get_responses(use_prom_ivc=False)

    data_dict['declare_partials_list'] = _get_declare_partials(root_group)

    return data_dict


[docs]def n2(data_source, outfile=_default_n2_filename, path=None, values=_UNDEFINED, case_id=None, show_browser=True, embeddable=False, title=None, display_in_notebook=True): """ Generate an HTML file containing a tree viewer. Optionally opens a web browser to view the file. Parameters ---------- data_source : <Problem> or str The Problem or case recorder database containing the model or model data. outfile : str, optional The name of the final output file. path : str, optional If specified, the n2 viewer will begin in a state that is zoomed in on the selected path. This path should be the absolute path of a system in the model. values : bool or _UNDEFINED If True, include variable values. If False, all values will be None. If unspecified, this behaves as if set to True unless the data source is a Problem or model for which setup is not complete, in which case it behaves as if set to False. case_id : int, str, or None Case name or index of case in SQL file if data_source is a database. show_browser : bool, optional If True, pop up the system default web browser to view the generated html file. Defaults to True. embeddable : bool, optional If True, gives a single HTML file that doesn't have the <html>, <DOCTYPE>, <body> and <head> tags. If False, gives a single, standalone HTML file for viewing. title : str, optional The title for the diagram. Used in the HTML title. display_in_notebook : bool, optional If True, display the N2 diagram in the notebook, if this is called from a notebook. Defaults to True. """ # grab the model viewer data try: model_data = _get_viewer_data(data_source, values=values, case_id=case_id) err_msg = '' except TypeError as err: model_data = {} err_msg = str(err) issue_warning(err_msg) # If MPI is active only display one copy of the viewer. # If the data_source is a Problem, only run on the root proc of its comm. # Otherwise, only run on the global root proc. if MPI: try: comm = data_source.comm except AttributeError: comm = MPI.COMM_WORLD if comm.rank != 0: return options = {} model_data['options'] = options import openmdao openmdao_dir = os.path.dirname(inspect.getfile(openmdao)) vis_dir = os.path.join(openmdao_dir, "visualization/n2_viewer") if title: title = f"OpenMDAO Model Hierarchy and N2 diagram: {title}" else: title = "OpenMDAO Model Hierarchy and N2 diagram" html_vars = { 'title': title, 'embeddable': "embedded-diagram" if embeddable else "non-embedded-diagram", 'openmdao_version': openmdao_version, 'model_data': model_data, 'initial_path': path } if err_msg: with open(outfile, 'w') as f: f.write(err_msg) else: HtmlPreprocessor(os.path.join(vis_dir, "index.html"), outfile, allow_overwrite=True, var_dict=html_vars, json_dumps_default=default_noraise, verbose=False).run() if notebook: if display_in_notebook: # display in Jupyter Notebook outfile = os.path.relpath(outfile) if not colab: display(IFrame(src=outfile, width="100%", height=700)) else: display(HTML(outfile)) elif show_browser: # open it up in the browser from openmdao.utils.webview import webview webview(outfile)
# N2 report definition def _run_n2_report(prob, report_filename=_default_n2_filename): n2_filepath = prob.get_reports_dir() / report_filename try: n2(prob, show_browser=False, outfile=n2_filepath, display_in_notebook=False) except RuntimeError as err: # We ignore this error if str(err) != "Can't compute total derivatives unless " \ "both 'of' or 'wrt' variables have been specified.": raise err def _run_n2_report_w_errors(prob, report_filename=_default_n2_filename): if prob._any_rank_has_saved_errors(): n2_filepath = prob.get_reports_dir() / report_filename # only run the n2 here if we've had setup errors. Normally we'd wait until # after final_setup in order to have correct values for all of the I/O variables. try: n2(prob, show_browser=False, outfile=n2_filepath, display_in_notebook=False) except Exception as err: # We ignore this error if str(err) != "Can't compute total derivatives unless " \ "both 'of' or 'wrt' variables have been specified.": prob.model._collect_error(str(err)) # errors will result in exit at the end of the _check_collected_errors method def _n2_report_register(): register_report_hook('n2', 'final_setup', 'Problem', post=_run_n2_report, description='N2 diagram', report_filename=_default_n2_filename) register_report_hook('n2', '_check_collected_errors', 'Problem', pre=_run_n2_report_w_errors, description='N2 diagram') def _n2_setup_parser(parser): """ Set up the openmdao subparser for the 'openmdao n2' command. Parameters ---------- parser : argparse subparser The parser we're adding options to. """ parser.add_argument('file', nargs=1, help='Python script or recording containing the model. ' 'If metadata from a parallel run was recorded in a separate file, ' 'specify both database filenames delimited with a comma.') parser.add_argument('-o', default=_default_n2_filename, action='store', dest='outfile', help='html output file.') parser.add_argument('--no_values', action='store_true', dest='no_values', help="don't display variable values.") parser.add_argument('--no_browser', action='store_true', dest='no_browser', help="don't display in a browser.") parser.add_argument('--embed', action='store_true', dest='embeddable', help="create embeddable version.") parser.add_argument('--title', default=None, action='store', dest='title', help='diagram title.') parser.add_argument('--path', default=None, action='store', dest='path', help='initial system path to zoom into.') parser.add_argument('--problem', default=None, action='store', dest='problem_name', help='name of sub-problem, if target is a sub-problem') def _n2_cmd(options, user_args): """ Process command line args and call n2 on the specified file. Parameters ---------- options : argparse Namespace Command line options. user_args : list of str Command line options after '--' (if any). Passed to user script. """ filename = _to_filename(options.file[0]) probname = options.problem_name if filename.endswith('.py'): # disable the reports system, we only want the N2 report and then we exit os.environ['OPENMDAO_REPORTS'] = '0' def _view_model_w_errors(prob): # if problem name is not specified, use top-level problem (no delimiter in pathname) prob_id = prob._get_inst_id() if probname is None or probname == prob_id: errs = prob._metadata['saved_errors'] if errs: # only run the n2 here if we've had setup errors. Normally we'd wait until # after final_setup in order to have correct values for all of the variables. n2(prob, outfile=options.outfile, show_browser=not options.no_browser, values=not options.no_values, title=options.title, path=options.path, embeddable=options.embeddable) # errors will result in exit at the end of the _check_collected_errors method # no errors, generate n2 after final_setup def _view_model_no_errors(prob): prob_id = prob._get_inst_id() if (probname is None and '/' not in prob_id) or (probname == prob_id): n2(prob, outfile=options.outfile, show_browser=not options.no_browser, values=not options.no_values, title=options.title, path=options.path, embeddable=options.embeddable) hooks._register_hook('_check_collected_errors', 'Problem', pre=_view_model_w_errors, inst_id=probname) hooks._register_hook('final_setup', class_name='Problem', post=_view_model_no_errors, inst_id=probname, exit=True) _load_and_exec(options.file[0], user_args) else: # assume the file is a recording, run standalone n2(filename, outfile=options.outfile, title=options.title, path=options.path, values=False if options.no_values else _UNDEFINED, show_browser=not options.no_browser, embeddable=options.embeddable)