Source code for openmdao.visualization.n2_viewer.n2_viewer

"""Code for generating N2 diagram."""
import inspect
import os
import pathlib
import sys
from operator import itemgetter

import networkx as nx
import numpy as np

import openmdao.utils.hooks as hooks
from openmdao.core.explicitcomponent import ExplicitComponent
from openmdao.core.indepvarcomp import IndepVarComp
from openmdao.core.parallel_group import ParallelGroup
from openmdao.core.group import Group
from openmdao.core.problem import Problem, _SetupStatus
from openmdao.core.implicitcomponent import ImplicitComponent
from openmdao.core.constants import _UNDEFINED
from openmdao.components.exec_comp import ExecComp
from openmdao.components.meta_model_structured_comp import MetaModelStructuredComp
from openmdao.components.meta_model_unstructured_comp import MetaModelUnStructuredComp
from openmdao.drivers.doe_driver import DOEDriver
from openmdao.recorders.case_reader import CaseReader
from openmdao.solvers.nonlinear.newton import NewtonSolver
from openmdao.utils.array_utils import convert_ndarray_to_support_nans_in_json
from openmdao.utils.class_util import overrides_method
from openmdao.utils.general_utils import default_noraise, is_undefined
from openmdao.utils.mpi import MPI
from openmdao.utils.notebook_utils import notebook, display, HTML, IFrame, colab
from openmdao.utils.om_warnings import issue_warning
from openmdao.utils.reports_system import register_report_hook
from openmdao.utils.file_utils import _load_and_exec, _to_filename
from openmdao.visualization.htmlpp import HtmlPreprocessor
from openmdao import __version__ as openmdao_version

_MAX_ARRAY_SIZE_FOR_REPR_VAL = 1000  # If var has more elements than this do not pass to N2
_MAX_OPTION_SIZE = int(1e4)          # If option value is bigger than this do not pass to N2

_default_n2_filename = 'n2.html'


def _get_array_info(system, vec, name, prom, var_dict, from_src=True):
    ndarray_to_convert = vec._abs_get_val(name, flat=False) if vec else \
        system.get_val(prom, from_src=from_src)

    var_dict['val'] = convert_ndarray_to_support_nans_in_json(ndarray_to_convert)

    # Find the minimum indices and value
    min_indices = np.unravel_index(np.nanargmin(ndarray_to_convert, axis=None),
                                   ndarray_to_convert.shape)
    var_dict['val_min_indices'] = min_indices
    var_dict['val_min'] = ndarray_to_convert[min_indices]

    # Find the maximum indices and value
    max_indices = np.unravel_index(np.nanargmax(ndarray_to_convert, axis=None),
                                   ndarray_to_convert.shape)
    var_dict['val_max_indices'] = max_indices
    var_dict['val_max'] = ndarray_to_convert[max_indices]


def _get_var_dict(system, typ, name, is_parallel, is_implicit, values):
    if name in system._var_abs2meta[typ]:
        meta = system._var_abs2meta[typ][name]
        prom = system._var_abs2prom[typ][name]
        val = np.asarray(meta['val'])
        is_dist = MPI is not None and meta['distributed']

        var_dict = {
            'name': prom,
            'type': typ,
            'dtype': type(val).__name__,
            'is_discrete': False,
            'distributed': is_dist,
            'shape': str(meta['shape']),
            'desc': meta['desc']
        }

        if typ == 'output':
            var_dict['implicit'] = is_implicit
            vec = system._outputs
        else:  # input
            if MPI:
                # for inputs if we're under MPI, we only retrieve the value currently stored
                # in the input vector and not from the connected source because that source
                # could be remote.
                vec = system._inputs
            else:
                vec = None

        # if 'vec' is not None at this point, we can retrieve the value using vec._abs_get_val,
        # which is a faster call than system.get_val.

        if meta['units'] is None:
            var_dict['units'] = 'None'
        else:
            var_dict['units'] = meta['units']

        try:
            if values and val.size < _MAX_ARRAY_SIZE_FOR_REPR_VAL:
                if not MPI:
                    # Get the current value
                    _get_array_info(system, vec, name, prom, var_dict, from_src=True)

                elif is_parallel or is_dist:
                    # we can't access non-local values, so just get the initial value
                    var_dict['val'] = val
                    var_dict['initial_value'] = True
                else:
                    # get the current value but don't try to get it from the source,
                    # which could be remote under MPI
                    _get_array_info(system, vec, name, prom, var_dict, from_src=False)

        except Exception as err:
            issue_warning(str(err))
    else:  # discrete
        meta = system._var_discrete[typ][name]
        val = meta['val']
        var_dict = {
            'name': name,
            'type': typ,
            'dtype': type(val).__name__,
            'is_discrete': True,
        }
        if values:
            if MPI is None or isinstance(val, (int, str, list, dict, complex, np.ndarray)):
                var_dict['val'] = default_noraise(system.get_val(name))

    if 'surrogate_name' in meta:
        var_dict['surrogate_name'] = meta['surrogate_name']

    return var_dict


def _serialize_single_option(option):
    """
    Return a json-safe equivalent of the option.

    The default_noraise function performs the datatype serialization, while this function takes
    care of attributes specific to options dicts.

    Parameters
    ----------
    option : object
        Option to be serialized.

    Returns
    -------
    object
       JSON-safe serialized object.
    """
    if not option['recordable']:
        return 'Not Recordable'

    val = option['val']

    if is_undefined(val):
        return str(val)

    if sys.getsizeof(val) > _MAX_OPTION_SIZE:
        return 'Too Large to Display'

    return default_noraise(val)


def _get_tree_dict(system, values=True, is_parallel=False):
    """
    Get a dictionary representation of the system hierarchy.

    Parameters
    ----------
    system : System
        The System at the root of the hierarchy
    values : bool
        If True, include variable values. If False, all values will be None.
    is_parallel : bool
        If True, values can be remote and are not available.
    """
    tree_dict = {
        'name': system.name if system.name else 'root',
        'type': 'subsystem' if system.name else 'root',
        'class': ':'.join((type(system).__module__, type(system).__qualname__)),
        'expressions': None,
        'nonlinear_solver': "",
        'nonlinear_solver_options': None,
        'linear_solver': "",
        'linear_solver_options': None,
    }
    is_implicit = False

    if isinstance(system, Group):
        if MPI and isinstance(system, ParallelGroup):
            is_parallel = True
        tree_dict['component_type'] = None
        tree_dict['subsystem_type'] = 'group'
        tree_dict['is_parallel'] = is_parallel

        children = [_get_tree_dict(s, values, is_parallel)
                    for s in system._subsystems_myproc]

        if system.comm.size > 1:
            if system._subsystems_myproc:
                sub_comm = system._subsystems_myproc[0].comm
                if sub_comm.rank != 0:
                    children = []
            children_lists = system.comm.allgather(children)

            children = []
            for children_list in children_lists:
                children.extend(children_list)

        if system.linear_solver:
            tree_dict['linear_solver'] = system.linear_solver.SOLVER
            tree_dict['linear_solver_options'] = {
                k: _serialize_single_option(opt)
                for k, opt in system.linear_solver.options._dict.items()
            }

        if system.nonlinear_solver:
            tree_dict['nonlinear_solver'] = system.nonlinear_solver.SOLVER
            tree_dict['nonlinear_solver_options'] = {
                k: _serialize_single_option(opt)
                for k, opt in system.nonlinear_solver.options._dict.items()
            }

            if system.nonlinear_solver.SOLVER == NewtonSolver.SOLVER:
                tree_dict['solve_subsystems'] = system._nonlinear_solver.options['solve_subsystems']
    else:
        tree_dict['subsystem_type'] = 'component'
        tree_dict['is_parallel'] = is_parallel
        if isinstance(system, ImplicitComponent):
            is_implicit = True
            tree_dict['component_type'] = 'implicit'
            if overrides_method('solve_linear', system, ImplicitComponent):
                tree_dict['linear_solver'] = "solve_linear"
            elif system.linear_solver:
                tree_dict['linear_solver'] = system.linear_solver.SOLVER
                tree_dict['linear_solver_options'] = {
                    k: _serialize_single_option(opt)
                    for k, opt in system.linear_solver.options._dict.items()
                }

            if overrides_method('solve_nonlinear', system, ImplicitComponent):
                tree_dict['nonlinear_solver'] = "solve_nonlinear"
            elif system.nonlinear_solver:
                tree_dict['nonlinear_solver'] = system.nonlinear_solver.SOLVER
                tree_dict['nonlinear_solver_options'] = {
                    k: _serialize_single_option(opt)
                    for k, opt in system.nonlinear_solver.options._dict.items()
                }
        elif isinstance(system, ExecComp):
            tree_dict['component_type'] = 'exec'
            tree_dict['expressions'] = system._exprs
        elif isinstance(system, (MetaModelStructuredComp, MetaModelUnStructuredComp)):
            tree_dict['component_type'] = 'metamodel'
        elif isinstance(system, IndepVarComp):
            tree_dict['component_type'] = 'indep'
        elif isinstance(system, ExplicitComponent):
            tree_dict['component_type'] = 'explicit'
        else:
            tree_dict['component_type'] = None

        children = []
        for typ in ['input', 'output']:
            for abs_name in system._var_abs2meta[typ]:
                children.append(_get_var_dict(system, typ, abs_name,
                                              is_parallel, is_implicit, values))

            for prom_name in system._var_discrete[typ]:
                children.append(_get_var_dict(system, typ, prom_name,
                                              is_parallel, is_implicit, values))

    tree_dict['children'] = children

    options = {}
    slv = {'linear_solver', 'nonlinear_solver'}
    for k, opt in system.options._dict.items():
        if k in slv:
            # need to handle solver option separately because it can be a class, instance or None
            try:
                val = opt['val']
            except KeyError:
                val = opt['value']

            try:
                options[k] = val.SOLVER
            except AttributeError:
                options[k] = val
        else:
            options[k] = _serialize_single_option(opt)

    tree_dict['options'] = options

    return tree_dict


def _get_declare_partials(system):
    """
    Get a list of the declared partials.

    Parameters
    ----------
    system : <System>
        A System in the model.

    Returns
    -------
    list
        A list containing all the declared partials (strings in the form "of > wrt" )
        beginning from the given system on down.
    """
    declare_partials_list = []
    for of, wrt in system._declared_partials_iter():
        if of != wrt:
            declare_partials_list.append(f"{of} > {wrt}")

    return declare_partials_list


def _get_viewer_data(data_source, values=_UNDEFINED, case_id=None):
    """
    Get the data needed by the N2 viewer as a dictionary.

    Parameters
    ----------
    data_source : <Problem> or <Group> or str or pathlib.Path
        A Problem or Group or case recorder filename containing the model or model data.
        If the case recorder file from a parallel run has separate metadata, the
        filenames can be specified with a comma, e.g.: case.sql_0,case.sql_meta
    values : bool or _UNDEFINED
        If True, include variable values. If False, all values will be None.
        If unspecified, this behaves as if set to True unless the data source is a Problem or
        model for which setup is not complete, in which case it behaves as if set to False.
    case_id : int or str or None
        Case name or index of case in SQL file.

    Returns
    -------
    dict
        A dictionary containing information about the model for use by the viewer.
    """
    if isinstance(data_source, Problem):
        root_group = data_source.model

        if not isinstance(root_group, Group):
            # this function only makes sense when the model is a Group
            msg = f"The model is of type {root_group.__class__.__name__}, " \
                  "viewer data is only available if the model is a Group."
            raise TypeError(msg)

        driver = data_source.driver
        driver_name = driver.__class__.__name__
        driver_type = 'doe' if isinstance(driver, DOEDriver) else 'optimization'

        driver_options = {key: _serialize_single_option(driver.options._dict[key])
                          for key in driver.options}

        if driver_type == 'optimization' and hasattr(driver, 'opt_settings'):
            driver_opt_settings = driver.opt_settings
        else:
            driver_opt_settings = None

        # set default behavior for values flag
        if is_undefined(values):
            values = (data_source._metadata is not None and
                      data_source._metadata['setup_status'] >= _SetupStatus.POST_FINAL_SETUP)

    elif isinstance(data_source, Group):
        if not data_source.pathname:  # root group
            root_group = data_source
            driver_name = None
            driver_type = None
            driver_options = None
            driver_opt_settings = None
        else:
            # this function only makes sense when it is at the root
            msg = f"Viewer data is not available for sub-Group '{data_source.pathname}'."
            raise TypeError(msg)

        # set default behavio r for values flag
        if is_undefined(values):
            values = (data_source._problem_meta is not None and
                      data_source._problem_meta['setup_status'] >= _SetupStatus.POST_FINAL_SETUP)

    elif isinstance(data_source, str) or isinstance(data_source, pathlib.Path):
        if isinstance(data_source, str) and ',' in data_source:
            filenames = data_source.split(',')
            cr = CaseReader(filenames[0], metadata_filename=filenames[1])
        else:
            cr = CaseReader(data_source)

        data_dict = cr.problem_metadata

        # set default behavior for values flag
        if is_undefined(values):
            values = True

        def set_values(children, stack, case):
            """
            Set variable values in model tree from the specified Case.

            If case is None, set all values to None.
            """
            for child in children:
                # if 'val' in child
                if child['type'] == 'subsystem':
                    stack.append(child['name'])
                    set_values(child['children'], stack, case)
                    stack.pop()
                elif child['type'] == 'input':
                    if case is None:
                        child.pop('val')
                        for key in ['val_min', 'val_max', 'val_min_indices', 'val_max_indices']:
                            del child[key]
                    elif case.inputs is None:
                        child['val'] = 'N/A'
                    else:
                        path = child['name'] if not stack else '.'.join(stack + [child['name']])
                        child['val'] = case.inputs[path]
                elif child['type'] == 'output':
                    if case is None:
                        child.pop('val')
                        for key in ['val_min', 'val_max', 'val_min_indices', 'val_max_indices']:
                            del child[key]
                    elif case.outputs is None:
                        child['val'] = 'N/A'
                    else:
                        path = child['name'] if not stack else '.'.join(stack + [child['name']])
                        try:
                            child['val'] = case.outputs[path]
                        except KeyError:
                            child['val'] = 'N/A'

        if values is False:
            set_values(data_dict['tree']['children'], [], None)
        elif case_id is not None:
            case = cr.get_case(case_id)
            print(f"Using source: {case.source}\nCase: {case.name}")
            set_values(data_dict['tree']['children'], [], case)

        # Delete the variables key since it's not used in N2
        if 'variables' in data_dict:
            del data_dict['variables']

        # Older recordings might not have this.
        if 'md5_hash' not in data_dict:
            data_dict['md5_hash'] = None

        return data_dict

    else:
        raise TypeError(f"Viewer data is not available for '{data_source}'."
                        "The source must be a Problem, model or the filename of a recording.")

    data_dict = {}
    data_dict['tree'] = _get_tree_dict(root_group, values=values)
    data_dict['md5_hash'] = root_group._generate_md5_hash()

    connections_list = []

    G = root_group.compute_sys_graph(comps_only=True)

    scc = nx.strongly_connected_components(G)

    strongdict = {}
    sys_idx_names = []

    for i, strong_comp in enumerate(scc):
        for c in strong_comp:
            strongdict[c] = i  # associate each comp with a strongly connected component

        if len(strong_comp) > 1:
            # these IDs are only used when back edges are present
            for name in strong_comp:
                sys_idx_names.append(name)

    sys_idx = {}  # map of pathnames to index of pathname in list (systems in cycles only)

    comp_orders = {name: i for i, name in enumerate(root_group._ordered_comp_name_iter())}
    for name in sorted(sys_idx_names):
        sys_idx[name] = len(sys_idx)

    # 1 is added to the indices of all edges in the matrix so that we can use 0 entries to
    # indicate that there is no connection.
    matrix = np.zeros((len(comp_orders), len(comp_orders)), dtype=np.int32)
    edge_ids = []
    for i, edge in enumerate(G.edges()):
        src, tgt = edge
        if strongdict[src] == strongdict[tgt]:
            matrix[comp_orders[src], comp_orders[tgt]] = i + 1  # bump edge index by 1
            edge_ids.append((sys_idx[src], sys_idx[tgt]))
        else:
            edge_ids.append(None)

    for edge_i, (src, tgt) in enumerate(G.edges()):
        if strongdict[src] == strongdict[tgt]:
            start = comp_orders[src]
            end = comp_orders[tgt]
            # get a view here so we can remove this edge from submat temporarily to eliminate
            # an 'if' check inside the nested list comprehension for edges_list
            rem = matrix[start:start + 1, end:end + 1]
            rem[0, 0] = 0

            if end < start:
                start, end = end, start

            submat = matrix[start:end + 1, start:end + 1]
            nz = submat[submat > 0]

            rem[0, 0] = edge_i + 1  # put removed edge back

            if nz.size > 1:
                nz -= 1  # convert back to correct edge index
                edges_list = [edge_ids[i] for i in nz]
                edges_list = sorted(edges_list, key=itemgetter(0, 1))

                for vsrc, vtgtlist in G.get_edge_data(src, tgt)['conns'].items():
                    for vtgt in vtgtlist:
                        connections_list.append({'src': vsrc, 'tgt': vtgt,
                                                 'cycle_arrows': edges_list})
                continue

        for vsrc, vtgtlist in G.get_edge_data(src, tgt)['conns'].items():
            for vtgt in vtgtlist:
                connections_list.append({'src': vsrc, 'tgt': vtgt})

    connections_list = sorted(connections_list, key=itemgetter('src', 'tgt'))

    data_dict['sys_pathnames_list'] = list(sys_idx)
    data_dict['connections_list'] = connections_list
    data_dict['abs2prom'] = root_group._var_abs2prom

    data_dict['driver'] = {
        'name': driver_name,
        'type': driver_type,
        'options': driver_options,
        'opt_settings': driver_opt_settings
    }
    data_dict['design_vars'] = root_group.get_design_vars(use_prom_ivc=False)
    data_dict['responses'] = root_group.get_responses(use_prom_ivc=False)

    data_dict['declare_partials_list'] = _get_declare_partials(root_group)

    return data_dict


[docs]def n2(data_source, outfile=_default_n2_filename, path=None, values=_UNDEFINED, case_id=None, show_browser=True, embeddable=False, title=None, display_in_notebook=True): """ Generate an HTML file containing a tree viewer. Optionally opens a web browser to view the file. Parameters ---------- data_source : <Problem> or str The Problem or case recorder database containing the model or model data. outfile : str, optional The name of the final output file. path : str, optional If specified, the n2 viewer will begin in a state that is zoomed in on the selected path. This path should be the absolute path of a system in the model. values : bool or _UNDEFINED If True, include variable values. If False, all values will be None. If unspecified, this behaves as if set to True unless the data source is a Problem or model for which setup is not complete, in which case it behaves as if set to False. case_id : int, str, or None Case name or index of case in SQL file if data_source is a database. show_browser : bool, optional If True, pop up the system default web browser to view the generated html file. Defaults to True. embeddable : bool, optional If True, gives a single HTML file that doesn't have the <html>, <DOCTYPE>, <body> and <head> tags. If False, gives a single, standalone HTML file for viewing. title : str, optional The title for the diagram. Used in the HTML title. display_in_notebook : bool, optional If True, display the N2 diagram in the notebook, if this is called from a notebook. Defaults to True. """ # grab the model viewer data try: model_data = _get_viewer_data(data_source, values=values, case_id=case_id) err_msg = '' except TypeError as err: model_data = {} err_msg = str(err) issue_warning(err_msg) # If MPI is active only display one copy of the viewer. # If the data_source is a Problem, only run on the root proc of its comm. # Otherwise, only run on the global root proc. if MPI: try: comm = data_source.comm except AttributeError: comm = MPI.COMM_WORLD if comm.rank != 0: return options = {} model_data['options'] = options import openmdao openmdao_dir = os.path.dirname(inspect.getfile(openmdao)) vis_dir = os.path.join(openmdao_dir, "visualization/n2_viewer") if title: title = f"OpenMDAO Model Hierarchy and N2 diagram: {title}" else: title = "OpenMDAO Model Hierarchy and N2 diagram" html_vars = { 'title': title, 'embeddable': "embedded-diagram" if embeddable else "non-embedded-diagram", 'openmdao_version': openmdao_version, 'model_data': model_data, 'initial_path': path } if err_msg: with open(outfile, 'w') as f: f.write(err_msg) else: HtmlPreprocessor(os.path.join(vis_dir, "index.html"), outfile, allow_overwrite=True, var_dict=html_vars, json_dumps_default=default_noraise, verbose=False).run() if notebook: if display_in_notebook: # display in Jupyter Notebook outfile = os.path.relpath(outfile) if not colab: display(IFrame(src=outfile, width="100%", height=700)) else: display(HTML(outfile)) elif show_browser: # open it up in the browser from openmdao.utils.webview import webview webview(outfile)
# N2 report definition def _run_n2_report(prob, report_filename=_default_n2_filename): n2_filepath = prob.get_reports_dir() / report_filename try: n2(prob, show_browser=False, outfile=n2_filepath, display_in_notebook=False) except RuntimeError as err: # We ignore this error if str(err) != "Can't compute total derivatives unless " \ "both 'of' or 'wrt' variables have been specified.": raise err def _run_n2_report_w_errors(prob, report_filename=_default_n2_filename): if prob._any_rank_has_saved_errors(): n2_filepath = prob.get_reports_dir() / report_filename # only run the n2 here if we've had setup errors. Normally we'd wait until # after final_setup in order to have correct values for all of the I/O variables. try: n2(prob, show_browser=False, outfile=n2_filepath, display_in_notebook=False) except Exception as err: # We ignore this error if str(err) != "Can't compute total derivatives unless " \ "both 'of' or 'wrt' variables have been specified.": prob.model._collect_error(str(err)) # errors will result in exit at the end of the _check_collected_errors method def _n2_report_register(): register_report_hook('n2', 'final_setup', 'Problem', post=_run_n2_report, description='N2 diagram', report_filename=_default_n2_filename) register_report_hook('n2', '_check_collected_errors', 'Problem', pre=_run_n2_report_w_errors, description='N2 diagram') def _n2_setup_parser(parser): """ Set up the openmdao subparser for the 'openmdao n2' command. Parameters ---------- parser : argparse subparser The parser we're adding options to. """ parser.add_argument('file', nargs=1, help='Python script or recording containing the model. ' 'If metadata from a parallel run was recorded in a separate file, ' 'specify both database filenames delimited with a comma.') parser.add_argument('-o', default=_default_n2_filename, action='store', dest='outfile', help='html output file.') parser.add_argument('--no_values', action='store_true', dest='no_values', help="don't display variable values.") parser.add_argument('--no_browser', action='store_true', dest='no_browser', help="don't display in a browser.") parser.add_argument('--embed', action='store_true', dest='embeddable', help="create embeddable version.") parser.add_argument('--title', default=None, action='store', dest='title', help='diagram title.') parser.add_argument('--path', default=None, action='store', dest='path', help='initial system path to zoom into.') parser.add_argument('--problem', default=None, action='store', dest='problem_name', help='name of sub-problem, if target is a sub-problem') def _n2_cmd(options, user_args): """ Process command line args and call n2 on the specified file. Parameters ---------- options : argparse Namespace Command line options. user_args : list of str Command line options after '--' (if any). Passed to user script. """ filename = _to_filename(options.file[0]) probname = options.problem_name if filename.endswith('.py'): # disable the reports system, we only want the N2 report and then we exit os.environ['OPENMDAO_REPORTS'] = '0' def _view_model_w_errors(prob): # if problem name is not specified, use top-level problem (no delimiter in pathname) pathname = prob._metadata['pathname'] if (probname is None and '/' not in pathname) or (probname == prob._name): errs = prob._metadata['saved_errors'] if errs: # only run the n2 here if we've had setup errors. Normally we'd wait until # after final_setup in order to have correct values for all of the variables. n2(prob, outfile=options.outfile, show_browser=not options.no_browser, values=not options.no_values, title=options.title, path=options.path, embeddable=options.embeddable) # errors will result in exit at the end of the _check_collected_errors method else: # no errors, generate n2 after final_setup def _view_model_no_errors(prob): n2(prob, outfile=options.outfile, show_browser=not options.no_browser, values=not options.no_values, title=options.title, path=options.path, embeddable=options.embeddable) hooks._register_hook('final_setup', 'Problem', post=_view_model_no_errors, exit=True) hooks._setup_hooks(prob) hooks._register_hook('_check_collected_errors', 'Problem', pre=_view_model_w_errors) _load_and_exec(options.file[0], user_args) else: # assume the file is a recording, run standalone n2(filename, outfile=options.outfile, title=options.title, path=options.path, values=False if options.no_values else _UNDEFINED, show_browser=not options.no_browser, embeddable=options.embeddable)