Source code for openmdao.utils.array_utils

"""
Utils for dealing with arrays.
"""
import sys
from itertools import product
import hashlib

import numpy as np

from scipy.sparse import coo_matrix, csr_matrix

from openmdao.core.constants import INT_DTYPE
from openmdao.utils.omnumba import numba


if sys.version_info >= (3, 8):
    from math import prod

    def shape_to_len(shape):
        """
        Compute length given a shape tuple.

        Parameters
        ----------
        shape : tuple of int or None
            Numpy shape tuple.

        Returns
        -------
        int
            Length of array.
        """
        if shape is None:
            return None
        return prod(shape)
else:
[docs] def shape_to_len(shape): """ Compute length given a shape tuple. For realistic-dimension arrays, looping over the shape tuple is much faster than np.prod. Parameters ---------- shape : tuple of int Numpy shape tuple. Returns ------- int Length of multidimensional array. """ if shape is None: return None length = 1 for dim in shape: length *= dim return length
[docs]def evenly_distrib_idxs(num_divisions, arr_size): """ Return evenly distributed entries for the given array size. Given a number of divisions and the size of an array, chop the array up into pieces according to number of divisions, keeping the distribution of entries as even as possible. Parameters ---------- num_divisions : int Number of parts to divide the array into. arr_size : int Number of entries in the array. Returns ------- tuple A tuple of (sizes, offsets), where sizes and offsets contain values for all divisions. """ base, leftover = divmod(arr_size, num_divisions) sizes = np.full(num_divisions, base, dtype=INT_DTYPE) # evenly distribute the remainder across size-leftover procs, # instead of giving the whole remainder to one proc sizes[:leftover] += 1 offsets = np.zeros(num_divisions, dtype=INT_DTYPE) offsets[1:] = np.cumsum(sizes)[:-1] return sizes, offsets
[docs]def scatter_dist_to_local(dist_val, comm, sizes): """ Scatter a full distributed value to local values in each MPI process. Parameters ---------- dist_val : ndarray The full distributed value. comm : MPI communicator The MPI communicator. sizes : ndarray The array of sizes for each process. Returns ------- ndarray The local value on this process. """ from openmdao.utils.mpi import MPI offsets = np.zeros(sizes.shape, dtype=INT_DTYPE) offsets[1:] = np.cumsum(sizes)[:-1] local = np.zeros(sizes[comm.rank]) comm.Scatterv([dist_val, sizes, offsets, MPI.DOUBLE], local, root=0) return local
[docs]def get_evenly_distributed_size(comm, full_size): """ Return the size of the current rank's part of an array of the given size. Given a communicator and the size of an array, chop the array up into pieces according to the size of the communicator, keeping the distribution of entries as even as possible. Parameters ---------- comm : MPI communicator The communicator we're distributing the array across. full_size : int Number of entries in the array. Returns ------- int The size of this rank's part of the full distributed array. """ base, leftover = divmod(full_size, comm.size) sizes = np.full(comm.size, base, dtype=INT_DTYPE) # evenly distribute the remainder across full_size-leftover procs, # instead of giving the whole remainder to one proc sizes[:leftover] += 1 return sizes[comm.rank]
[docs]def take_nth(rank, size, seq): """ Iterate returning every nth value. Return an iterator over the sequence that returns every nth element of seq based on the given rank within a group of the given size. For example, if size = 2, a rank of 0 returns even indexed elements and a rank of 1 returns odd indexed elements. Parameters ---------- rank : int MPI rank of this process. size : int Size of the array we're taking nth entries from. seq : iter Iterator containing the values being returned. Yields ------ generator """ assert rank < size it = iter(seq) while True: for proc in range(size): if rank == proc: try: yield next(it) except StopIteration: return else: try: next(it) except StopIteration: return
[docs]def array_viz(arr, prob=None, of=None, wrt=None, stream=sys.stdout): """ Display the structure of a boolean array in a compact form. If prob, of, and wrt are supplied, print the name of the response alongside each row and print the names of the design vars, aligned with each column, at the bottom. Parameters ---------- arr : ndarray Array being visualized. prob : Problem or None Problem object. of : list of str or None Names of response variables used in derivative calculation. wrt : list of str or None Names of design variables used in derivative calculation. stream : file-like Stream where output will be written. """ if len(arr.shape) != 2: raise RuntimeError("array_viz only works for 2d arrays.") if prob is not None: if of is None: of = prob.driver._get_ordered_nl_responses() if wrt is None: wrt = list(prob.driver._designvars) if prob is None or of is None or wrt is None: for r in range(arr.shape[0]): for c in range(arr.shape[1]): if arr[r, c]: stream.write('x') else: stream.write('.') stream.write(' %d\n' % r) else: row = 0 for res in of: for r in range(row, row + prob.driver._responses[res]['size']): col = 0 for dv in wrt: for c in range(col, col + prob.driver._designvars[dv]['size']): if arr[r, c]: stream.write('x') else: stream.write('.') col = c + 1 stream.write(' %d %s\n' % (r, res)) row = r + 1 start = 0 for name in wrt: tab = ' ' * start stream.write('%s|%s\n' % (tab, name)) start += prob.driver._designvars[name]['size']
[docs]def array_connection_compatible(shape1, shape2): """ Return True if the two arrays shapes are compatible. Array shapes are compatible if the underlying data has the same size and is stored in the same contiguous order for the two shapes. Parameters ---------- shape1 : tuple of int Shape of the first array. shape2 : tuple of int Shape of the second array. Returns ------- bool True if the two shapes are compatible for connection, else False. """ ashape1 = np.asarray(shape1, dtype=INT_DTYPE) ashape2 = np.asarray(shape2, dtype=INT_DTYPE) size1 = shape_to_len(ashape1) size2 = shape_to_len(ashape2) # Shapes are not connection-compatible if size is different if size1 != size2: return False nz1 = np.where(ashape1 > 1)[0] nz2 = np.where(ashape2 > 1)[0] if len(nz1) > 0: fundamental_shape1 = ashape1[np.min(nz1): np.max(nz1) + 1] else: fundamental_shape1 = np.ones((1,)) if len(nz2) > 0: fundamental_shape2 = ashape2[np.min(nz2): np.max(nz2) + 1] else: fundamental_shape2 = np.ones((1,)) if len(fundamental_shape1) != len(fundamental_shape2): return False return np.all(fundamental_shape1 == fundamental_shape2)
[docs]def tile_sparse_jac(data, rows, cols, nrow, ncol, num_nodes): """ Assemble arrays necessary to define a COO sparse jacobian for a vectorized component. These arrays can also be passed to csc_matrix or csr_matrix to create CSC and CSR sparse matrices. Parameters ---------- data : ndarray Array of values. rows : index array Array of row indices. cols : index array Array of column indices. nrow : int Number of rows in sub jacobian. ncol : int Number of columns in sub jacobian. num_nodes : int Number of vectorized copies to tile. Returns ------- ndarray, ndarray, ndarray Arrays to define a COO sparse jacobian of size num_nodes*nrow by num_nodes*ncol. """ nnz = len(rows) if np.ndim(data) == 0: data = data * np.ones(nnz) if np.ndim(nrow) > 0: nrow = shape_to_len(nrow) if np.ndim(ncol) > 0: ncol = shape_to_len(ncol) repeat_arr = np.repeat(np.arange(num_nodes), nnz) data = np.tile(data, num_nodes) rows = np.tile(rows, num_nodes) + repeat_arr * nrow cols = np.tile(cols, num_nodes) + repeat_arr * ncol return data, rows, cols
def _global2local_offsets(global_offsets): """ Given existing global offsets, return a copy with offsets localized to each process. Parameters ---------- global_offsets : dict Arrays of global offsets keyed by vec_name and deriv direction. Returns ------- dict Arrays of local offsets keyed by vec_name and deriv direction. """ offsets = {} for type_ in global_offsets: goff = global_offsets[type_] offsets[type_] = goff.copy() if goff[0].size > 0: # adjust offsets to be local in each process offsets[type_] -= goff[:, 0].reshape((goff.shape[0], 1)) return offsets
[docs]def get_input_idx_split(full_idxs, inputs, outputs, use_full_cols, is_total): """ Split an array of indices into vec outs + ins into two arrays of indices into outs and ins. Parameters ---------- full_idxs : ndarray Indices into the full array (which could be outs + ins or just ins). inputs : Vector Inputs vector. outputs : Vector Outputs vector. use_full_cols : bool If True, full idxs are into the full outs + ins vector. is_total : bool If True, total derivatives are being computed and wrt vector is the outputs vector. Returns ------- list of tuples Each tuple is of the form (array, idxs). """ assert len(full_idxs) > 0, "Empty index array passed to get_input_idx_split." full_idxs = np.asarray(full_idxs) if use_full_cols: out_size = len(outputs) out_idxs = full_idxs[full_idxs < out_size] in_idxs = full_idxs[full_idxs >= out_size] - out_size full = [(outputs, out_idxs), (inputs, in_idxs)] return [(vec, inds) for vec, inds in full if inds.size > 0] elif is_total: return [(outputs, full_idxs)] else: return [(inputs, full_idxs)]
[docs]def convert_neg(arr, size): """ Convert negative indices based on full array size. Parameters ---------- arr : ndarray The index array. size : int The full size of the array. Returns ------- ndarray The array with negative indices converted to positive. """ arr[arr < 0] += size return arr
def _flatten_src_indices(src_indices, shape_in, shape_out, size_out): """ Convert src_indices into a flat, non-negative form. Parameters ---------- src_indices : ndarray Array of src_indices. Can be flat or multi-dimensional. shape_in : tuple Shape of the input variable. shape_out : tuple Shape of the output variable. size_out : int Size of the output variable. Returns ------- ndarray The flattened src_indices. """ if len(shape_out) == 1 or shape_in == src_indices.shape: return convert_neg(src_indices.ravel(), size_out) entries = [list(range(x)) for x in shape_in] cols = np.vstack([src_indices[i] for i in product(*entries)]) dimidxs = [convert_neg(cols[:, i], shape_out[i]) for i in range(cols.shape[1])] return np.ravel_multi_index(dimidxs, shape_out)
[docs]def sizes2offsets(size_array): """ For a given array of sizes, return an array of offsets. Offsets will be computed using a flattened version of size_array and then reshaped to match the shape of size_array. Parameters ---------- size_array : ndarray Array of sizes. Returns ------- ndarray Array of offsets. """ offsets = np.zeros(size_array.size, dtype=size_array.dtype) offsets[1:] = np.cumsum(size_array.flat)[:-1] return offsets.reshape(size_array.shape)
[docs]def abs_complex(x): """ Compute the absolute value of a complex-stepped vector. Rather than taking a Euclidian norm, simply negate the values that are less than zero. Parameters ---------- x : ndarray Input array. Returns ------- ndarray Complex-step absolute value of the array. """ idx_neg = np.where(x < 0) x[idx_neg] = -x[idx_neg] return x
[docs]def dv_abs_complex(x, x_deriv): """ Compute the complex-step derivative of the absolute value function and its derivative. Parameters ---------- x : ndarray Input array, used for determining which elements to negate. x_deriv : ndarray Incominng partial derivative array, may have one additional dimension. Returns ------- ndarray Absolute value applied to x. ndarray Absolute value applied to x_deriv. """ idx_neg = np.where(x < 0) # Special case when x is (1, ) and x_deriv is (1, n). if len(x_deriv.shape) == 1: if idx_neg[0].size != 0: return -x, -x_deriv x[idx_neg] = -x[idx_neg] x_deriv[idx_neg] = -x_deriv[idx_neg] return x, x_deriv
[docs]def rand_sparsity(shape, density_ratio, dtype=bool): """ Return a random COO matrix of the given shape with given percent density. Row and column indices are generated using random integers so some duplication is possible, resulting in a matrix with somewhat lower density than specified. Parameters ---------- shape : tuple Desired shape of the matrix. density_ratio : float Approximate ratio of nonzero to zero entries in the desired matrix. dtype : type Specifies type of the values in the returned matrix. Returns ------- coo_matrix A COO matrix with approximately the nonzero density desired. """ assert len(shape) == 2, f"shape must be a size 2 tuple but {shape} was given" nrows, ncols = shape nnz = int(nrows * ncols * density_ratio) data = np.ones(nnz, dtype=dtype) rows = np.random.randint(0, nrows, nnz) cols = np.random.randint(0, ncols, nnz) coo = coo_matrix((data, (rows, cols)), shape=shape) # get rid of dup rows/cols coo.sum_duplicates() coo.data[:] = 1 # set all nonzero values to 1. For bool won't matter, but need for other dtypes return coo
[docs]def sparse_subinds(orig, inds): """ Compute new rows or cols resulting from applying inds on top of an existing sparsity pattern. This only comes into play when we have an approx total jacobian where some dv/resp have indices. Parameters ---------- orig : ndarray Either row or col indices (part of a subjac sparsity pattern). inds : ndarray or list Sub-indices introduced when adding a desvar or response. Returns ------- ndarray New compressed rows or cols. ndarray Mask array that can be used to update subjac value and corresponding index array to orig. """ mask = np.zeros(orig.size, dtype=bool) for i in inds: mask |= orig == i newsp = orig[mask] # replace the index with the 'compressed' index after we've masked out entries for r, i in enumerate(np.sort(inds)): newsp[newsp == i] = r return newsp, mask
[docs]def identity_column_iter(column): """ Yield the given column with a 1 in each position. This is useful if you don't want to allocate memory for the full sized identity matrix. Note that this reuses the column array and assumes that the column array has not been modified outside of this function. Parameters ---------- column : ndarray The array that will contain a column of the 'virtual' identity matrix. Yields ------ ndarray A column of the identity matrix. """ column[:] = 0 for i in range(column.size): column[i - 1] = 0 column[i] = 1 yield column
[docs]def array_hash(arr, alg=hashlib.sha1): """ Return a hash of the given numpy array. arr must be C-contiguous. Parameters ---------- arr : ndarray The array to be hashed. alg : hashing algorithm Algorithm defaults to hashlib.sha1. Returns ------- str The computed hash. """ return alg(arr.view(np.uint8)).hexdigest()
_randgen = np.random.default_rng()
[docs]def get_random_arr(shape, comm=None, generator=None): """ Request a random array, ensuring that its value will be consistent across MPI processes. Parameters ---------- shape : int Shape of the random array. comm : MPI communicator or None All members of this communicator will receive the random array. generator : random number generator or None If not None, use this as the random number generator if on rank 0. Returns ------- ndarray The random array. """ gen = generator if generator is not None else _randgen if comm is None or comm.size == 1: return gen.random(shape) if comm.rank == 0: arr = gen.random(shape) else: arr = np.empty(shape) comm.Bcast(arr, root=0) return arr
[docs]class ValueRepeater(object): """ An iterable over a single value that repeats a given number of times. Parameters ---------- val : object The value to be repeated. size : int The number of times to repeat the value. Attributes ---------- val : object The value to be repeated. size : int The number of times to repeat the value. Yields ------ object The value. """
[docs] def __init__(self, val, size): """ Initialize all attributes. """ self.val = val self.size = size
[docs] def __iter__(self): """ Return an iterator over the value. Yields ------ object The value. """ for i in range(self.size): yield self.val
def __len__(self): """ Return the size of the value. Returns ------- int The size of the value. """ return self.size
[docs] def __contains__(self, item): """ Return True if the given item is equal to the value. Parameters ---------- item : object The item to be checked for containment. """ return item == self.val
[docs] def __getitem__(self, idx): """ Return the value. Parameters ---------- idx : int The index of the value to be returned. """ i = idx if idx < 0: idx += self.size if idx >= self.size: raise IndexError(f"index {i} is out of bounds for size {self.size}") return self.val
[docs]def convert_nans_in_nested_list(val_as_list): """ Given a list, possibly nested, replace any numpy.nan values with the string "nan". This is done since JSON does not handle nan. This code is used to pass variable values to the N2 diagram. The modifications to the list values are done in-place to avoid excessive copying of lists. Parameters ---------- val_as_list : list List, possibly nested, whose nan elements need to be converted. """ for i, val in enumerate(val_as_list): if isinstance(val, list): convert_nans_in_nested_list(val) else: if np.isnan(val): val_as_list[i] = "nan" elif np.isinf(val): val_as_list[i] = "infinity" else: val_as_list[i] = val
[docs]def convert_ndarray_to_support_nans_in_json(val): """ Given numpy array of arbitrary dimensions, return the equivalent nested list with nan replaced. numpy.nan values are replaced with the string "nan". Parameters ---------- val : ndarray Numpy array to be converted. Returns ------- list The equivalent list (possibly nested) with any nan values replaced with the string "nan". """ val = np.asarray(val) # do a quick check for any nans or infs and if not we can avoid the slow check nans = np.where(np.isnan(val)) infs = np.where(np.isinf(val)) if nans[0].size == 0 and infs[0].size == 0: return val.tolist() val_as_list = val.tolist() convert_nans_in_nested_list(val_as_list) return val_as_list
if numba is None: allclose = np.allclose def allzero(a): """ Return True if all elements of a are zero. Parameters ---------- a : ndarray Array to be checked for zeros. Returns ------- bool True if all elements of a are zero. """ return not np.any(a) else: @numba.jit(nopython=True, nogil=True) def allclose(a, b, rtol=3e-16, atol=3e-16): """ Return True if all elements of a and b are close within the given absolute tolerance. Returns when the first non-close element is found. a and b must have the same size. Parameters ---------- a : ndarray First array to be compared. b : ndarray Second array to be compared. rtol : float Relative tolerance for comparison. atol : float Absolute tolerance for comparison. Returns ------- bool True if all elements of a and b are close within the given absolute and relative tolerance. """ for i in range(len(a)): aval = a[i] bval = b[i] absdiff = aval - bval if absdiff < 0.: absdiff = -absdiff if aval < 0.: aval = -aval if bval < 0.: bval = -bval if aval < bval: vmax = rtol * bval else: vmax = rtol * aval if atol > vmax: vmax = atol if absdiff > vmax: return False return True
[docs] @numba.jit(nopython=True, nogil=True) def allzero(a): """ Return True if all elements of a are zero. Unlike np.any, this returns as soon as a non-zero element is found and so can be faster for arrays having nonzero values. It's comparable in speed (slighly faster) to 'not np.any' for arrays that are all zeros. Parameters ---------- a : ndarray Array to be checked for zeros. Returns ------- bool True if all elements of a are zero. """ for i in range(len(a)): if a[i] != 0.: return False return True
[docs]def submat_sparsity_iter(row_var_size_iter, col_var_size_iter, nzrows, nzcols, shape): """ Yield the sparsity of each submatrix, based on variable names and sizes. Parameters ---------- row_var_size_iter : iterator of (name, size) Iterator of row variable names and sizes. col_var_size_iter : iterator of (name, size) Iterator of column variable names and sizes. nzrows : ndarray Row indices of nonzero entries in the full matrix. nzcols : ndarray Column indices of nonzero entries in the full matrix. shape : tuple Shape of the full matrix. Yields ------ tuple (row_varname, col_varname, nonzero rows, nonzero cols, shape) """ row_start = row_end = 0 data = np.ones(nzrows.size, dtype=np.int8) csr = csr_matrix((data, (nzrows, nzcols)), shape=shape) col_iter = list(col_var_size_iter) # need to iterate over multiple times for of, of_size in row_var_size_iter: row_end += of_size rowslice = csr[row_start:row_end, :] row_start = row_end csc = rowslice.tocsc() col_start = col_end = 0 for wrt, wrt_size in col_iter: col_end += wrt_size submat = csc[:, col_start:col_end].tocoo() col_start = col_end if submat.row.size > 0: # only yield if nonzero yield (of, wrt, submat.row, submat.col, submat.shape)