"""Define the scipy iterative solver class."""
from packaging.version import Version
import numpy as np
import scipy
from scipy.sparse.linalg import LinearOperator, gmres
from openmdao.solvers.linear.linear_rhs_checker import LinearRHSChecker
from openmdao.solvers.solver import LinearSolver
_SOLVER_TYPES = {
# 'bicg': bicg,
# 'bicgstab': bicgstab,
# 'cg': cg,
# 'cgs': cgs,
'gmres': gmres,
}
[docs]class ScipyKrylov(LinearSolver):
"""
The Krylov iterative solvers in scipy.sparse.linalg.
Parameters
----------
**kwargs : {}
Dictionary of options set by the instantiating class/script.
Attributes
----------
precon : Solver
Preconditioner for linear solve. Default is None for no preconditioner.
_lin_rhs_checker : LinearRHSChecker or None
Object for checking the right-hand side of the linear solve.
"""
SOLVER = 'LN: SCIPY'
[docs] def __init__(self, **kwargs):
"""
Declare the solver option.
"""
super().__init__(**kwargs)
self.precon = None
self._lin_rhs_checker = None
def _assembled_jac_solver_iter(self):
"""
Return a generator of linear solvers using assembled jacs.
"""
if self.options['assemble_jac']:
yield self
if self.precon is not None:
for s in self.precon._assembled_jac_solver_iter():
yield s
def _declare_options(self):
"""
Declare options before kwargs are processed in the init method.
"""
super()._declare_options()
self.options.declare('solver', default='gmres', values=tuple(_SOLVER_TYPES.keys()),
desc='function handle for actual solver')
self.options.declare('restart', default=20, types=int,
desc='Number of iterations between restarts. Larger values increase '
'iteration cost, but may be necessary for convergence. This '
'option applies only to gmres.')
self.options.declare('rhs_checking', types=(bool, dict),
default=False,
desc="If True, check RHS vs. cache and/or zero to avoid some solves."
"Can also be set to a dict of options for the LinearRHSChecker to "
"allow finer control over it. Allowed options are: "
f"{LinearRHSChecker.options}")
# changing the default maxiter from the base class
self.options['maxiter'] = 1000
self.options['atol'] = 1.0e-12
self.supports['implicit_components'] = True
def _setup_solvers(self, system, depth):
"""
Assign system instance, set depth, and optionally perform setup.
Parameters
----------
system : <System>
pointer to the owning system.
depth : int
depth of the current system (already incremented).
"""
super()._setup_solvers(system, depth)
if self.precon is not None:
self.precon._setup_solvers(self._system(), self._depth + 1)
self._lin_rhs_checker = LinearRHSChecker.create(self._system(),
self.options['rhs_checking'])
def _set_solver_print(self, level=2, type_='all'):
"""
Control printing for solvers and subsolvers in the model.
Parameters
----------
level : int
iprint level. Set to 2 to print residuals each iteration; set to 1
to print just the iteration totals; set to 0 to disable all printing
except for failures, and set to -1 to disable all printing including failures.
type_ : str
Type of solver to set: 'LN' for linear, 'NL' for nonlinear, or 'all' for all.
"""
super()._set_solver_print(level=level, type_=type_)
if self.precon is not None and type_ != 'NL':
self.precon._set_solver_print(level=level, type_=type_)
def _linearize_children(self):
"""
Return a flag that is True when we need to call linearize on our subsystems' solvers.
Returns
-------
bool
Flag for indicating child linerization
"""
return (self.precon is not None) and (self.precon._linearize_children())
def _linearize(self):
"""
Perform any required linearization operations such as matrix factorization.
"""
if self.precon is not None:
self.precon._linearize()
if self._lin_rhs_checker is not None:
self._lin_rhs_checker.clear()
def _mat_vec(self, in_arr):
"""
Compute matrix-vector product.
Parameters
----------
in_arr : ndarray
the incoming array.
Returns
-------
ndarray
the outgoing array after the product.
"""
system = self._system()
if self._mode == 'fwd':
x_vec = system._doutputs
b_vec = system._dresiduals
else: # rev
x_vec = system._dresiduals
b_vec = system._doutputs
x_vec.set_val(in_arr)
scope_out, scope_in = system._get_matvec_scope()
system._apply_linear(self._assembled_jac, self._mode, scope_out, scope_in)
# DO NOT REMOVE: frequently used for debugging
# print('in', in_arr)
# print('out', b_vec.asarray())
return b_vec.asarray()
def _monitor(self, res):
"""
Print the residual and iteration number (callback from SciPy).
Parameters
----------
res : ndarray
the current residual vector.
"""
norm = np.linalg.norm(res)
if self._iter_count == 0:
if norm != 0.0:
self._norm0 = norm
else:
self._norm0 = 1.0
self._mpi_print(self._iter_count, norm, norm / self._norm0)
self._iter_count += 1
[docs] def solve(self, mode, rel_systems=None):
"""
Run the solver.
Parameters
----------
mode : str
'fwd' or 'rev'.
rel_systems : set of str
Names of systems relevant to the current solve. Deprecated.
"""
self._mode = mode
system = self._system()
solver = _SOLVER_TYPES[self.options['solver']]
if solver is gmres:
restart = self.options['restart']
maxiter = self.options['maxiter']
atol = self.options['atol']
rtol = self.options['rtol']
if mode == 'fwd':
x_vec = system._doutputs
b_vec = system._dresiduals
else: # rev
x_vec = system._dresiduals
b_vec = system._doutputs
if self._lin_rhs_checker is not None:
sol_array, is_zero = self._lin_rhs_checker.get_solution(b_vec.asarray(), system)
if is_zero:
x_vec.set_val(0.0)
return
if sol_array is not None:
x_vec.set_val(sol_array)
return
x_vec_combined = x_vec.asarray()
size = x_vec_combined.size
linop = LinearOperator((size, size), dtype=float, matvec=self._mat_vec)
# Support a preconditioner
if self.precon:
M = LinearOperator((size, size), matvec=self._apply_precon, dtype=float)
else:
M = None
self._iter_count = 0
if solver is gmres:
if Version(Version(scipy.__version__).base_version) < Version("1.12"):
x, info = solver(linop, b_vec.asarray(True), M=M, restart=restart,
x0=x_vec_combined, maxiter=maxiter, tol=atol, atol='legacy',
callback=self._monitor, callback_type='legacy')
else:
x, info = solver(linop, b_vec.asarray(True), M=M, restart=restart,
x0=x_vec_combined, maxiter=maxiter, atol=atol, rtol=rtol,
callback=self._monitor, callback_type='legacy')
else:
x, info = solver(linop, b_vec.asarray(True), M=M,
x0=x_vec_combined, maxiter=maxiter, tol=atol, atol='legacy',
callback=self._monitor, callback_type='legacy')
if info == 0:
x_vec.set_val(x)
elif info > 0:
self._convergence_failure()
else:
msg = (f"Solver '{self.SOLVER}' on system '{self._system().pathname}': "
f"had an illegal input or breakdown (info={info}) after {self._iter_count} "
"iterations.")
self.report_failure(msg)
if not system.under_complex_step and self._lin_rhs_checker is not None and mode == 'rev':
self._lin_rhs_checker.add_solution(b_vec.asarray(), x, copy=True)
def _apply_precon(self, in_vec):
"""
Apply preconditioner.
Parameters
----------
in_vec : ndarray
Incoming vector.
Returns
-------
ndarray
The preconditioned Vector.
"""
system = self._system()
mode = self._mode
# Need to clear out any junk from the inputs.
system._dinputs.set_val(0.0)
# assign x and b vectors based on mode
if mode == 'fwd':
x_vec = system._doutputs
b_vec = system._dresiduals
else: # rev
x_vec = system._dresiduals
b_vec = system._doutputs
# set value of b vector to KSP provided value
b_vec.set_val(in_vec)
# call the preconditioner
self._solver_info.append_precon()
self.precon.solve(mode)
self._solver_info.pop()
# return resulting value of x vector
return x_vec.asarray(copy=True)
[docs] def use_relevance(self):
"""
Return True if relevance should be active.
Returns
-------
bool
True if relevance should be active.
"""
return False