"""LinearSolver that uses PetSC KSP to solve for a system's derivatives."""
import numpy as np
from openmdao.solvers.solver import LinearSolver
from openmdao.solvers.linear.linear_rhs_checker import LinearRHSChecker
from openmdao.utils.mpi import check_mpi_env
use_mpi = check_mpi_env()
if use_mpi is not False:
try:
import petsc4py
from petsc4py import PETSc
except ImportError:
PETSc = None
if use_mpi is True:
raise ImportError("Importing petsc4py failed and OPENMDAO_USE_MPI is true.")
else:
PETSc = None
KSP_TYPES = [
"richardson",
"chebyshev",
"cg",
"groppcg",
"pipecg",
"pipecgrr",
"cgne",
"nash",
"stcg",
"gltr",
"fcg",
"pipefcg",
"gmres",
"pipefgmres",
"fgmres",
"lgmres",
"dgmres",
"pgmres",
"tcqmr",
"bcgs",
"ibcgs",
"fbcgs",
"fbcgsr",
"bcgsl",
"cgs",
"tfqmr",
"cr",
"pipecr",
"lsqr",
"preonly",
"qcg",
"bicg",
"minres",
"symmlq",
"lcd",
"python",
"gcr",
"pipegcr",
"tsirm",
"cgls"
]
def _get_petsc_vec_array_new(vec):
"""
Get the array of values for the given PETSc vector.
Helper function to handle a petsc backwards incompatibility.
Parameters
----------
vec : petsc vector
Vector whose data is being requested.
Returns
-------
ndarray
A readonly copy of the array of values from vec.
"""
return vec.getArray(readonly=True)
def _get_petsc_vec_array_old(vec):
"""
Get the array of values for the given PETSc vector.
Helper function to handle a petsc backwards incompatibility.
Parameters
----------
vec : petsc vector
Vector whose data is being requested.
Returns
-------
ndarray
An array of values from vec.
"""
return vec.getArray()
if PETSc:
try:
petsc_version = petsc4py.__version__
except AttributeError: # hack to fix doc-tests
petsc_version = "3.5"
if PETSc and int((petsc_version).split('.')[1]) >= 6:
_get_petsc_vec_array = _get_petsc_vec_array_new
else:
_get_petsc_vec_array = _get_petsc_vec_array_old
[docs]class Monitor(object):
"""
Prints output from PETSc's KSP solvers.
Callable object given to KSP as a callback for printing the residual.
Parameters
----------
solver : object
The openmdao solver.
Attributes
----------
_solver : _solver
The openmdao solver.
_norm : float
The current norm.
_norm0 : float
The norm for the first iteration.
"""
[docs] def __init__(self, solver):
"""
Store pointer to the openmdao solver and initialize norms.
"""
self._solver = solver
self._norm = 1.0
self._norm0 = 1.0
def __call__(self, ksp, counter, norm):
"""
Store norm if first iteration, and print norm.
Parameters
----------
ksp : object
the KSP solver.
counter : int
the counter.
norm : float
the norm.
"""
if counter == 0 and norm != 0.0:
self._norm0 = norm
self._norm = norm
self._solver._mpi_print(counter, norm, norm / self._norm0)
self._solver._iter_count += 1
[docs]class PETScKrylov(LinearSolver):
"""
LinearSolver that uses PetSC KSP to solve for a system's derivatives.
Parameters
----------
**kwargs : dict
Dictionary of options set by the instantiating class/script.
Attributes
----------
precon : Solver
Preconditioner for linear solve. Default is None for no preconditioner.
_ksp : dist
Dictionary of KSP instances (keyed on vector name).
_lin_rhs_checker : LinearRHSChecker or None
Object for checking the right-hand side of the linear solve.
"""
SOLVER = 'LN: PETScKrylov'
[docs] def __init__(self, **kwargs):
"""
Declare the solver options.
"""
super().__init__(**kwargs)
if PETSc is None:
raise RuntimeError(f"{self.msginfo}: PETSc is not available. "
"Set shell variable OPENMDAO_USE_MPI=1 to detect earlier.")
self._ksp = None
self.precon = None
self._lin_rhs_checker = None
def _declare_options(self):
"""
Declare options before kwargs are processed in the init method.
"""
super()._declare_options()
self.options.declare('ksp_type', default='fgmres', values=KSP_TYPES,
desc="KSP algorithm to use. Default is 'fgmres'.")
self.options.declare('restart', default=1000, types=int,
desc='Number of iterations between restarts. Larger values increase '
'iteration cost, but may be necessary for convergence')
self.options.declare('precon_side', default='right', values=['left', 'right'],
desc='Preconditioner side, default is right.')
self.options.declare('rhs_checking', types=(bool, dict),
default=False,
desc="If True, check RHS vs. cache and/or zero to avoid some solves."
"Can also be set to a dict of options for the LinearRHSChecker to "
"allow finer control over it. Allowed options are: "
f"{LinearRHSChecker.options}")
# changing the default maxiter from the base class
self.options['maxiter'] = 100
self.supports['implicit_components'] = True
def _assembled_jac_solver_iter(self):
"""
Return a generator of linear solvers using assembled jacs.
"""
if self.options['assemble_jac']:
yield self
if self.precon is not None:
for s in self.precon._assembled_jac_solver_iter():
yield s
[docs] def use_relevance(self):
"""
Return True if relevance should be active.
Returns
-------
bool
True if relevance should be active.
"""
return False
def _setup_solvers(self, system, depth):
"""
Assign system instance, set depth, and optionally perform setup.
Parameters
----------
system : <System>
pointer to the owning system.
depth : int
depth of the current system (already incremented).
"""
super()._setup_solvers(system, depth)
if self.precon is not None:
self.precon._setup_solvers(self._system(), self._depth + 1)
self._lin_rhs_checker = LinearRHSChecker.create(self._system(),
self.options['rhs_checking'])
def _set_solver_print(self, level=2, type_='all'):
"""
Control printing for solvers and subsolvers in the model.
Parameters
----------
level : int
iprint level. Set to 2 to print residuals each iteration; set to 1
to print just the iteration totals; set to 0 to disable all printing
except for failures, and set to -1 to disable all printing including failures.
type_ : str
Type of solver to set: 'LN' for linear, 'NL' for nonlinear, or 'all' for all.
"""
super()._set_solver_print(level=level, type_=type_)
if self.precon is not None and type_ != 'NL':
self.precon._set_solver_print(level=level, type_=type_)
[docs] def mult(self, mat, in_vec, result):
"""
Apply Jacobian matrix (KSP Callback).
The following attributes must be defined when solve is called to
provide information used in this callback:
_system : System
pointer to the owning system.
_vec_name : str
the right-hand-side (RHS) vector name.
_mode : str
'fwd' or 'rev'.
Parameters
----------
mat : PETSc.Mat
PETSc matrix object.
in_vec : PetSC Vector
Incoming vector.
result : PetSC Vector
Empty array into which we place the matrix-vector product.
"""
# assign x and b vectors based on mode
system = self._system()
if self._mode == 'fwd':
x_vec = system._doutputs
b_vec = system._dresiduals
else: # rev
x_vec = system._dresiduals
b_vec = system._doutputs
# set value of x vector to KSP provided value
x_vec.set_val(_get_petsc_vec_array(in_vec))
# apply linear
scope_out, scope_in = system._get_matvec_scope()
system._apply_linear(self._assembled_jac, self._mode, scope_out, scope_in)
# stuff resulting value of b vector into result for KSP
result.array[:] = b_vec.asarray()
def _linearize_children(self):
"""
Return a flag that is True when we need to call linearize on our subsystems' solvers.
Returns
-------
bool
Flag for indicating child linerization
"""
return (self.precon is not None) and (self.precon._linearize_children())
def _linearize(self):
"""
Perform any required linearization operations such as matrix factorization.
"""
if self.precon is not None:
self.precon._linearize()
if self._lin_rhs_checker is not None:
self._lin_rhs_checker.clear()
[docs] def solve(self, mode, rel_systems=None):
"""
Solve the linear system for the problem in self._system().
The full solution vector is returned.
Parameters
----------
mode : str
Derivative mode, can be 'fwd' or 'rev'.
rel_systems : set of str
Names of systems relevant to the current solve. Deprecated.
"""
self._mode = mode
system = self._system()
options = self.options
if system.under_complex_step:
raise RuntimeError('{}: PETScKrylov solver is not supported under '
'complex step.'.format(self.msginfo))
maxiter = options['maxiter']
atol = options['atol']
rtol = options['rtol']
# assign x and b vectors based on mode
if self._mode == 'fwd':
x_vec = system._doutputs
b_vec = system._dresiduals
else: # rev
x_vec = system._dresiduals
b_vec = system._doutputs
if self._lin_rhs_checker is not None:
sol_array, is_zero = self._lin_rhs_checker.get_solution(b_vec.asarray(), system)
if is_zero:
x_vec.set_val(0.0)
return
if sol_array is not None:
x_vec.set_val(sol_array)
return
rhs_array = b_vec.asarray(copy=True)
sol_array = x_vec.asarray(copy=True)
# create PETSc vectors from numpy arrays
sol_petsc_vec = PETSc.Vec().createWithArray(sol_array, comm=system._comm)
rhs_petsc_vec = PETSc.Vec().createWithArray(rhs_array, comm=system._comm)
# run PETSc solver
self._iter_count = 0
ksp = self._get_ksp_solver(system)
ksp.setTolerances(max_it=maxiter, atol=atol, rtol=rtol)
ksp.solve(rhs_petsc_vec, sol_petsc_vec)
# stuff the result into the x vector
x_vec.set_val(sol_array)
# as of petsc4py v3.20, the 'converged' attribute has been renamed to 'is_converged'
if hasattr(self._ksp, 'is_converged'):
if not self._ksp.is_converged:
self._convergence_failure()
elif not self._ksp.converged:
self._convergence_failure()
sol_petsc_vec = rhs_petsc_vec = None
if not system.under_complex_step and self._lin_rhs_checker is not None and mode == 'rev':
self._lin_rhs_checker.add_solution(rhs_array, sol_array, copy=False)
[docs] def apply(self, mat, in_vec, result):
"""
Apply preconditioner.
Parameters
----------
mat : PETSc.Mat
PETSc matrix object.
in_vec : PETSc.Vector
Incoming vector.
result : PETSc.Vector
Empty vector in which the preconditioned in_vec is stored.
"""
if self.precon:
system = self._system()
mode = self._mode
# Need to clear out any junk from the inputs.
system._dinputs.set_val(0.0)
# assign x and b vectors based on mode
if mode == 'fwd':
x_vec = system._doutputs
b_vec = system._dresiduals
else: # rev
x_vec = system._dresiduals
b_vec = system._doutputs
# set value of b vector to KSP provided value
b_vec.set_val(_get_petsc_vec_array(in_vec))
# call the preconditioner
self._solver_info.append_precon()
self.precon.solve(mode)
self._solver_info.pop()
# stuff resulting value of x vector into result for KSP
result.array[:] = x_vec.asarray()
else:
# no preconditioner, just pass back the incoming vector
result.array[:] = _get_petsc_vec_array(in_vec)
def _get_ksp_solver(self, system):
"""
Get an instance of the KSP solver in `system`.
Instances will be created on first request and cached for future use.
Parameters
----------
system : `System`
Parent `System` object.
Returns
-------
KSP
the KSP solver instance.
"""
# use cached instance if available
if self._ksp:
return self._ksp
iproc = system.comm.rank
lsize = np.sum(system._var_sizes['output'][iproc, :])
size = np.sum(system._var_sizes['output'])
jac_mat = PETSc.Mat().createPython([(lsize, size), (lsize, size)],
comm=system.comm)
jac_mat.setPythonContext(self)
jac_mat.setUp()
ksp = self._ksp = PETSc.KSP().create(comm=system.comm)
ksp.setOperators(jac_mat)
ksp.setType(self.options['ksp_type'])
ksp.setGMRESRestart(self.options['restart'])
if self.options['precon_side'] == 'left':
ksp.setPCSide(PETSc.PC.Side.LEFT)
else:
ksp.setPCSide(PETSc.PC.Side.RIGHT)
ksp.setMonitor(Monitor(self))
ksp.setInitialGuessNonzero(True)
pc_mat = ksp.getPC()
pc_mat.setType('python')
pc_mat.setPythonContext(self)
return ksp