Source code for openmdao.solvers.linear.direct

"""LinearSolver that uses linalg.solve or LU factor/solve."""

import warnings

import numpy as np
import scipy.linalg
import scipy.sparse.linalg
from scipy.sparse import csc_matrix

from openmdao.solvers.solver import LinearSolver
from openmdao.matrices.dense_matrix import DenseMatrix
from openmdao.utils.array_utils import identity_column_iter
from openmdao.solvers.linear.linear_rhs_checker import LinearRHSChecker


[docs]def index_to_varname(system, loc): """ Given a matrix location, return the name of the variable associated with that index. Parameters ---------- system : <System> System containing the Directsolver. loc : int Index of row or column. Returns ------- str String containing variable absolute name (and promoted name if there is one) and index. """ start = end = 0 varsizes = np.sum(system._owned_sizes, axis=0) for i, name in enumerate(system._var_allprocs_abs2meta['output']): end += varsizes[i] if loc < end: varname = system._var_allprocs_abs2prom['output'][name] break start = end if varname == name: name_string = "'{}' index {}.".format(varname, loc - start) else: name_string = "'{}' ('{}') index {}.".format(varname, name, loc - start) return name_string
[docs]def loc_to_error_msg(system, loc_txt, loc): """ Given a matrix location, format a coherent error message when matrix is singular. Parameters ---------- system : <System> System containing the Directsolver. loc_txt : str Either 'row' or 'col'. loc : int Index of row or column. Returns ------- str New error string. """ names = index_to_varname(system, loc) msg = "Singular entry found in {} for {} associated with state/residual " + names return msg.format(system.msginfo, loc_txt)
[docs]def format_singular_error(system, matrix): """ Format a coherent error message for any ill-conditioned mmatrix. Parameters ---------- system : <System> System containing the Directsolver. matrix : ndarray Matrix of interest. Returns ------- str New error string. """ if scipy.sparse.issparse(matrix): matrix = matrix.toarray() if np.any(np.isnan(matrix)): # There is a nan in the matrix. return format_nan_error(system, matrix) zero_rows = np.where(~matrix.any(axis=1))[0] zero_cols = np.where(~matrix.any(axis=0))[0] if zero_cols.size <= zero_rows.size: if zero_rows.size == 0: # In this case, some row is a linear combination of the other rows. # SVD gives us some information that may help locate the source of the problem. try: u, _, _ = np.linalg.svd(matrix) except Exception: msg = f"Jacobian in '{system.pathname}' is not full rank, but OpenMDAO was " + \ "not able to determine which rows or columns." return msg # Nonzero elements in the left singular vector show the rows that contribute strongly to # the singular subspace. Note that sometimes extra rows/cols are included in the set, # currently don't have a good way to pare them down. tol = 1e-15 u_sing = np.abs(u[:, -1]) left_idx = np.where(u_sing > tol)[0] msg = "Jacobian in '{}' is not full rank. The following set of states/residuals " + \ "contains one or more equations that is a linear combination of the others: \n" for loc in left_idx: name = index_to_varname(system, loc) msg += ' ' + name + '\n' if len(left_idx) > 2: msg += "Note that the problem may be in a single Component." return msg.format(system.pathname) loc_txt = "row" loc = zero_rows[0] else: loc_txt = "column" loc = zero_cols[0] return loc_to_error_msg(system, loc_txt, loc)
[docs]def format_nan_error(system, matrix): """ Format a coherent error message when the matrix contains NaN. Parameters ---------- system : <System> System containing the Directsolver. matrix : ndarray Matrix of interest. Returns ------- str New error string. """ # Because of how we built the matrix, a NaN in a comp causes the whole row to be NaN, so we # need to associate each index with a variable. varsizes = np.sum(system._owned_sizes, axis=0) nanrows = np.zeros(matrix.shape[0], dtype=bool) nanrows[np.where(np.isnan(matrix))[0]] = True varnames = [] start = end = 0 for i, name in enumerate(system._var_allprocs_abs2meta['output']): end += varsizes[i] if np.any(nanrows[start:end]): varnames.append("'%s'" % system._var_allprocs_abs2prom['output'][name]) start = end msg = "NaN entries found in {} for rows associated with states/residuals [{}]." return msg.format(system.msginfo, ', '.join(varnames))
[docs]class DirectSolver(LinearSolver): """ LinearSolver that uses linalg.solve or LU factor/solve. Parameters ---------- **kwargs : dict Options dictionary. Attributes ---------- _lin_rhs_checker : LinearRHSChecker or None Object for checking the right-hand side of the linear solve. """ SOLVER = 'LN: Direct'
[docs] def __init__(self, **kwargs): """ Declare the solver options. """ super().__init__(**kwargs) self._lin_rhs_checker = None
def _declare_options(self): """ Declare options before kwargs are processed in the init method. """ super()._declare_options() self.options.declare('err_on_singular', types=bool, default=True, desc="Raise an error if LU decomposition is singular.") self.options.declare('rhs_checking', types=(bool, dict), default=False, desc="If True, check RHS vs. cache and/or zero to avoid some solves." "Can also be set to a dict of options for the LinearRHSChecker to " "allow finer control over it. Allowed options are: " f"{LinearRHSChecker.options}") # this solver does not iterate self.options.undeclare("maxiter") self.options.undeclare("err_on_non_converge") self.options.undeclare("atol") self.options.undeclare("rtol") # Use an assembled jacobian by default. self.options['assemble_jac'] = True self.supports['implicit_components'] = True def _setup_solvers(self, system, depth): """ Assign system instance, set depth, and optionally perform setup. Parameters ---------- system : <System> pointer to the owning system. depth : int depth of the current system (already incremented). """ super()._setup_solvers(system, depth) self._disallow_distrib_solve() self._lin_rhs_checker = LinearRHSChecker.create(self._system(), self.options['rhs_checking']) def _linearize_children(self): """ Return a flag that is True when we need to call linearize on our subsystems' solvers. Returns ------- boolean Flag for indicating child linearization. """ return False
[docs] def can_solve_cycle(self): """ Return True if this solver can solve groups with cycles. Returns ------- bool True if this solver can solve groups with cycles. """ return True
[docs] def use_relevance(self): """ Return True if relevance should be active. Returns ------- bool True if relevance should be active. """ return False
def _build_mtx(self): """ Assemble a Jacobian matrix by matrix-vector-product with columns of identity. Returns ------- ndarray Jacobian matrix. """ system = self._system() bvec = system._dresiduals xvec = system._doutputs # First make a backup of the vectors b_data = bvec.asarray(copy=True) x_data = xvec.asarray(copy=True) nmtx = x_data.size seed = np.zeros(x_data.size) mtx = np.empty((nmtx, nmtx), dtype=b_data.dtype) scope_out, scope_in = system._get_matvec_scope() # temporarily disable relevance to avoid creating a singular matrix with system._relevance.active(False): # Assemble the Jacobian by running the identity matrix through apply_linear for i, seed in enumerate(identity_column_iter(seed)): # set value of x vector to provided value xvec.set_val(seed) # apply linear system._apply_linear(self._assembled_jac, 'fwd', scope_out, scope_in) # put new value in out_vec mtx[:, i] = bvec.asarray() # Restore the backed-up vectors bvec.set_val(b_data) xvec.set_val(x_data) return mtx def _linearize(self): """ Perform factorization. """ system = self._system() nproc = system.comm.size if self._assembled_jac is not None: matrix = self._assembled_jac._int_mtx._matrix if matrix is None: # this happens if we're not rank 0 when using owned_sizes self._lu = self._lup = None # Perform dense or sparse lu factorization. elif isinstance(matrix, csc_matrix): try: self._lu = scipy.sparse.linalg.splu(matrix) except RuntimeError: raise RuntimeError(format_singular_error(system, matrix)) elif isinstance(matrix, np.ndarray): # dense # During LU decomposition, detect singularities and warn user. with warnings.catch_warnings(): if self.options['err_on_singular']: warnings.simplefilter('error', RuntimeWarning) try: self._lup = scipy.linalg.lu_factor(matrix) except RuntimeWarning: raise RuntimeError(format_singular_error(system, matrix)) # NaN in matrix. except ValueError: raise RuntimeError(format_nan_error(system, matrix)) # Note: calling scipy.sparse.linalg.splu on a COO actually transposes # the matrix during conversion to csc prior to LU decomp, so we can't use COO. else: raise RuntimeError("Direct solver not implemented for matrix type %s" " in %s." % (type(self._assembled_jac._int_mtx), system.msginfo)) else: if nproc > 1: raise RuntimeError("DirectSolvers without an assembled jacobian are not supported " "when running under MPI if comm.size > 1.") mtx = self._build_mtx() # During LU decomposition, detect singularities and warn user. with warnings.catch_warnings(): if self.options['err_on_singular']: warnings.simplefilter('error', RuntimeWarning) try: self._lup = scipy.linalg.lu_factor(mtx) except RuntimeWarning: raise RuntimeError(format_singular_error(system, mtx)) # NaN in matrix. except ValueError: raise RuntimeError(format_nan_error(system, mtx)) if self._lin_rhs_checker is not None: self._lin_rhs_checker.clear() def _inverse(self): """ Return the inverse Jacobian. This is only used by the Broyden solver when calculating a full model Jacobian. Since it is only done for a single RHS, no need for LU. Returns ------- ndarray Inverse Jacobian. """ system = self._system() nproc = system.comm.size if self._assembled_jac is not None: matrix = self._assembled_jac._int_mtx._matrix if matrix is None: # This happens if we're not rank 0 and owned_sizes are being used sz = np.sum(system._owned_sizes) inv_jac = np.zeros((sz, sz)) # Dense and Sparse matrices have their own inverse method. elif isinstance(matrix, np.ndarray): # Detect singularities and warn user. with warnings.catch_warnings(): if self.options['err_on_singular']: warnings.simplefilter('error', RuntimeWarning) try: inv_jac = scipy.linalg.inv(matrix) except RuntimeWarning: raise RuntimeError(format_singular_error(system, matrix)) # NaN in matrix. except ValueError: raise RuntimeError(format_nan_error(system, matrix)) elif isinstance(matrix, csc_matrix): try: inv_jac = scipy.sparse.linalg.inv(matrix) except RuntimeError: raise RuntimeError(format_singular_error(system, matrix)) # to prevent broadcasting errors later, make sure inv_jac is 2D # scipy.sparse.linalg.inv returns a shape (1,) array if matrix is shape (1,1) if inv_jac.size == 1: inv_jac = inv_jac.reshape((1, 1)) else: raise RuntimeError("Direct solver not implemented for matrix type %s" " in %s." % (type(matrix), system.msginfo)) else: if nproc > 1: raise RuntimeError("BroydenSolvers without an assembled jacobian are not supported " "when running under MPI if comm.size > 1.") mtx = self._build_mtx() # During inversion detect singularities and warn user. with warnings.catch_warnings(): if self.options['err_on_singular']: warnings.simplefilter('error', RuntimeWarning) try: inv_jac = scipy.linalg.inv(mtx) except RuntimeWarning: raise RuntimeError(format_singular_error(system, mtx)) # NaN in matrix. except ValueError: raise RuntimeError(format_nan_error(system, mtx)) return inv_jac
[docs] def solve(self, mode, rel_systems=None): """ Run the solver. Parameters ---------- mode : str 'fwd' or 'rev'. rel_systems : set of str Names of systems relevant to the current solve. Deprecated. """ system = self._system() d_residuals = system._dresiduals d_outputs = system._doutputs # assign x and b vectors based on mode if mode == 'fwd': x_vec = d_outputs.asarray() b_vec = d_residuals.asarray() trans_lu = 0 trans_splu = 'N' else: # rev x_vec = d_residuals.asarray() b_vec = d_outputs.asarray() trans_lu = 1 trans_splu = 'T' if self._lin_rhs_checker is not None: sol_array, is_zero = self._lin_rhs_checker.get_solution(b_vec, system) if is_zero: x_vec[:] = 0.0 return if sol_array is not None: x_vec[:] = sol_array return # AssembledJacobians are unscaled. if self._assembled_jac is not None: full_b = b_vec with system._unscaled_context(outputs=[d_outputs], residuals=[d_residuals]): if isinstance(self._assembled_jac._int_mtx, DenseMatrix): sol_array = scipy.linalg.lu_solve(self._lup, full_b, trans=trans_lu) else: sol_array = self._lu.solve(full_b, trans_splu) x_vec[:] = sol_array # matrix-vector-product generated jacobians are scaled. else: x_vec[:] = sol_array = scipy.linalg.lu_solve(self._lup, b_vec, trans=trans_lu) if not system.under_complex_step and self._lin_rhs_checker is not None and mode == 'rev': self._lin_rhs_checker.add_solution(b_vec, sol_array, copy=True)