Source code for openmdao.core.problem

"""Define the Problem class and a FakeComm class for non-MPI users."""

import __main__
import shutil

import sys
import pprint
import os
import weakref
import pathlib
import textwrap
import traceback
import time
import atexit

from collections import defaultdict, namedtuple
from itertools import product, chain

from io import StringIO, TextIOBase

import numpy as np
import scipy.sparse as sparse

from openmdao.core.constants import _SetupStatus
from openmdao.core.component import Component
from openmdao.core.driver import Driver, record_iteration
from openmdao.core.explicitcomponent import ExplicitComponent
from openmdao.core.system import System
from openmdao.core.group import Group
from openmdao.core.total_jac import _TotalJacInfo
from openmdao.core.constants import _DEFAULT_COLORING_DIR, _DEFAULT_OUT_STREAM, \
    _UNDEFINED
from openmdao.jacobians.dictionary_jacobian import _CheckingJacobian
from openmdao.approximation_schemes.complex_step import ComplexStep
from openmdao.approximation_schemes.finite_difference import FiniteDifference
from openmdao.solvers.solver import SolverInfo
from openmdao.vectors.default_vector import DefaultVector
from openmdao.error_checking.check_config import _default_checks, _all_checks, \
    _all_non_redundant_checks
from openmdao.recorders.recording_iteration_stack import _RecIteration
from openmdao.recorders.recording_manager import RecordingManager, record_viewer_data, \
    record_model_options
from openmdao.utils.mpi import MPI, FakeComm, multi_proc_exception_check, check_mpi_env
from openmdao.utils.name_maps import name2abs_names
from openmdao.utils.options_dictionary import OptionsDictionary
from openmdao.utils.units import simplify_unit
from openmdao.utils.name_maps import abs_key2rel_key
from openmdao.utils.logger_utils import get_logger, TestLogger
from openmdao.utils.hooks import _setup_hooks, _reset_all_hooks
from openmdao.utils.record_util import create_local_meta
from openmdao.utils.array_utils import scatter_dist_to_local
from openmdao.utils.class_util import overrides_method
from openmdao.utils.reports_system import get_reports_to_activate, activate_reports, \
    clear_reports, _load_report_plugins
from openmdao.utils.general_utils import pad_name, LocalRangeIterable, \
    _find_dict_meta, env_truthy, add_border, match_includes_excludes, inconsistent_across_procs, \
    ProblemMetaclass
from openmdao.utils.om_warnings import issue_warning, DerivativesWarning, warn_deprecation, \
    OMInvalidCheckDerivativesOptionsWarning
import openmdao.utils.coloring as coloring_mod
from openmdao.utils.file_utils import _get_outputs_dir, text2html, get_work_dir
from openmdao.visualization.tables.table_builder import generate_table

try:
    from openmdao.vectors.petsc_vector import PETScVector
except ImportError:
    PETScVector = None

from openmdao.utils.name_maps import rel_key2abs_key, rel_name2abs_name


CITATION = """@article{openmdao_2019,
    Author={Justin S. Gray and John T. Hwang and Joaquim R. R. A.
            Martins and Kenneth T. Moore and Bret A. Naylor},
    Title="{OpenMDAO: An Open-Source Framework for Multidisciplinary
            Design, Analysis, and Optimization}",
    Journal="{Structural and Multidisciplinary Optimization}",
    Year={2019},
    Publisher={Springer},
    pdf={http://openmdao.org/pubs/openmdao_overview_2019.pdf},
    note= {In Press}
    }"""


# Used for naming Problems when no explicit name is given
# Also handles sub problems
_problem_names = []

# Used to keep track of the current Problem tree if there are any subproblems
_prob_setup_stack = []


def _clear_problem_names():
    global _problem_names
    _problem_names = []
    _reset_all_hooks()


def _get_top_script():
    """
    Return the absolute pathname of the top level script.

    Returns
    -------
    Path or None
        The absolute path, or None if it can't be resolved.
    """
    try:
        return pathlib.Path(__main__.__file__).resolve()
    except Exception:
        # this will error out in some cases, e.g. inside of a jupyter notebook, so just
        # return None in that case.
        pass


def _default_prob_name():
    """
    Return the default problem name.

    Returns
    -------
    str
        The default problem name.
    """
    def_prob_name = os.environ.get('OPENMDAO_DEFAULT_PROBLEM', '')
    if def_prob_name:
        return def_prob_name

    name = _get_top_script()
    if name is None or env_truthy('TESTFLO_RUNNING'):
        return 'problem'

    return name.stem


[docs]class Problem(object, metaclass=ProblemMetaclass): """ Top-level container for the systems and drivers. Parameters ---------- model : <System> or None The top-level <System>. If not specified, an empty <Group> will be created. driver : <Driver> or None The driver for the problem. If not specified, a simple "Run Once" driver will be used. comm : MPI.Comm or <FakeComm> or None The MPI communicator for this Problem. If not specified, comm will be MPI.COMM_WORLD if MPI is active, else it will be None. name : str Problem name. Can be used to specify a Problem instance when multiple Problems exist. reports : str, bool, None, _UNDEFINED If _UNDEFINED, the OPENMDAO_REPORTS variable is used. Defaults to _UNDEFINED. If given, reports overrides OPENMDAO_REPORTS. If boolean, enable/disable all reports. Since none is acceptable in the environment variable, a value of reports=None is equivalent to reports=False. Otherwise, reports may be a sequence of strings giving the names of the reports to run. **options : named args All remaining named args are converted to options. Attributes ---------- model : <System> Pointer to the top-level <System> object (root node in the tree). comm : MPI.Comm or <FakeComm> The global communicator. _driver : <Driver> Slot for the driver. The default driver is `Driver`, which just runs the model once. _mode : 'fwd' or 'rev' Derivatives calculation mode, 'fwd' for forward, and 'rev' for reverse (adjoint). _orig_mode : 'fwd', 'rev', or 'auto' Derivatives calculation mode assigned by the user. If set to 'auto', _mode will be automatically assigned to 'fwd' or 'rev' based on relative sizes of design variables vs. responses. cite : str Listing of relevant citations that should be referenced when publishing work that uses this class. options : <OptionsDictionary> Dictionary with general options for the problem. model_options : dict A dictionary of options to be passed to subsystems in the problem's model during the setup process. This dictionary is keyed by a path pattern string, and the associated value for each path pattern is a dictionary of {option_name: option_val}. Those subsystems within the hierarchy which match the path pattern and that have an option of the given name, will have the value of that option overridden by value given in the dictionary. recording_options : <OptionsDictionary> Dictionary with problem recording options. _rec_mgr : <RecordingManager> Object that manages all recorders added to this problem. _reports : list of str Names of reports to activate for this Problem. _check : bool If True, call check_config at the end of final_setup. _filtered_vars_to_record : dict Dictionary of lists of design vars, constraints, etc. to record. _logger : object or None Object for logging config checks if _check is True. _name : str Problem name. If no name given, a default name of the form 'problemN', where N is an integer, will be given to the problem so it can be referenced in command line tools that have an optional problem name argument _metadata : dict Problem level metadata. _run_counter : int The number of times run_driver or run_model has been called. _warned : bool Bool to check if `value` deprecation warning has occured yet _computing_coloring : bool When True, we are computing coloring. """
[docs] def __init__(self, model=None, driver=None, comm=None, name=None, reports=_UNDEFINED, **options): """ Initialize attributes. """ global _problem_names # this function doesn't do anything after the first call _load_report_plugins() self._driver = None self._reports = get_reports_to_activate(reports) self.cite = CITATION self._warned = False self._computing_coloring = False if comm is None: use_mpi = check_mpi_env() if use_mpi is False: comm = FakeComm() else: try: from mpi4py import MPI comm = MPI.COMM_WORLD except ImportError: comm = FakeComm() self.comm = comm self._set_name(name) if model is None: self.model = Group() elif isinstance(model, Group): from openmdao.core.parallel_group import ParallelGroup if isinstance(model, ParallelGroup): raise TypeError(f"{self.msginfo}: The value provided for 'model' " "cannot be a ParallelGroup.") self.model = model else: raise TypeError(self.msginfo + ": The value provided for 'model' is not a Group.") if driver is None: driver = Driver() elif not isinstance(driver, Driver): raise TypeError(self.msginfo + ": The value provided for 'driver' is not a valid Driver.") self._update_reports(driver) # can't use driver property here without causing a lint error, so just do it manually self._driver = driver self._metadata = {'setup_status': _SetupStatus.PRE_SETUP} self._run_counter = -1 self._rec_mgr = RecordingManager() # General options self.options = OptionsDictionary(parent_name=type(self).__name__) self.options.declare('coloring_dir', types=str, default=os.path.join(get_work_dir(), 'coloring_files'), desc='Directory containing coloring files (if any) for this Problem.') self.options.declare('group_by_pre_opt_post', types=bool, default=False, desc="If True, group subsystems of the top level model into " "pre-optimization, optimization, and post-optimization, and only " "iterate over the optimization subsystems during optimization. This " "applies only when the top level nonlinear solver is of type" "NonlinearRunOnce.") self.options.declare('allow_post_setup_reorder', types=bool, default=True, desc="If True, the execution order of direct subsystems of any group " "that sets its 'auto_order' option to True will be automatically " "ordered according to data dependencies. If this option is False, the " "'auto_order' option will be ignored and a warning will be issued for " "each group that has set it to True. Note that subsystems of a Group " "that form a cycle will never be reordered, regardless of the value of" " the 'auto_order' option.") self.options.update(options) # Options passed to models self.model_options = {} # Case recording options self.recording_options = OptionsDictionary(parent_name=type(self).__name__) self.recording_options.declare('record_desvars', types=bool, default=True, desc='Set to True to record design variables at the ' 'problem level') self.recording_options.declare('record_objectives', types=bool, default=True, desc='Set to True to record objectives at the problem level') self.recording_options.declare('record_constraints', types=bool, default=True, desc='Set to True to record constraints at the ' 'problem level') self.recording_options.declare('record_responses', types=bool, default=False, desc='Set True to record constraints and objectives at the ' 'problem level.') self.recording_options.declare('record_inputs', types=bool, default=False, desc='Set True to record inputs at the ' 'problem level.') self.recording_options.declare('record_outputs', types=bool, default=True, desc='Set True to record outputs at the ' 'problem level.') self.recording_options.declare('record_residuals', types=bool, default=False, desc='Set True to record residuals at the ' 'problem level.') self.recording_options.declare('record_derivatives', types=bool, default=False, desc='Set to True to record derivatives for the problem ' 'level') self.recording_options.declare('record_abs_error', types=bool, default=True, desc='Set to True to record absolute error of ' 'model nonlinear solver') self.recording_options.declare('record_rel_error', types=bool, default=True, desc='Set to True to record relative error of model \ nonlinear solver') self.recording_options.declare('includes', types=list, default=['*'], desc='Patterns for variables to include in recording. \ Uses fnmatch wildcards') self.recording_options.declare('excludes', types=list, default=[], desc='Patterns for vars to exclude in recording ' '(processed post-includes). Uses fnmatch wildcards') # register hooks for any reports activate_reports(self._reports, self) # So Problem and driver can have hooks attached to their methods _setup_hooks(self) # call cleanup at system exit, if requested if 'cleanup' in os.environ.get('OPENMDAO_ATEXIT', '').split(','): atexit.register(self.cleanup)
def _set_name(self, name): if not MPI or self.comm.rank == 0: # Set the Problem name so that it can be referenced from command line tools (e.g. check) # that accept a Problem argument, and to name the corresponding outputs subdirectory. if name: # if name hasn't been used yet, use it. Otherwise, error if name in _problem_names: issue_warning(f"The problem name '{name}' already exists") self._name = name else: # No name given: look for a name, of the form, 'problemN', that hasn't been used problem_counter = len(_problem_names) + 1 if _problem_names else '' base = _default_prob_name() _name = f"{base}{problem_counter}" if _name in _problem_names: # need to make it unique so append string of form '.N' i = 1 while True: _name = f"{base}{problem_counter}.{i}" if _name not in _problem_names: break i += 1 self._name = _name if self.comm.size > 1: self._name = self.comm.bcast(self._name, root=0) else: self._name = self.comm.bcast(None, root=0) _problem_names.append(self._name) def _has_active_report(self, name): """ Return True if named report is active for this Problem. Parameters ---------- name : str Name of the report. Returns ------- bool True if the named report is active for this Problem. """ return name in self._reports def _get_var_abs_name(self, name): if name in self.model._var_allprocs_abs2meta: return name elif name in self.model._var_allprocs_prom2abs_list['output']: return self.model._var_allprocs_prom2abs_list['output'][name][0] elif name in self.model._var_allprocs_prom2abs_list['input']: abs_names = self.model._var_allprocs_prom2abs_list['input'][name] if len(abs_names) == 1: return abs_names[0] else: raise KeyError(f"{self.msginfo}: Using promoted name `{name}' is ambiguous and " f"matches unconnected inputs {sorted(abs_names)}. Use absolute name " "to disambiguate.") raise KeyError(f'{self.msginfo}: Variable "{name}" not found.') @property def driver(self): """ Get the Driver for this Problem. """ return self._driver def _update_reports(self, driver): if self._driver is not None: # remove any reports on previous driver clear_reports(self._driver) driver._set_problem(self) activate_reports(self._reports, driver) _setup_hooks(driver) @driver.setter def driver(self, driver): """ Set this Problem's Driver. Parameters ---------- driver : <Driver> Driver to be set to our _driver attribute. """ self._update_reports(driver) self._driver = driver @property def msginfo(self): """ Return info to prepend to messages. Returns ------- str Info to prepend to messages. """ if self._name is None: return type(self).__name__ return f'{type(self).__name__} {self._name}' @property def _mode(self): """ Return the derivative mode. Returns ------- str Derivative mode, 'fwd' or 'rev'. """ if self._metadata is None: return None return self._metadata['mode'] def _get_inst_id(self): return self._name
[docs] def is_local(self, name): """ Return True if the named variable or system is local to the current process. Parameters ---------- name : str Name of a variable or system. Returns ------- bool True if the named system or variable is local to this process. """ if self._metadata['setup_status'] < _SetupStatus.POST_SETUP: raise RuntimeError(f"{self.msginfo}: is_local('{name}') was called before setup() " "completed.") try: abs_name = self._get_var_abs_name(name) except KeyError: sub = self.model._get_subsystem(name) return sub is not None and sub._is_local # variable exists, but may be remote return abs_name in self.model._var_abs2meta['input'] or \ abs_name in self.model._var_abs2meta['output']
@property def _recording_iter(self): return self._metadata['recording_iter']
[docs] def __getitem__(self, name): """ Get an output/input variable. Parameters ---------- name : str Promoted or relative variable name in the root system's namespace. Returns ------- float or ndarray or any python object the requested output/input variable. """ return self.get_val(name, get_remote=None)
[docs] def get_val(self, name, units=None, indices=None, get_remote=False): """ Get an output/input variable. Function is used if you want to specify display units. Parameters ---------- name : str Promoted or relative variable name in the root system's namespace. units : str, optional Units to convert to before return. indices : int or list of ints or tuple of ints or int ndarray or Iterable or None, optional Indices or slice to return. get_remote : bool or None If True, retrieve the value even if it is on a remote process. Note that if the variable is remote on ANY process, this function must be called on EVERY process in the Problem's MPI communicator. If False, only retrieve the value if it is on the current process, or only the part of the value that's on the current process for a distributed variable. If None and the variable is remote or distributed, a RuntimeError will be raised. Returns ------- object The value of the requested output/input variable. """ if self._metadata['setup_status'] == _SetupStatus.POST_SETUP: abs_names = name2abs_names(self.model, name) if abs_names: val = self.model._get_cached_val(name, abs_names, get_remote=get_remote) if val is not _UNDEFINED: if indices is not None: val = val[indices] if units is not None: val = self.model.convert2units(name, val, simplify_unit(units)) else: raise KeyError(f'{self.model.msginfo}: Variable "{name}" not found.') else: val = self.model.get_val(name, units=units, indices=indices, get_remote=get_remote, from_src=True) if val is _UNDEFINED: if get_remote: raise KeyError(f'{self.msginfo}: Variable name "{name}" not found.') else: raise RuntimeError(f"{self.model.msginfo}: Variable '{name}' is not local to " f"rank {self.comm.rank}. You can retrieve values from " "other processes using `get_val(<name>, get_remote=True)`.") return val
[docs] def __setitem__(self, name, value): """ Set an output/input variable. Parameters ---------- name : str Promoted or relative variable name in the root system's namespace. value : float or ndarray or any python object value to set this variable to. """ self.set_val(name, value)
[docs] def set_val(self, name, val=None, units=None, indices=None): """ Set an output/input variable. Function is used if you want to set a value using a different unit. Parameters ---------- name : str Promoted or relative variable name in the root system's namespace. val : object Value to set this variable to. units : str, optional Units that value is defined in. indices : int or list of ints or tuple of ints or int ndarray or Iterable or None, optional Indices or slice to set to specified value. """ if self._metadata is None: raise RuntimeError(f"{self.msginfo}: '{name}' Cannot call set_val before setup.") self.model.set_val(name, val, units=units, indices=indices)
def _set_initial_conditions(self): """ Set all initial conditions that have been saved in cache after setup. """ for value, set_units, pathname, name in self.model._initial_condition_cache.values(): if pathname: system = self.model._get_subsystem(pathname) if system is None: self.model.set_val(pathname + '.' + name, value, units=set_units) else: system.set_val(name, value, units=set_units) else: self.model.set_val(name, value, units=set_units) # Clean up cache self.model._initial_condition_cache = {} def _check_collected_errors(self): """ If any collected errors are found, raise an exception containing all of them. """ if self._metadata['saved_errors'] is None: return unique_errors = self._get_unique_saved_errors() # set the errors to None so that all future calls will immediately raise an exception. self._metadata['saved_errors'] = None if unique_errors: final_msg = [f"\nCollected errors for problem '{self._name}':"] for _, msg, exc_type, tback in unique_errors: final_msg.append(f" {msg}") # if there's only one error, include its traceback if it exists. if len(unique_errors) == 1: if isinstance(tback, str): final_msg.append('Traceback (most recent call last):') final_msg.append(tback) else: raise exc_type('\n'.join(final_msg)).with_traceback(tback) raise RuntimeError('\n'.join(final_msg))
[docs] def run_model(self, case_prefix=None, reset_iter_counts=True): """ Run the model by calling the root system's solve_nonlinear. Parameters ---------- case_prefix : str or None Prefix to prepend to coordinates when recording. None means keep the preexisting prefix. reset_iter_counts : bool If True and model has been run previously, reset all iteration counters. """ if not self.model._have_output_solver_options_been_applied(): raise RuntimeError(self.msginfo + ": Before calling `run_model`, the `setup` method must be called " "if set_output_solver_options has been called.") if self._metadata['setup_status'] < _SetupStatus.POST_SETUP: if self.model._order_set: raise RuntimeError(f"{self.msginfo}: Cannot call set_order without calling setup " "after") else: raise RuntimeError(self.msginfo + ": The `setup` method must be called before `run_model`.") old_prefix = self._recording_iter.prefix if case_prefix is not None: if not isinstance(case_prefix, str): raise TypeError(self.msginfo + ": The 'case_prefix' argument should be a string.") self._recording_iter.prefix = case_prefix try: if self.model.iter_count > 0 and reset_iter_counts: self.driver.iter_count = 0 self.model._reset_iter_counts() self.final_setup() self._run_counter += 1 record_model_options(self, self._run_counter) self.model._clear_iprint() self.model.run_solve_nonlinear() finally: self._recording_iter.prefix = old_prefix
[docs] def run_driver(self, case_prefix=None, reset_iter_counts=True): """ Run the driver on the model. Parameters ---------- case_prefix : str or None Prefix to prepend to coordinates when recording. None means keep the preexisting prefix. reset_iter_counts : bool If True and model has been run previously, reset all iteration counters. Returns ------- bool Failure flag; True if failed to converge, False is successful. """ model = self.model driver = self.driver if self._metadata['setup_status'] < _SetupStatus.POST_SETUP: raise RuntimeError(self.msginfo + ": The `setup` method must be called before `run_driver`.") if not model._have_output_solver_options_been_applied(): raise RuntimeError(self.msginfo + ": Before calling `run_driver`, the `setup` method must be called " "if set_output_solver_options has been called.") if 'singular_jac_behavior' in driver.options: self._metadata['singular_jac_behavior'] = driver.options['singular_jac_behavior'] old_prefix = self._recording_iter.prefix if case_prefix is not None: if not isinstance(case_prefix, str): raise TypeError(self.msginfo + ": The 'case_prefix' argument should be a string.") self._recording_iter.prefix = case_prefix try: if model.iter_count > 0 and reset_iter_counts: driver.iter_count = 0 model._reset_iter_counts() self.final_setup() # for optimizing drivers, check that constraints are affected by design vars if driver.supports['optimization'] and self._metadata['use_derivatives']: driver.check_relevance() self._run_counter += 1 record_model_options(self, self._run_counter) model._clear_iprint() return driver._run() finally: self._recording_iter.prefix = old_prefix
[docs] def compute_jacvec_product(self, of, wrt, mode, seed): """ Given a seed and 'of' and 'wrt' variables, compute the total jacobian vector product. Parameters ---------- of : list of str Variables whose derivatives will be computed. wrt : list of str Derivatives will be computed with respect to these variables. mode : str Derivative direction ('fwd' or 'rev'). seed : dict or list Either a dict keyed by 'wrt' varnames (fwd) or 'of' varnames (rev), containing dresidual (fwd) or doutput (rev) values, OR a list of dresidual or doutput values that matches the corresponding 'wrt' (fwd) or 'of' (rev) varname list. Returns ------- dict The total jacobian vector product, keyed by variable name. """ if mode == 'fwd': if len(wrt) != len(seed): raise RuntimeError(self.msginfo + ": seed and 'wrt' list must be the same length in fwd mode.") lnames, rnames = of, wrt lkind, rkind = 'output', 'residual' else: # rev if len(of) != len(seed): raise RuntimeError(self.msginfo + ": seed and 'of' list must be the same length in rev mode.") lnames, rnames = wrt, of lkind, rkind = 'residual', 'output' rvec = self.model._vectors[rkind]['linear'] lvec = self.model._vectors[lkind]['linear'] rvec.set_val(0.) conns = self.model._conn_global_abs_in2out # set seed values into dresids (fwd) or doutputs (rev) # seed may have keys that are inputs and must be converted into auto_ivcs try: seed[rnames[0]] except (IndexError, TypeError): for i, name in enumerate(rnames): if name in conns: rvec[conns[name]] = seed[i] else: rvec[name] = seed[i] else: for name in rnames: if name in conns: rvec[conns[name]] = seed[name] else: rvec[name] = seed[name] # We apply a -1 here because the derivative of the output is minus the derivative of # the residual in openmdao. data = rvec.asarray() data *= -1. self.model.run_solve_linear(mode) if mode == 'fwd': return {n: lvec[n].copy() for n in lnames} else: # may need to convert some lnames to auto_ivc names return {n: lvec[conns[n] if n in conns else n].copy() for n in lnames}
def _setup_recording(self): """ Set up case recording. """ if self._rec_mgr.has_recorders(): self._filtered_vars_to_record = self.driver._get_vars_to_record(self) self._rec_mgr.startup(self, self.comm)
[docs] def add_recorder(self, recorder): """ Add a recorder to the problem. Parameters ---------- recorder : CaseRecorder A recorder instance. """ self._rec_mgr.append(recorder)
[docs] def cleanup(self): """ Clean up resources prior to exit. """ # shut down all recorders self._rec_mgr.shutdown() # clean up driver and model resources self.driver.cleanup() for system in self.model.system_iter(include_self=True, recurse=True): system.cleanup()
[docs] def record(self, case_name): """ Record the variables at the Problem level. Must be called after `final_setup` has been called. This can either happen automatically through `run_driver` or `run_model`, or it can be called manually. Parameters ---------- case_name : str Name used to identify this Problem case. """ if self._metadata['setup_status'] < _SetupStatus.POST_FINAL_SETUP: raise RuntimeError(f"{self.msginfo}: Problem.record() cannot be called before " "`Problem.run_model()`, `Problem.run_driver()`, or " "`Problem.final_setup()`.") else: record_iteration(self, self, case_name)
def _get_recorder_metadata(self, case_name): """ Return metadata from the latest iteration for use in the recorder. Parameters ---------- case_name : str Name of current case. Returns ------- dict Metadata dictionary for the recorder. """ return create_local_meta(case_name)
[docs] def setup(self, check=None, logger=None, mode='auto', force_alloc_complex=False, distributed_vector_class=PETScVector, local_vector_class=DefaultVector, derivatives=True, parent=None): """ Set up the model hierarchy. When `setup` is called, the model hierarchy is assembled, the processors are allocated (for MPI), and variables and connections are all assigned. This method traverses down the model hierarchy to call `setup` on each subsystem, and then traverses up the model hierarchy to call `configure` on each subsystem. Parameters ---------- check : None, bool, list of str, or the strs ‘all’ Determines what config checks, if any, are run after setup is complete. If None: no checks are run unless the 'checks' report is active, in which case the default reports will be run. If False, no checks are run If True, the default checks ('out_of_order', 'system', 'solvers', 'dup_inputs', 'missing_recorders', 'unserializable_options', 'comp_has_no_outputs', 'auto_ivc_warnings') are run If list of str, run those config checks If ‘all’, all the checks ('auto_ivc_warnings', 'comp_has_no_outputs', 'cycles', 'dup_inputs', 'missing_recorders', 'all_unserializable_options', 'out_of_order', 'promotions', 'solvers', 'system', 'unconnected_inputs') are run. logger : object Object for logging config checks if check is True. mode : str Derivatives calculation mode, 'fwd' for forward, and 'rev' for reverse (adjoint). Default is 'auto', which will pick 'fwd' or 'rev' based on the direction resulting in the smallest number of linear solves required to compute derivatives. force_alloc_complex : bool If True, sufficient memory will be allocated to allow nonlinear vectors to store complex values while operating under complex step. distributed_vector_class : type Reference to the <Vector> class or factory function used to instantiate vectors and associated transfers involved in interprocess communication. local_vector_class : type Reference to the <Vector> class or factory function used to instantiate vectors and associated transfers involved in intraprocess communication. derivatives : bool If True, perform any memory allocations necessary for derivative computation. parent : Problem, System, Solver, or None The "parent" object of this problem instance in a tree of potentially nested problems. Returns ------- <Problem> This enables the user to instantiate and setup in one line. """ model = self.model comm = self.comm if not isinstance(self.model, Group): raise TypeError("The model for this Problem is of type " f"'{self.model.__class__.__name__}'. " "The model must be a Group or a sub-class of Group.") # A distributed vector type is required for MPI if comm.size > 1: if distributed_vector_class is PETScVector and PETScVector is None: raise ValueError(f"{self.msginfo}: Attempting to run in parallel under MPI but " "PETScVector could not be imported.") elif not distributed_vector_class.distributed: raise ValueError(f"{self.msginfo}: The `distributed_vector_class` argument must be " "a distributed vector class like `PETScVector` when running in " f"parallel under MPI but '{distributed_vector_class.__name__}' " "was specified which is not distributed.") if mode not in ['fwd', 'rev', 'auto']: msg = f"{self.msginfo}: Unsupported mode: '{mode}'. Use either 'fwd' or 'rev'." raise ValueError(msg) self._orig_mode = mode # this metadata will be shared by all Systems/Solvers in the system tree self._metadata = { 'name': self._name, # the name of this Problem 'pathname': None, # the pathname of this Problem in the current tree of Problems 'comm': comm, 'coloring_dir': _DEFAULT_COLORING_DIR, # directory for input coloring files 'recording_iter': _RecIteration(comm.rank), # manager of recorder iterations 'local_vector_class': local_vector_class, 'distributed_vector_class': distributed_vector_class, 'solver_info': SolverInfo(), 'use_derivatives': derivatives, 'force_alloc_complex': force_alloc_complex, # forces allocation of complex vectors 'vars_to_gather': {}, # vars that are remote somewhere. does not include distrib vars 'prom2abs': {'input': {}, 'output': {}}, # includes ALL promotes including buried ones 'static_mode': False, # used to determine where various 'static' # and 'dynamic' data structures are stored. # Dynamic ones are added during System # setup/configure. They are wiped out and re-created during # each Problem setup. Static ones are added outside of # Problem setup and they are never wiped out or re-created. 'config_info': None, # used during config to determine if additional updates required 'parallel_groups': [], # list of pathnames of parallel groups in this model (all procs) 'setup_status': _SetupStatus.PRE_SETUP, 'model_ref': weakref.ref(model), # ref to the model (needed to get out-of-scope # src data for inputs) 'has_par_deriv_color': False, # True if any dvs/responses have parallel deriv colors 'mode': mode, # mode (derivative direction) set by the user. 'auto' by default 'orig_mode': mode, # mode (derivative direction) set by the user. 'auto' by default 'abs_in2prom_info': {}, # map of abs input name to list of length = sys tree height # down to var location, to allow quick resolution of local # src_shape/src_indices due to promotes. For example, # for abs_in of a.b.c.d, dict entry would be # [None, None, None], corresponding to levels # a, a.b, and a.b.c, with one of the Nones replaced # by promotes info. Dict entries are only created if # src_indices are applied to the variable somewhere. 'reports_dir': None, # directory where reports will be written 'saved_errors': [], # store setup errors here until after final_setup 'checking': False, # True if check_totals or check_partials is running 'model_options': self.model_options, # A dict of options passed to all systems in tree 'allow_post_setup_reorder': self.options['allow_post_setup_reorder'], # see option 'singular_jac_behavior': 'warn', # How to handle singular jac conditions 'parallel_deriv_color': None, # None unless derivatives involving a parallel deriv # colored dv/response are currently being computed. 'seed_vars': None, # set of names of seed variables. Seed variables are those that # have their derivative value set to 1.0 at the beginning of the # current derivative solve. 'coloring_randgen': None, # If total coloring is being computed, will contain a random # number generator, else None. 'randomize_subjacs': True, # If True, randomize subjacs before computing total sparsity 'randomize_seeds': False, # If True, randomize seed vectors when computing total # sparsity 'group_by_pre_opt_post': self.options['group_by_pre_opt_post'], # see option 'relevance_cache': {}, # cache of relevance objects 'rel_array_cache': {}, # cache of relevance arrays 'ncompute_totals': 0, # number of times compute_totals has been called 'jax_group': None, # not None if a Group is currently performing a jax operation } model_comm = self.driver._setup_comm(comm) if parent: if isinstance(parent, Problem): parent_prob_meta = parent._metadata elif isinstance(parent, System): parent_prob_meta = parent._problem_meta else: raise ValueError('Problem parent must be another Problem or System instance.') else: parent_prob_meta = None if parent_prob_meta and parent_prob_meta['pathname']: self._metadata['pathname'] = parent_prob_meta['pathname'] + f'/{self._name}' else: self._metadata['pathname'] = self._name # We don't want to delete the outputs directory because we may be using the coloring files # from a previous run. # Start setup by deleting any existing reports so that the files # that are in that directory are all from this run and not a previous run reports_dirpath = self.get_reports_dir(force=False) if not MPI or (self.comm is not None and self.comm.rank == 0): if os.path.isdir(reports_dirpath): try: shutil.rmtree(reports_dirpath) except FileNotFoundError: # Folder already removed by another proccess pass self._metadata['reports_dir'] = self.get_reports_dir(force=False) try: model._setup(model_comm, self._metadata) finally: # whenever we're outside of model._setup, static mode should be True so that anything # added outside of _setup will persist. self._metadata['static_mode'] = True # Cache all args for final setup. self._check = check self._logger = logger self._metadata['setup_status'] = _SetupStatus.POST_SETUP self._check_collected_errors() return self
[docs] def final_setup(self): """ Perform final setup phase on problem in preparation for run. This is the second phase of setup, and is done automatically at the start of `run_driver` and `run_model`. At the beginning of final_setup, we have a model hierarchy with defined variables, solvers, case_recorders, and derivative settings. During this phase, the vectors are created and populated, the drivers and solvers are initialized, and the recorders are started, and the rest of the framework is prepared for execution. """ driver = self.driver model = self.model responses = model.get_responses(recurse=True, use_prom_ivc=True) designvars = model.get_design_vars(recurse=True, use_prom_ivc=True) if self._metadata['setup_status'] < _SetupStatus.POST_FINAL_SETUP: model._final_setup() model._check_required_connections() response_size, desvar_size = driver._update_voi_meta(model, responses, designvars) # update mode if it's been set to 'auto' if self._orig_mode == 'auto': mode = 'rev' if response_size < desvar_size else 'fwd' else: mode = self._orig_mode self._metadata['mode'] = mode # If set_solver_print is called after an initial run, in a multi-run scenario, # this part of _final_setup still needs to happen so that change takes effect # in subsequent runs if self._metadata['setup_status'] >= _SetupStatus.POST_FINAL_SETUP: model._setup_solver_print() driver._setup_driver(self) if coloring_mod._use_total_sparsity: coloring = driver._coloring_info.coloring if coloring is not None: # if we're using simultaneous total derivatives then our effective size is less # than the full size if coloring._fwd and coloring._rev: pass # we're doing both! elif mode == 'fwd' and coloring._fwd: desvar_size = coloring.total_solves() elif mode == 'rev' and coloring._rev: response_size = coloring.total_solves() if ((mode == 'fwd' and desvar_size > response_size) or (mode == 'rev' and response_size > desvar_size)): issue_warning(f"Inefficient choice of derivative mode. You chose '{mode}' for a " f"problem with {desvar_size} design variables and {response_size} " "response variables (objectives and nonlinear constraints).", category=DerivativesWarning) if (not self._metadata['allow_post_setup_reorder'] and self._metadata['setup_status'] == _SetupStatus.PRE_SETUP and self.model._order_set): raise RuntimeError(f"{self.msginfo}: Cannot call set_order without calling setup after") # set up recording, including any new recorders since last setup # TODO: We should be smarter and only setup the recording when new recorders have # been added. if self._metadata['setup_status'] >= _SetupStatus.POST_SETUP: driver._setup_recording() self._setup_recording() record_viewer_data(self) if self._metadata['setup_status'] < _SetupStatus.POST_FINAL_SETUP: self._metadata['setup_status'] = _SetupStatus.POST_FINAL_SETUP self._set_initial_conditions() if self._check and 'checks' not in self._reports: if self._check is True: checks = _default_checks else: checks = self._check if self.comm.rank == 0: logger = self._logger else: logger = TestLogger() self.check_config(logger, checks=checks)
[docs] def check_partials(self, out_stream=_DEFAULT_OUT_STREAM, includes=None, excludes=None, compact_print=False, abs_err_tol=1e-6, rel_err_tol=1e-6, method='fd', step=None, form='forward', step_calc='abs', minimum_step=1e-12, force_dense=True, show_only_incorrect=False): """ Check partial derivatives comprehensively for all components in your model. Parameters ---------- out_stream : file-like object Where to send human readable output. By default it goes to stdout. Set to None to suppress. includes : None or list_like List of glob patterns for pathnames to include in the check. Default is None, which includes all components in the model. excludes : None or list_like List of glob patterns for pathnames to exclude from the check. Default is None, which excludes nothing. compact_print : bool Set to True to just print the essentials, one line per input-output pair. abs_err_tol : float Threshold value for absolute error. Errors about this value will have a '*' displayed next to them in output, making them easy to search for. Default is 1.0E-6. rel_err_tol : float Threshold value for relative error. Errors about this value will have a '*' displayed next to them in output, making them easy to search for. Note at times there may be a significant relative error due to a minor absolute error. Default is 1.0E-6. method : str Method, 'fd' for finite difference or 'cs' for complex step. Default is 'fd'. step : None, float, or list/tuple of float Step size(s) for approximation. Default is None, which means 1e-6 for 'fd' and 1e-40 for 'cs'. form : str Form for finite difference, can be 'forward', 'backward', or 'central'. Default 'forward'. step_calc : str Step type for computing the size of the finite difference step. It can be 'abs' for absolute, 'rel_avg' for a size relative to the absolute value of the vector input, or 'rel_element' for a size relative to each value in the vector input. In addition, it can be 'rel_legacy' for a size relative to the norm of the vector. For backwards compatibilty, it can be 'rel', which is now equivalent to 'rel_avg'. Defaults to None, in which case the approximation method provides its default value. minimum_step : float Minimum step size allowed when using one of the relative step_calc options. force_dense : bool If True, analytic derivatives will be coerced into arrays. Default is True. show_only_incorrect : bool, optional Set to True if output should print only the subjacs found to be incorrect. Returns ------- dict of dicts of dicts First key is the component name. Second key is the (output, input) tuple of strings. Third key is one of ['rel error', 'abs error', 'magnitude', 'J_fd', 'J_fwd', 'J_rev', 'rank_inconsistent']. For 'rel error', 'abs error', and 'magnitude' the value is a tuple containing norms for forward - fd, adjoint - fd, forward - adjoint. For 'J_fd', 'J_fwd', 'J_rev' the value is a numpy array representing the computed Jacobian for the three different methods of computation. The boolean 'rank_inconsistent' indicates if the derivative wrt a serial variable is inconsistent across MPI ranks. """ if self._metadata['setup_status'] < _SetupStatus.POST_FINAL_SETUP: self.final_setup() model = self.model if not model._use_derivatives: raise RuntimeError(self.msginfo + ": Can't check partials. Derivative support has been turned off.") # TODO: Once we're tracking iteration counts, run the model if it has not been run before. includes = [includes] if isinstance(includes, str) else includes excludes = [excludes] if isinstance(excludes, str) else excludes comps = [] # OPENMDAO_CHECK_ALL_PARTIALS overrides _no_check_partials (used for testing) force_check_partials = env_truthy('OPENMDAO_CHECK_ALL_PARTIALS') for comp in model.system_iter(typ=Component, include_self=True): if comp._no_check_partials and not force_check_partials: continue # skip any Component with no outputs if len(comp._var_allprocs_abs2meta['output']) == 0: continue # skip any ExplicitComponent with no inputs (e.g. IndepVarComp) if (len(comp._var_allprocs_abs2meta['input']) == 0 and isinstance(comp, ExplicitComponent)): continue if not match_includes_excludes(comp.pathname, includes, excludes): continue comps.append(comp) # Check to make sure the method and settings used for checking # is different from the method used to calc the derivatives # Could do this later in this method but at that point some computations could have been # made and it would just waste time before the user is told there is an error and the # program errs out requested_method = method alloc_complex = model._outputs._alloc_complex abs2meta_in = model._var_allprocs_abs2meta['input'] abs2meta_out = model._var_allprocs_abs2meta['output'] for comp in comps: local_opts = comp._get_check_partial_options() for keypats, meta in comp._declared_partials_patterns.items(): # Get the complete set of options, including defaults # for the computing of the derivs for this component if 'method' not in meta: meta_with_defaults = {} meta_with_defaults['method'] = 'exact' elif meta['method'] == 'cs': meta_with_defaults = ComplexStep.DEFAULT_OPTIONS.copy() else: meta_with_defaults = FiniteDifference.DEFAULT_OPTIONS.copy() meta_with_defaults.update(meta) _, wrtpats = keypats # For each of the partials, check to see if the # check partials options are different than the options used to compute # the partials for _, wrtvars in comp._find_wrt_matches(wrtpats): for var in wrtvars: # we now have individual vars like 'x' # get the options for checking partials fd_options, _ = _get_fd_options(var, requested_method, local_opts, step, form, step_calc, alloc_complex, minimum_step) # compare the compute options to the check options if fd_options['method'] != meta_with_defaults['method']: all_same = False else: all_same = True if fd_options['method'] == 'fd': option_names = ['form', 'step', 'step_calc', 'minimum_step', 'directional'] else: option_names = ['step', 'directional'] for name in option_names: if fd_options[name] != meta_with_defaults[name]: all_same = False break if all_same: msg = f"Checking partials with respect " \ f"to variable '{var}' in component " \ f"'{comp.pathname}' using the same " \ "method and options as are used to compute the " \ "component's derivatives " \ "will not provide any relevant information on the " \ "accuracy.\n" \ "To correct this, change the options to do the \n" \ "check_partials using either:\n" \ " - arguments to Problem.check_partials. \n" \ " - arguments to Component.set_check_partial_options" issue_warning(msg, prefix=self.msginfo, category=OMInvalidCheckDerivativesOptionsWarning) self.set_solver_print(level=0) # This is a defaultdict of (defaultdict of dicts). partials_data = defaultdict(lambda: defaultdict(dict)) # Caching current point to restore after setups. input_cache = model._inputs.asarray(copy=True) output_cache = model._outputs.asarray(copy=True) # Keep track of derivative keys that are declared dependent so that we don't print them # unless they are in error. indep_key = {} # Directional derivative directions for matrix free comps. mfree_directions = {} # Analytic Jacobians print_reverse = False for mode in ('fwd', 'rev'): model._inputs.set_val(input_cache) model._outputs.set_val(output_cache) # Make sure we're in a valid state model.run_apply_nonlinear() jac_key = 'J_' + mode for comp in comps: # Only really need to linearize once. if mode == 'fwd': comp.run_linearize(sub_do_ln=False) matrix_free = comp.matrix_free c_name = comp.pathname if mode == 'fwd': indep_key[c_name] = set() with comp._unscaled_context(): of_list = comp._get_partials_ofs() wrt_list = comp._get_partials_wrts() # Matrix-free components need to calculate their Jacobian by matrix-vector # product. if matrix_free: print_reverse = True local_opts = comp._get_check_partial_options() dstate = comp._doutputs if mode == 'fwd': dinputs = comp._dinputs doutputs = comp._dresiduals in_list = wrt_list out_list = of_list else: dinputs = comp._dresiduals doutputs = comp._dinputs in_list = of_list out_list = wrt_list for inp in in_list: inp_abs = rel_name2abs_name(comp, inp) if mode == 'fwd': directional = inp in local_opts and local_opts[inp]['directional'] else: directional = c_name in mfree_directions try: flat_view = dinputs._abs_get_val(inp_abs) except KeyError: # Implicit state flat_view = dstate._abs_get_val(inp_abs) if directional: n_in = 1 idxs = range(1) if c_name not in mfree_directions: mfree_directions[c_name] = {} if inp in mfree_directions[c_name]: perturb = mfree_directions[c_name][inp] else: perturb = 2.0 * np.random.random(len(flat_view)) - 1.0 mfree_directions[c_name][inp] = perturb else: n_in = len(flat_view) idxs = LocalRangeIterable(comp, inp_abs, use_vec_offset=False) perturb = 1.0 for idx in idxs: dinputs.set_val(0.0) dstate.set_val(0.0) if directional: flat_view[:] = perturb elif idx is not None: flat_view[idx] = perturb # Matrix Vector Product self._metadata['checking'] = True try: comp.run_apply_linear(mode) finally: self._metadata['checking'] = False for out in out_list: out_abs = rel_name2abs_name(comp, out) try: derivs = doutputs._abs_get_val(out_abs) except KeyError: # Implicit state derivs = dstate._abs_get_val(out_abs) if mode == 'fwd': key = out, inp deriv = partials_data[c_name][key] # Allocate first time if jac_key not in deriv: shape = (len(derivs), n_in) deriv[jac_key] = np.zeros(shape) if idx is not None: deriv[jac_key][:, idx] = derivs else: # rev key = inp, out deriv = partials_data[c_name][key] if directional: # Dot product test for adjoint validity. m = mfree_directions[c_name][out] d = mfree_directions[c_name][inp] mhat = derivs dhat = deriv['J_fwd'][:, idx] deriv['directional_fwd_rev'] = mhat.dot(m) - dhat.dot(d) else: meta = abs2meta_in[out_abs] if out_abs in abs2meta_in \ else abs2meta_out[out_abs] if not meta['distributed']: # serial input or state if inconsistent_across_procs(comp.comm, derivs, return_array=False): deriv['rank_inconsistent'] = True # Allocate first time if jac_key not in deriv: shape = (n_in, len(derivs)) deriv[jac_key] = np.zeros(shape) if idx is not None: deriv[jac_key][idx, :] = derivs # These components already have a Jacobian with calculated derivatives. else: if mode == 'rev': # Skip reverse mode because it is not different than forward. continue subjacs = comp._jacobian._subjacs_info for rel_key in product(of_list, wrt_list): abs_key = rel_key2abs_key(comp, rel_key) of, wrt = abs_key # No need to calculate partials; they are already stored try: deriv_value = subjacs[abs_key]['val'] rows = subjacs[abs_key]['rows'] except KeyError: deriv_value = rows = None # Testing for pairs that are not dependent so that we suppress printing # them unless the fd is non zero. Note: subjacs_info is empty for # undeclared partials, which is the default behavior now. try: if not subjacs[abs_key]['dependent']: indep_key[c_name].add(rel_key) except KeyError: indep_key[c_name].add(rel_key) if wrt in comp._var_abs2meta['input']: wrt_meta = comp._var_abs2meta['input'][wrt] else: wrt_meta = comp._var_abs2meta['output'][wrt] if deriv_value is None: # Missing derivatives are assumed 0. in_size = wrt_meta['size'] out_size = comp._var_abs2meta['output'][of]['size'] deriv_value = np.zeros((out_size, in_size)) if force_dense: if rows is not None: try: in_size = wrt_meta['size'] except KeyError: in_size = wrt_meta['size'] out_size = comp._var_abs2meta['output'][of]['size'] tmp_value = np.zeros((out_size, in_size)) # if a scalar value is provided (in declare_partials), # expand to the correct size array value for zipping if deriv_value.size == 1: deriv_value *= np.ones(rows.size) for i, j, val in zip(rows, subjacs[abs_key]['cols'], deriv_value): tmp_value[i, j] += val deriv_value = tmp_value elif sparse.issparse(deriv_value): deriv_value = deriv_value.todense() partials_data[c_name][rel_key][jac_key] = deriv_value.copy() model._inputs.set_val(input_cache) model._outputs.set_val(output_cache) model.run_apply_nonlinear() # Finite Difference to calculate Jacobian if step is None or isinstance(step, (float, int)): steps = [step] else: steps = step do_steps = len(steps) > 1 alloc_complex = model._outputs._alloc_complex all_fd_options = {} comps_could_not_cs = set() requested_method = method for comp in comps: c_name = comp.pathname all_fd_options[c_name] = {} of = comp._get_partials_ofs() wrt = comp._get_partials_wrts() actual_steps = defaultdict(list) for i, step in enumerate(steps): approximations = {'fd': FiniteDifference(), 'cs': ComplexStep()} added_wrts = set() # Load up approximation objects with the requested settings. local_opts = comp._get_check_partial_options() for rel_key in product(of, wrt): abs_key = rel_key2abs_key(comp, rel_key) local_wrt = rel_key[1] fd_options, could_not_cs = _get_fd_options(local_wrt, requested_method, local_opts, step, form, step_calc, alloc_complex, minimum_step) actual_steps[rel_key].append(fd_options['step']) if could_not_cs: comps_could_not_cs.add(c_name) # Determine if fd or cs. method = requested_method all_fd_options[c_name][local_wrt] = fd_options if c_name in mfree_directions: vector = mfree_directions[c_name].get(local_wrt) else: vector = None # prevent adding multiple approxs with same wrt (and confusing users with # warnings) if abs_key[1] not in added_wrts: approximations[fd_options['method']].add_approximation(abs_key, comp, fd_options, vector=vector) added_wrts.add(abs_key[1]) approx_jac = _CheckingJacobian(comp) for approximation in approximations.values(): # Perform the FD here. approximation.compute_approximations(comp, jac=approx_jac) with multi_proc_exception_check(comp.comm): if approx_jac._errors: raise RuntimeError('\n'.join(approx_jac._errors)) for abs_key, partial in approx_jac.items(): rel_key = abs_key2rel_key(comp, abs_key) deriv = partials_data[c_name][rel_key] _of, _wrt = rel_key if 'J_fd' not in deriv: deriv['J_fd'] = [] deriv['steps'] = [] deriv['J_fd'].append(partial) deriv['steps'] = actual_steps[rel_key] # If this is a directional derivative, convert the analytic to a directional # one. if _wrt in local_opts and local_opts[_wrt]['directional']: if i == 0: # only do this on the first iteration deriv['J_fwd'] = np.atleast_2d(np.sum(deriv['J_fwd'], axis=1)).T if comp.matrix_free: if i == 0: # only do this on the first iteration deriv['J_rev'] = np.atleast_2d(np.sum(deriv['J_rev'], axis=0)).T # Dot product test for adjoint validity. m = mfree_directions[c_name][_of].flatten() d = mfree_directions[c_name][_wrt].flatten() mhat = partial.flatten() dhat = deriv['J_rev'].flatten() if 'directional_fd_rev' not in deriv: deriv['directional_fd_rev'] = [] deriv['directional_fd_rev'].append(dhat.dot(d) - mhat.dot(m)) # Conversion of defaultdict to dicts partials_data = {comp_name: dict(data) for comp_name, data in partials_data.items()} if out_stream == _DEFAULT_OUT_STREAM: out_stream = sys.stdout if len(comps_could_not_cs) > 0: msg = "The following components requested complex step, but force_alloc_complex " + \ "has not been set to True, so finite difference was used: " msg += str(list(comps_could_not_cs)) msg += "\nTo enable complex step, specify 'force_alloc_complex=True' when calling " + \ "setup on the problem, e.g. 'problem.setup(force_alloc_complex=True)'" issue_warning(msg, category=DerivativesWarning) _assemble_derivative_data(partials_data, rel_err_tol, abs_err_tol, out_stream, compact_print, comps, all_fd_options, self.comm, indep_key=indep_key, print_reverse=print_reverse, show_only_incorrect=show_only_incorrect) if not do_steps: _fix_check_data(partials_data) return partials_data
[docs] def check_totals(self, of=None, wrt=None, out_stream=_DEFAULT_OUT_STREAM, compact_print=False, driver_scaling=False, abs_err_tol=1e-6, rel_err_tol=1e-6, method='fd', step=None, form=None, step_calc='abs', show_progress=False, show_only_incorrect=False, directional=False, sort=False): """ Check total derivatives for the model vs. finite difference. Parameters ---------- of : list of variable name str or None Variables whose derivatives will be computed. Default is None, which uses the driver's objectives and constraints. wrt : list of variable name str or None Variables with respect to which the derivatives will be computed. Default is None, which uses the driver's desvars. out_stream : file-like object Where to send human readable output. By default it goes to stdout. Set to None to suppress. compact_print : bool Set to True to just print the essentials, one line per input-output pair. driver_scaling : bool When True, return derivatives that are scaled according to either the adder and scaler or the ref and ref0 values that were specified when add_design_var, add_objective, and add_constraint were called on the model. Default is False, which is unscaled. abs_err_tol : float Threshold value for absolute error. Errors about this value will have a '*' displayed next to them in output, making them easy to search for. Default is 1.0E-6. rel_err_tol : float Threshold value for relative error. Errors about this value will have a '*' displayed next to them in output, making them easy to search for. Note at times there may be a significant relative error due to a minor absolute error. Default is 1.0E-6. method : str Method, 'fd' for finite difference or 'cs' for complex step. Default is 'fd'. step : None, float, or list/tuple of float Step size for approximation. Default is None, which means 1e-6 for 'fd' and 1e-40 for 'cs'. form : str Form for finite difference, can be 'forward', 'backward', or 'central'. Default None, which defaults to 'forward' for FD. step_calc : str Step type for computing the size of the finite difference step. It can be 'abs' for absolute, 'rel_avg' for a size relative to the absolute value of the vector input, or 'rel_element' for a size relative to each value in the vector input. In addition, it can be 'rel_legacy' for a size relative to the norm of the vector. For backwards compatibilty, it can be 'rel', which is now equivalent to 'rel_avg'. Defaults to None, in which case the approximation method provides its default value.. show_progress : bool True to show progress of check_totals. show_only_incorrect : bool, optional Set to True if output should print only the subjacs found to be incorrect. directional : bool If True, compute a single directional derivative for each 'of' in rev mode or each 'wrt' in fwd mode. sort : bool If True, sort the subjacobian keys alphabetically. Returns ------- Dict of Dicts of Tuples of Floats First key: is the (output, input) tuple of strings; Second key: is one of ['rel error', 'abs error', 'magnitude', 'fdstep']; For 'rel error', 'abs error', 'magnitude' the value is: A tuple containing norms for forward - fd, adjoint - fd, forward - adjoint. """ if out_stream == _DEFAULT_OUT_STREAM: out_stream = sys.stdout # Check to see if approximation options are the same as that used to compute totals # If yes, issue a warning if self.model._owns_approx_jac and method in self.model._approx_schemes: scheme = self.model._get_approx_scheme(method) # get approx options. Fill in with defaults, as needed approx_options = scheme.DEFAULT_OPTIONS.copy() approx_options.update(self.model._owns_approx_jac_meta) # get check options. Fill in with defaults, as needed check_options = scheme.DEFAULT_OPTIONS.copy() if step: check_options['step'] = step if method == 'fd': if form: check_options['form'] = form if step_calc: check_options['step_calc'] = step_calc # Compare the approx and check options all_same = True if approx_options['step'] != check_options['step']: all_same = False elif method == 'fd': if approx_options['form'] != check_options['form']: all_same = False if approx_options['step_calc'] != check_options['step_calc']: all_same = False if all_same: msg = "Checking totals using the same " \ "method and options as are used to compute the " \ "totals will not provide any relevant " \ "information on the " \ "accuracy.\n" \ "To correct this, change the options to do the " \ "check_totals or on the call to approx_totals " \ "for the model." issue_warning(msg, prefix=self.msginfo, category=OMInvalidCheckDerivativesOptionsWarning) if self._metadata['setup_status'] < _SetupStatus.POST_FINAL_SETUP: raise RuntimeError(self.msginfo + ": run_model must be called before total " "derivatives can be checked.") model = self.model if method == 'cs' and not model._outputs._alloc_complex: msg = "\n" + self.msginfo + ": To enable complex step, specify "\ "'force_alloc_complex=True' when calling " + \ "setup on the problem, e.g. 'problem.setup(force_alloc_complex=True)'" raise RuntimeError(msg) # TODO: Once we're tracking iteration counts, run the model if it has not been run before. if wrt is None: if not self.driver._designvars: raise RuntimeError("Driver is not providing any design variables " "for compute_totals.") lcons = [] if of is None: if not self.driver._responses: raise RuntimeError("Driver is not providing any response variables " "for compute_totals.") lcons = [n for n, meta in self.driver._cons.items() if meta['linear']] if lcons: # if driver has linear constraints, construct a full list of driver responses # in order to avoid using any driver coloring that won't include the linear # constraints. (The driver coloring would only be used if the supplied of and # wrt lists were None or identical to the driver's lists.) of = list(self.driver._responses) # Calculate Total Derivatives total_info = _TotalJacInfo(self, of, wrt, return_format='flat_dict', approx=model._owns_approx_jac, driver_scaling=driver_scaling, directional=directional) self._metadata['checking'] = True try: Jcalc = total_info.compute_totals() finally: self._metadata['checking'] = False Jcalc_name = f"J_{total_info.mode}" if step is None: if method == 'cs': steps = [ComplexStep.DEFAULT_OPTIONS['step']] else: steps = [FiniteDifference.DEFAULT_OPTIONS['step']] elif isinstance(step, (float, int)): steps = [step] else: steps = step approx = model._owns_approx_jac approx_of = model._owns_approx_of approx_wrt = model._owns_approx_wrt approx_jac_meta = model._owns_approx_jac_meta old_jac = model._jacobian old_subjacs = model._subjacs_info.copy() old_schemes = model._approx_schemes Jfds = [] # prevent form from showing as None in check_totals output if form is None and method == 'fd': form = FiniteDifference.DEFAULT_OPTIONS['form'] for step in steps: # Approximate FD fd_args = { 'step': step, 'form': form, 'step_calc': step_calc, 'method': method, 'directional': directional, } model._approx_schemes = {} model.approx_totals(method=method, step=step, form=form, step_calc=step_calc if method == 'fd' else None) fd_tot_info = _TotalJacInfo(self, of, wrt, return_format='flat_dict', approx=True, driver_scaling=driver_scaling, directional=directional) if directional: # for fd, use the same fwd mode seeds as the analytical derives used fd_tot_info.seeds = total_info.seeds Jcalc, Jcalc_slices = total_info._get_as_directional() if show_progress: Jfd = fd_tot_info.compute_totals(progress_out_stream=out_stream) else: Jfd = fd_tot_info.compute_totals() if directional: Jfd, Jfd_slices = fd_tot_info._get_as_directional(total_info.mode) Jfds.append((fd_tot_info.J, step)) else: Jfds.append((Jfd, step)) # reset the _owns_approx_jac flag after approximation is complete. if not approx: model._jacobian = old_jac model._owns_approx_jac = False model._owns_approx_of = approx_of model._owns_approx_wrt = approx_wrt model._owns_approx_jac_meta = approx_jac_meta model._subjacs_info = old_subjacs model._approx_schemes = old_schemes # Assemble and Return all metrics. data = {'': {}} resp = self.driver._responses do_steps = len(Jfds) > 1 Jcalc_items = Jcalc.items() if sort: Jcalc_items = sorted(Jcalc_items, key=lambda x: x[0]) for Jfd, step in Jfds: for key, val in Jcalc_items: if key not in data['']: data[''][key] = {} meta = data[''][key] if 'J_fd' not in meta: meta['J_fd'] = [] meta['steps'] = [] meta['steps'].append(step) if directional: if self._mode == 'fwd': if 'directional_fd_fwd' not in meta: meta['directional_fd_fwd'] = [] _, wrt = key # check directional fwd against fd (one must have negative seed) directional_fd_fwd = total_info.J[:, Jcalc_slices['wrt'][wrt].start] - \ Jfd[:, Jcalc_slices['wrt'][wrt].start] meta['directional_fd_fwd'].append(directional_fd_fwd) meta['J_fwd'] = total_info.J[:, Jcalc_slices['wrt'][wrt].start] meta['J_fd'].append(Jfd[:, Jcalc_slices['wrt'][wrt].start]) else: # rev if 'directional_fd_rev' not in meta: meta['directional_fd_rev'] = [] of, _ = key # check directional rev against fd (different seeds) dhat = total_info.J[Jcalc_slices['of'][of].start, :] # first row of 'of' d = total_info.seeds['fwd'] # used as direction for fd mhat = Jfd[Jfd_slices['of'][of], 0] m = total_info.seeds['rev'][Jcalc_slices['of'][of]] dhat_dot_d = dhat.dot(d) mhat_dot_m = mhat.dot(m) # Dot product test for adjoint validity. meta['directional_fd_rev'].append(dhat_dot_d - mhat_dot_m) meta['J_rev'] = dhat_dot_d meta['J_fd'].append(mhat_dot_m) else: meta[Jcalc_name] = val meta['J_fd'].append(Jfd[key]) # Display whether indices were declared when response was added. of = key[0] if of in resp and resp[of]['indices'] is not None: data[''][key]['indices'] = resp[of]['indices'].indexed_src_size _assemble_derivative_data(data, rel_err_tol, abs_err_tol, out_stream, compact_print, [model], {'': fd_args}, self.comm, totals=total_info, lcons=lcons, show_only_incorrect=show_only_incorrect, sort=sort) if not do_steps: _fix_check_data(data) return data['']
[docs] def compute_totals(self, of=None, wrt=None, return_format='flat_dict', debug_print=False, driver_scaling=False, use_abs_names=False, get_remote=True, coloring_info=None): """ Compute derivatives of desired quantities with respect to desired inputs. Parameters ---------- of : list of variable name str or None Variables whose derivatives will be computed. Default is None, which uses the driver's objectives and constraints. wrt : list of variable name str or None Variables with respect to which the derivatives will be computed. Default is None, which uses the driver's desvars. return_format : str Format to return the derivatives. Can be 'dict', 'flat_dict', or 'array'. Default is a 'flat_dict', which returns them in a dictionary whose keys are tuples of form (of, wrt). debug_print : bool Set to True to print out some debug information during linear solve. driver_scaling : bool When True, return derivatives that are scaled according to either the adder and scaler or the ref and ref0 values that were specified when add_design_var, add_objective, and add_constraint were called on the model. Default is False, which is unscaled. use_abs_names : bool This is deprecated and has no effect. get_remote : bool If True, the default, the full distributed total jacobian will be retrieved. coloring_info : ColoringMeta, None, or False If False, do no coloring. If None, use driver coloring info to compute the coloring. Otherwise use the given coloring info object to provide the coloring, if it exists. Returns ------- object Derivatives in form requested by 'return_format'. """ if use_abs_names: warn_deprecation("The use_abs_names argument to compute_totals is deprecated and has " "no effect.") if self._metadata['setup_status'] < _SetupStatus.POST_FINAL_SETUP: with multi_proc_exception_check(self.comm): self.final_setup() total_info = _TotalJacInfo(self, of, wrt, return_format, approx=self.model._owns_approx_jac, driver_scaling=driver_scaling, get_remote=get_remote, debug_print=debug_print, coloring_info=coloring_info) return total_info.compute_totals()
[docs] def set_solver_print(self, level=2, depth=1e99, type_='all'): """ Control printing for solvers and subsolvers in the model. Parameters ---------- level : int Iprint level. Set to 2 to print residuals each iteration; set to 1 to print just the iteration totals; set to 0 to disable all printing except for failures, and set to -1 to disable all printing including failures. depth : int How deep to recurse. For example, you can set this to 0 if you only want to print the top level linear and nonlinear solver messages. Default prints everything. type_ : str Type of solver to set: 'LN' for linear, 'NL' for nonlinear, or 'all' for all. """ self.model.set_solver_print(level=level, depth=depth, type_=type_)
[docs] def list_problem_vars(self, show_promoted_name=True, print_arrays=False, driver_scaling=True, desvar_opts=[], cons_opts=[], objs_opts=[], out_stream=_DEFAULT_OUT_STREAM ): """ Print all design variables and responses (objectives and constraints). Parameters ---------- show_promoted_name : bool If True, then show the promoted names of the variables. print_arrays : bool, optional When False, in the columnar display, just display norm of any ndarrays with size > 1. The norm is surrounded by vertical bars to indicate that it is a norm. When True, also display full values of the ndarray below the row. Format is affected by the values set with numpy.set_printoptions. Default is False. driver_scaling : bool, optional When True, return values that are scaled according to either the adder and scaler or the ref and ref0 values that were specified when add_design_var, add_objective, and add_constraint were called on the model. Default is True. desvar_opts : list of str List of optional columns to be displayed in the desvars table. Allowed values are: ['lower', 'upper', 'ref', 'ref0', 'indices', 'adder', 'scaler', 'parallel_deriv_color', 'cache_linear_solution', 'units', 'min', 'max']. cons_opts : list of str List of optional columns to be displayed in the cons table. Allowed values are: ['lower', 'upper', 'equals', 'ref', 'ref0', 'indices', 'adder', 'scaler', 'linear', 'parallel_deriv_color', 'cache_linear_solution', 'units', 'min', 'max']. objs_opts : list of str List of optional columns to be displayed in the objs table. Allowed values are: ['ref', 'ref0', 'indices', 'adder', 'scaler', 'units', 'parallel_deriv_color', 'cache_linear_solution']. out_stream : file-like object Where to send human readable output. Default is sys.stdout. Set to None to suppress. Returns ------- dict Name, size, val, and other requested parameters of design variables, constraints, and objectives. """ warn_deprecation(msg='Method `list_problem_vars` has been renamed `list_driver_vars`.\n' 'Please update your code to use list_driver_vars to avoid this warning.') return self.list_driver_vars(show_promoted_name=show_promoted_name, print_arrays=print_arrays, driver_scaling=driver_scaling, desvar_opts=desvar_opts, cons_opts=cons_opts, objs_opts=objs_opts, out_stream=out_stream)
[docs] def list_driver_vars(self, show_promoted_name=True, print_arrays=False, driver_scaling=True, desvar_opts=[], cons_opts=[], objs_opts=[], out_stream=_DEFAULT_OUT_STREAM ): """ Print all design variables and responses (objectives and constraints). Parameters ---------- show_promoted_name : bool If True, then show the promoted names of the variables. print_arrays : bool, optional When False, in the columnar display, just display norm of any ndarrays with size > 1. The norm is surrounded by vertical bars to indicate that it is a norm. When True, also display full values of the ndarray below the row. Format is affected by the values set with numpy.set_printoptions. Default is False. driver_scaling : bool, optional When True, return values that are scaled according to either the adder and scaler or the ref and ref0 values that were specified when add_design_var, add_objective, and add_constraint were called on the model. Default is True. desvar_opts : list of str List of optional columns to be displayed in the desvars table. Allowed values are: ['lower', 'upper', 'ref', 'ref0', 'indices', 'adder', 'scaler', 'parallel_deriv_color', 'cache_linear_solution', 'units', 'min', 'max']. cons_opts : list of str List of optional columns to be displayed in the cons table. Allowed values are: ['lower', 'upper', 'equals', 'ref', 'ref0', 'indices', 'adder', 'scaler', 'linear', 'parallel_deriv_color', 'cache_linear_solution', 'units', 'min', 'max']. objs_opts : list of str List of optional columns to be displayed in the objs table. Allowed values are: ['ref', 'ref0', 'indices', 'adder', 'scaler', 'units', 'parallel_deriv_color', 'cache_linear_solution']. out_stream : file-like object Where to send human readable output. Default is sys.stdout. Set to None to suppress. Returns ------- dict Name, size, val, and other requested parameters of design variables, constraints, and objectives. """ if self._metadata['setup_status'] < _SetupStatus.POST_FINAL_SETUP: raise RuntimeError(f"{self.msginfo}: Problem.list_driver_vars() cannot be called " "before `Problem.run_model()`, `Problem.run_driver()`, or " "`Problem.final_setup()`.") default_col_names = ['name', 'val', 'size'] # Design vars desvars = self.driver._designvars vals = self.driver.get_design_var_values(get_remote=True, driver_scaling=driver_scaling) if not driver_scaling: desvars = desvars.copy() for meta in desvars.values(): scaler = meta['scaler'] if meta.get('scaler') is not None else 1. adder = meta['adder'] if meta.get('adder') is not None else 0. if 'lower' in meta: meta['lower'] = meta['lower'] / scaler - adder if 'upper' in meta: meta['upper'] = meta['upper'] / scaler - adder header = "Design Variables" def_desvar_opts = [opt for opt in ('indices',) if opt not in desvar_opts and _find_dict_meta(desvars, opt)] col_names = default_col_names + def_desvar_opts + desvar_opts if out_stream: self._write_var_info_table(header, col_names, desvars, vals, show_promoted_name=show_promoted_name, print_arrays=print_arrays, col_spacing=2, out_stream=out_stream) des_vars = [[i, j] for i, j in desvars.items()] for d in des_vars: d[1] = {i: j for i, j in d[1].items() if i in col_names} d[1]['val'] = vals[d[0]] des_vars = [tuple(d) for d in des_vars] # Constraints cons = self.driver._cons vals = self.driver.get_constraint_values(driver_scaling=driver_scaling) if not driver_scaling: cons = cons.copy() for meta in cons.values(): scaler = meta['scaler'] if meta.get('scaler') is not None else 1. adder = meta['adder'] if meta.get('adder') is not None else 0. if 'lower' in meta: meta['lower'] = meta['lower'] / scaler - adder if 'upper' in meta: meta['upper'] = meta['upper'] / scaler - adder header = "Constraints" # detect any cons that use aliases def_cons_opts = [opt for opt in ('indices', 'alias') if opt not in cons_opts and _find_dict_meta(cons, opt)] col_names = default_col_names + def_cons_opts + cons_opts if out_stream: self._write_var_info_table(header, col_names, cons, vals, show_promoted_name=show_promoted_name, print_arrays=print_arrays, col_spacing=2, out_stream=out_stream) cons_vars = [[i, j] for i, j in cons.items()] for c in cons_vars: c[1] = {i: j for i, j in c[1].items() if i in col_names} c[1]['val'] = vals[c[0]] cons_vars = [tuple(c) for c in cons_vars] objs = self.driver._objs vals = self.driver.get_objective_values(driver_scaling=driver_scaling) header = "Objectives" def_obj_opts = [opt for opt in ('indices',) if opt not in objs_opts and _find_dict_meta(objs, opt)] col_names = default_col_names + def_obj_opts + objs_opts if out_stream: self._write_var_info_table(header, col_names, objs, vals, show_promoted_name=show_promoted_name, print_arrays=print_arrays, col_spacing=2, out_stream=out_stream) obj_vars = [[i, j] for i, j in objs.items()] for o in obj_vars: o[1] = {i: j for i, j in o[1].items() if i in col_names} o[1]['val'] = vals[o[0]] obj_vars = [tuple(o) for o in obj_vars] prob_vars = {'design_vars': des_vars, 'constraints': cons_vars, 'objectives': obj_vars} return prob_vars
def _write_var_info_table(self, header, col_names, meta, vals, print_arrays=False, show_promoted_name=True, col_spacing=1, out_stream=_DEFAULT_OUT_STREAM): """ Write a table of information for the problem variable in meta and vals. Parameters ---------- header : str The header line for the table. col_names : list of str List of column labels. meta : dict Dictionary of metadata for each problem variable. vals : dict Dictionary of values for each problem variable. print_arrays : bool, optional When False, in the columnar display, just display norm of any ndarrays with size > 1. The norm is surrounded by vertical bars to indicate that it is a norm. When True, also display full values of the ndarray below the row. Format is affected by the values set with numpy.set_printoptions Default is False. show_promoted_name : bool If True, then show the promoted names of the variables. col_spacing : int Number of spaces between columns in the table. out_stream : file-like object Where to send human readable output. Default is sys.stdout. Set to None to suppress. """ if out_stream is None: return elif out_stream is _DEFAULT_OUT_STREAM: out_stream = sys.stdout elif not isinstance(out_stream, TextIOBase): raise TypeError("Invalid output stream specified for 'out_stream'") abs2prom = self.model._var_abs2prom # Gets the current numpy print options for consistent decimal place # printing between arrays and floats print_options = np.get_printoptions() np_precision = print_options['precision'] # Get the values for all the elements in the tables rows = [] for name, meta in meta.items(): row = {} vname = meta['name'] if meta.get('alias') else name for col_name in col_names: if col_name == 'name': if show_promoted_name: if vname in abs2prom['input']: row[col_name] = abs2prom['input'][vname] elif vname in abs2prom['output']: row[col_name] = abs2prom['output'][vname] else: # Promoted auto_ivc name. Keep it promoted row[col_name] = vname else: row[col_name] = vname elif col_name == 'val': row[col_name] = vals[name] elif col_name == 'min': min_val = min(vals[name]) # Rounding to match float precision to numpy precision row[col_name] = np.round(min_val, np_precision) elif col_name == 'max': max_val = max(vals[name]) # Rounding to match float precision to numpy precision row[col_name] = np.round(max_val, np_precision) else: row[col_name] = meta[col_name] rows.append(row) col_space = ' ' * col_spacing print(add_border(header, '-'), file=out_stream) # loop through the rows finding the max widths max_width = {} for col_name in col_names: max_width[col_name] = len(col_name) for row in rows: for col_name in col_names: cell = row[col_name] if isinstance(cell, np.ndarray) and cell.size > 1: norm = np.linalg.norm(cell) out = f'|{np.round(norm, np_precision)}|' else: out = str(cell) max_width[col_name] = max(len(out), max_width[col_name]) # print col headers header_div = '' header_col_names = '' for col_name in col_names: header_div += '-' * max_width[col_name] + col_space header_col_names += pad_name(col_name, max_width[col_name], quotes=False) + col_space print(header_col_names, file=out_stream) print(header_div[:-1], file=out_stream) # print rows with var info for row in rows: have_array_values = [] # keep track of which values are arrays row_string = '' for col_name in col_names: cell = row[col_name] if isinstance(cell, np.ndarray) and cell.size > 1: norm = np.linalg.norm(cell) out = f'|{np.round(norm, np_precision)}|' have_array_values.append(col_name) else: out = str(cell) row_string += pad_name(out, max_width[col_name], quotes=False) + col_space print(row_string, file=out_stream) if print_arrays: spaces = (max_width['name'] + col_spacing) * ' ' for col_name in have_array_values: print(f"{spaces}{col_name}:", file=out_stream) print(textwrap.indent(pprint.pformat(row[col_name]), spaces), file=out_stream) print(file=out_stream) print(file=out_stream)
[docs] def load_case(self, case): """ Pull all input and output variables from a case into the model. Parameters ---------- case : Case or dict A Case from a CaseReader, or a dictionary with key 'inputs' mapped to the output of problem.model.list_inputs and key 'outputs' mapped to the output of prob.model.list_outputs. Both list_inputs and list_outputs should be called with `prom_name=True` and `return_format='dict'`. """ model = self.model # if model overrides load_case, then call the overloaded method if overrides_method('load_case', model, System): model.load_case(case) return # find all subsystems that override the load_case method system_overrides = {} for subsys in model.system_iter(include_self=False, recurse=True): if overrides_method('load_case', subsys, System): system_overrides[subsys.pathname] = subsys def set_later(var_name): # determine if variable should be set later via an overridden load_case method for pathname in system_overrides: if var_name.startswith(pathname + '.'): return True return False if isinstance(case, dict): # case data comes from list_inputs/list_outputs, keyed on absolute pathname # we need it to be keyed on promoted name if 'inputs' in case: inputs = {meta['prom_name']: meta for meta in case['inputs'].values()} else: inputs = None if 'outputs' in case: outputs = {meta['prom_name']: meta for meta in case['outputs'].values()} else: outputs = None else: inputs = case.inputs outputs = case.outputs abs2idx = model._var_allprocs_abs2idx prom2abs_in = model._var_allprocs_prom2abs_list['input'] prom2abs_out = model._var_allprocs_prom2abs_list['output'] abs2meta_in = model._var_allprocs_abs2meta['input'] abs2meta_out = model._var_allprocs_abs2meta['output'] abs2meta_disc_in = model._var_allprocs_discrete['input'] abs2meta_disc_out = model._var_allprocs_discrete['output'] if inputs: for name in inputs: if set_later(name): continue if name in abs2meta_in or name in abs2meta_disc_in: abs_name = name if isinstance(case, dict): val = inputs[name]['val'] else: val = case.inputs[abs_name] try: varmeta = abs2meta_in[abs_name] except KeyError: # Var may be discrete varmeta = abs2meta_disc_in[abs_name] if varmeta.get('distributed') and model.comm.size > 1: sizes = model._var_sizes['input'][:, abs2idx[abs_name]] model.set_val(abs_name, scatter_dist_to_local(val, model.comm, sizes)) else: model.set_val(abs_name, val) else: issue_warning(f"{model.msginfo}: Input variable, '{name}', recorded " "in the case is not found in the model.") if outputs: for name in outputs: if set_later(name): continue # auto_ivc output may point to a promoted input name if name in prom2abs_out: prom2abs = prom2abs_out is_output = True else: prom2abs = prom2abs_in is_output = False if name in prom2abs: if isinstance(case, dict): val = outputs[name]['val'] else: val = outputs[name] for abs_name in prom2abs[name]: if set_later(abs_name): continue if is_output: try: varmeta = abs2meta_out[abs_name] except KeyError: varmeta = abs2meta_disc_out[abs_name] else: try: varmeta = abs2meta_in[abs_name] except KeyError: varmeta = abs2meta_disc_in[abs_name] if varmeta.get('distributed') and model.comm.size > 1: sizes = model._var_sizes['output'][:, abs2idx[abs_name]] model.set_val(abs_name, scatter_dist_to_local(val, model.comm, sizes)) else: model.set_val(abs_name, val) else: issue_warning(f"{model.msginfo}: Output variable, '{name}', recorded " "in the case is not found in the model.") # call the overridden load_case method on applicable subsystems (in top-down order) for sys_name in sorted(system_overrides.keys()): system_overrides[sys_name].load_case(case)
[docs] def check_config(self, logger=None, checks=_default_checks, out_file='openmdao_checks.out'): """ Perform optional error checks on a Problem. Parameters ---------- logger : object Logging object. checks : list of str or None or the str 'all' Determines what config checks are run. If None, no checks are run If list of str, run those config checks If ‘all’, all the checks ('auto_ivc_warnings', 'comp_has_no_outputs', 'cycles', 'dup_inputs', 'missing_recorders', 'out_of_order', 'promotions', 'solvers', 'system', 'unconnected_inputs') are run. out_file : str or None If not None, output will be written to this file in addition to stdout. """ if checks is None: return reports_dir_exists = os.path.isdir(self.get_reports_dir()) check_file_path = None if logger is None: if out_file is not None: if reports_dir_exists: check_file_path = str(self.get_reports_dir() / out_file) else: check_file_path = out_file logger = get_logger('check_config', out_file=check_file_path, use_format=True) if checks == 'all': checks = sorted(_all_non_redundant_checks) if logger is None and checks: check_file_path = None if out_file is None else str(self.get_outputs_dir() / out_file) logger = get_logger('check_config', out_file=check_file_path, use_format=True) for c in checks: if c not in _all_checks: print(f"WARNING: '{c}' is not a recognized check. Available checks are: " f"{sorted(_all_checks)}") continue logger.info(f'checking {c}...') beg = time.perf_counter() _all_checks[c](self, logger) end = time.perf_counter() logger.info(f" {c} check complete ({(end - beg):.6f} sec).") if checks and check_file_path is not None and reports_dir_exists: # turn text file written to reports dir into an html file to be viewable from the # 'openmdao view_reports' command with open(check_file_path, 'r') as f: txt = f.read() path = self.get_reports_dir() / 'checks.html' with open(path, 'w') as f: f.write(text2html(txt))
[docs] def set_complex_step_mode(self, active): """ Turn on or off complex stepping mode. Parameters ---------- active : bool Complex mode flag; set to True prior to commencing complex step. """ if self._metadata is None or \ self._metadata['setup_status'] < _SetupStatus.POST_FINAL_SETUP: raise RuntimeError(f"{self.msginfo}: set_complex_step_mode cannot be called before " "`Problem.run_model()`, `Problem.run_driver()`, or " "`Problem.final_setup()`.") if active and not self.model._outputs._alloc_complex: raise RuntimeError(f"{self.msginfo}: To enable complex step, specify " "'force_alloc_complex=True' when calling setup on the problem, " "e.g. 'problem.setup(force_alloc_complex=True)'") self.model._set_complex_step_mode(active)
[docs] def get_reports_dir(self, force=False): """ Get the path to the directory where the report files should go. If it doesn't exist, it will be created. Parameters ---------- force : bool If True, create the reports directory if it doesn't exist, even if this Problem does not have any active reports. This can happen when running testflo. Returns ------- pathlib.Path The path to the directory where reports should be written. """ return self.get_outputs_dir('reports', mkdir=force or len(self._reports) > 0)
[docs] def get_outputs_dir(self, *subdirs, mkdir=True): """ Get the path under which all output files of this problem are to be placed. Parameters ---------- *subdirs : str Subdirectories nested under the relevant problem output directory. To create {prob_output_dir}/a/b one would pass `prob.get_outputs_dir('a', 'b')`. mkdir : bool If True, attempt to create this directory if it does not exist. Returns ------- pathlib.Path The path of the outputs directory for the problem. """ return _get_outputs_dir(self, *subdirs, mkdir=mkdir)
[docs] def get_coloring_dir(self, mode, mkdir=False): """ Get the path to the directory for the coloring files. Parameters ---------- mode : str Must be one of 'input' or 'output'. A problem will always write its coloring files to its standard output directory in `{prob_name}_out/coloring_files`, but input coloring files to be loaded may be read from a different directory specifed by the problem's `coloring_dir` option. mkdir : bool If True, attempt to create this directory if it does not exist. Returns ------- pathlib.Path The path to the directory where reports should be written. """ if mode == 'input': return pathlib.Path(self.options['coloring_dir']) elif mode == 'output': return self.get_outputs_dir('coloring_files', mkdir=mkdir) else: raise ValueError(f"{self.msginfo}: get_coloring_dir requires mode" "to be one of 'input' or 'output'.")
[docs] def list_indep_vars(self, include_design_vars=True, options=None, print_arrays=False, out_stream=_DEFAULT_OUT_STREAM): """ Retrieve the independent variables in the Problem. Returns a dictionary mapping the promoted names of indep_vars which the user is expected to provide to the metadata for the associated independent variable. A output is designated as an independent variable if it is tagged with 'openmdao:indep_var'. This includes IndepVarComp by default, and users are able to apply this tag to their own component outputs if they wish to provide components with IndepVarComp-like capability. Parameters ---------- include_design_vars : bool If True, include design variables in the list of problem inputs. The user may provide values for these but ultimately they will be overwritten by the Driver. Default is False. options : list of str or None List of optional columns to be displayed in the independent variable table. Allowed values are: ['name', 'units', 'shape', 'size', 'desc', 'ref', 'ref0', 'res_ref', 'distributed', 'lower', 'upper', 'tags', 'shape_by_conn', 'copy_shape', 'compute_shape', 'global_size', 'global_shape', 'value']. print_arrays : bool, optional When False, in the columnar display, just display norm of any ndarrays with size > 1. The norm is surrounded by vertical bars to indicate that it is a norm. When True, also display full values of the ndarray below the row. Format is affected by the values set with numpy.set_printoptions. out_stream : file-like object Where to send human readable output. Default is sys.stdout. Set to None to suppress. Returns ------- dict A dictionary mapping the promoted names of all independent variables in the model to their metadata. """ model = self.model if model._outputs is None: raise RuntimeError("list_indep_vars requires that final_setup has been " "run for the Problem.") design_vars = model.get_design_vars(recurse=True, use_prom_ivc=True, get_sizes=False) problem_indep_vars = [] col_names = ['name', 'units', 'val'] if options is not None: col_names.extend(options) abs2meta = model._var_allprocs_abs2meta['output'] abs2prom = model._var_allprocs_abs2prom['output'] abs2disc = model._var_allprocs_discrete['output'] seen = set() for absname, meta in chain(abs2meta.items(), abs2disc.items()): if 'openmdao:indep_var' in meta['tags']: name = abs2prom[absname] if (include_design_vars or name not in design_vars) and name not in seen: meta = {key: meta[key] for key in col_names if key in meta} meta['val'] = self.get_val(name) problem_indep_vars.append((name, meta)) seen.add(name) if out_stream is not None: header = f'Problem {self._name} Independent Variables' if problem_indep_vars: meta = {key: meta for key, meta in problem_indep_vars} vals = {key: self.get_val(key) for key in meta} self._write_var_info_table(header, col_names, meta, vals, print_arrays=print_arrays, show_promoted_name=True, col_spacing=1, out_stream=out_stream) else: if out_stream is _DEFAULT_OUT_STREAM: out_stream = sys.stdout hr = '-' * len(header) print(f'{hr}\n{header}\n{hr}', file=out_stream) print('None found', file=out_stream) return problem_indep_vars
[docs] def iter_count_iter(self, include_driver=True, include_solvers=True, include_systems=False): """ Yield iteration counts for driver, solvers and/or systems. Parameters ---------- include_driver : bool If True, include the driver in the iteration counts. include_solvers : bool If True, include solvers in the iteration counts. include_systems : bool If True, include systems in the iteration counts. Yields ------ str Name of the object. str Name of the counter. int Value of the counter. """ if include_driver: yield ('Driver', 'iter_count', self.driver.iter_count) if include_solvers or include_systems: for s in self.model.system_iter(include_self=True, recurse=True): if include_systems: for it in ('iter_count', 'iter_count_apply'): val = getattr(s, it) if val > 0: yield (s.pathname, it, val) if include_solvers: prefix = s.pathname + '.' if s.pathname else '' if s.nonlinear_solver is not None and s.nonlinear_solver._iter_count > 0: yield (prefix + 'nonlinear_solver', '_iter_count', s.nonlinear_solver._iter_count) if s.linear_solver is not None and s.linear_solver._iter_count > 0: yield (prefix + 'linear_solver', '_iter_count', s.linear_solver._iter_count)
[docs] def list_pre_post(self, outfile=None): """ Display the pre and post optimization components. Parameters ---------- outfile : file-like or str or None Where to send human readable output. Default is None, which sends output to stdout. """ if self._metadata is None or self._metadata['setup_status'] < _SetupStatus.POST_SETUP: raise RuntimeError(f"{self.msginfo}: list_pre_post can't be called before setup.") if outfile is None: out = sys.stdout else: out = open(outfile, 'w') model = self.model if model._pre_components: print("\nPre-optimization components:", file=out) for name in sorted(model._pre_components): print(f" {name}", file=out) else: print("\nPre-optimization components: []", file=out) if model._post_components: print("\nPost-optimization components:", file=out) for name in sorted(model._post_components): print(f" {name}", file=out) else: print("\nPost-optimization components: []", file=out)
def _any_rank_has_saved_errors(self): """ Return True if any rank has saved errors. Returns ------- bool True if any rank has errors. """ if self._metadata is None: return False else: if MPI and self.comm is not None and self.comm.size > 1: if self._metadata['saved_errors'] is None: nerrs = 0 else: nerrs = len(self._metadata['saved_errors']) return self.comm.allreduce(nerrs, op=MPI.SUM) > 0 else: return bool(self._metadata['saved_errors']) def _get_unique_saved_errors(self): """ Get a list of unique saved errors. Returns ------- list List of unique saved errors. """ unique_errors = [] if self._metadata is not None: if self._any_rank_has_saved_errors(): # traceback won't pickle, so convert to string if self.comm.size > 1: saved = [(ident, msg, exc_type, ''.join(traceback.format_tb(tback))) for ident, msg, exc_type, tback in self._metadata['saved_errors']] all_errors = self.comm.allgather(saved) else: all_errors = [self._metadata['saved_errors']] seen = set() for errors in all_errors: for ident, msg, exc_type, tback in errors: if (ident is None and msg not in seen) or ident not in seen: unique_errors.append((ident, msg, exc_type, tback)) seen.add(ident) seen.add(msg) return unique_errors
[docs] def get_total_coloring(self, coloring_info=None, of=None, wrt=None, run_model=None): """ Get the total coloring. If necessary, dynamically generate it. Parameters ---------- coloring_info : dict Coloring metadata dict. of : list of str or None List of response names. wrt : list of str or None List of design variable names. run_model : bool or None If False, don't run model. If None, use problem._run_counter to determine if model should be run. Returns ------- Coloring or None Coloring object, possibly dynamically generated, or None. """ if coloring_mod._use_total_sparsity: coloring = None # if no coloring_info is supplied, copy the coloring_info from the driver but # remove any existing coloring, and force dynamic coloring if coloring_info is None: coloring_info = self.driver._coloring_info.copy() coloring_info.coloring = None coloring_info.dynamic = True if coloring_info.do_compute_coloring(): if coloring_info.dynamic: do_run = run_model if run_model is not None else self._run_counter < 0 coloring = \ coloring_mod.dynamic_total_coloring( self.driver, run_model=do_run, fname=self.driver._get_total_coloring_fname(mode='output'), of=of, wrt=wrt) else: return coloring_info.coloring return coloring
_ErrorTuple = namedtuple('ErrorTuple', ['forward', 'reverse', 'forward_reverse']) _MagnitudeTuple = namedtuple('MagnitudeTuple', ['forward', 'reverse', 'fd']) def _compute_deriv_errors(derivative_info, matrix_free, directional, totals): """ Compute the errors between derivatives that were computed using different modes or methods. Error information in the derivative_info dict is updated by this function. Parameters ---------- derivative_info : dict Metadata dict corresponding to a particular (of, wrt) pair. matrix_free : bool True if the current dirivatives are computed in a matrix free manner. directional : bool True if the current dirivtives are directional. totals : bool or _TotalJacInfo _TotalJacInfo if the current derivatives are total derivatives. Returns ------- float The norm of the FD jacobian. """ nan = float('nan') def safe_norm(arr): return 0. if arr is None or arr.size == 0 else np.linalg.norm(arr) Jforward = derivative_info.get('J_fwd') Jreverse = derivative_info.get('J_rev') forward = Jforward is not None reverse = Jreverse is not None rev_norm = fwd_norm = fwd_rev_error = None calc_norm = 0. if reverse: rev_norm = calc_norm = safe_norm(Jreverse) if forward: fwd_norm = calc_norm = safe_norm(Jforward) try: fdinfo = derivative_info['J_fd'] steps = derivative_info['steps'] except KeyError: # this can happen when a partial is not declared, which means it should be zero fdinfo = (np.zeros(1),) steps = (None,) if matrix_free: if directional: if forward and reverse: fwd_rev_error = safe_norm(derivative_info['directional_fwd_rev']) else: fwd_rev_error = None elif not totals: fwd_rev_error = safe_norm(Jforward - Jreverse) derivative_info['abs error'] = [] derivative_info['rel error'] = [] derivative_info['magnitude'] = [] derivative_info['steps'] = [] fdnorms = [] for i, fd in enumerate(fdinfo): step = steps[i] fd_norm = safe_norm(fd) fdnorms.append(fd_norm) fwd_error = rev_error = None if reverse and not directional: rev_error = safe_norm(Jreverse - fd) if forward: fwd_error = safe_norm(Jforward - fd) if directional: if reverse: rev_error = safe_norm(derivative_info['directional_fd_rev'][i]) if not totals: rev_norm = None if forward and totals: fwd_error = safe_norm(derivative_info['directional_fd_fwd'][i]) derivative_info['abs error'].append(_ErrorTuple(fwd_error, rev_error, fwd_rev_error)) derivative_info['magnitude'].append(_MagnitudeTuple(fwd_norm, rev_norm, fd_norm)) derivative_info['steps'].append(step) # If fd_norm is zero, let's use calc_norm as the divisor for the relative # error check. That way we don't accidentally squelch a legitimate problem. div_norm = fd_norm if fd_norm != 0. else calc_norm if div_norm == 0.: derivative_info['rel error'].append(_ErrorTuple(None if fwd_error is None else nan, None if rev_error is None else nan, None if fwd_rev_error is None else nan)) else: if matrix_free and not totals: derivative_info['rel error'].append(_ErrorTuple(fwd_error / div_norm, rev_error / div_norm, fwd_rev_error / div_norm)) else: derivative_info['rel error'].append(_ErrorTuple( None if fwd_error is None else fwd_error / div_norm, None if rev_error is None else rev_error / div_norm, None if fwd_rev_error is None else fwd_rev_error / div_norm)) return np.max(fdnorms) def _errors_above_tol(deriv_info, abs_error_tol, rel_error_tol): """ Return if either abs or rel tolerances are violated when comparing a group of derivatives. Parameters ---------- deriv_info : dict Metadata dict corresponding to a particular (of, wrt) pair. abs_error_tol : float Absolute error tolerance. rel_error_tol : float Relative error tolerance. Returns ------- bool True if absolute tolerance is violated. bool True if relative tolerance is violated. """ abs_errs = deriv_info['abs error'] rel_errs = deriv_info['rel error'] above_abs = above_rel = False for abs_err in abs_errs: for error in abs_err: if error is not None and not np.isnan(error) and error >= abs_error_tol: above_abs = True break if above_abs: break for rel_err in rel_errs: for error in rel_err: if error is not None and not np.isnan(error) and error >= rel_error_tol: above_rel = True break if above_rel: break return above_abs, above_rel def _iter_derivs(derivatives, sys_name, show_only_incorrect, global_options, totals, matrix_free, abs_error_tol=1e-6, rel_error_tol=1e-6, incon_keys=()): """ Iterate over all of the derivatives. If show_only_incorrect is True, only the derivatives with abs or rel errors outside of tolerance or derivatives wrt serial variables that are inconsistent across ranks will be returned. Parameters ---------- derivatives : dict Dict of metadata for derivative groups, keyed on (of, wrt) pairs. sys_name : str Name of the current system. show_only_incorrect : bool If True, yield only derivatives with errors outside of tolerance. global_options : dict Dictionary containing the options for the approximation. totals : bool or _TotalJacInfo Set to _TotalJacInfo if we are doing check_totals to skip a bunch of stuff. matrix_free : bool True if the system computes matrix free derivatives. abs_error_tol : float Absolute error tolerance. rel_error_tol : float Relative error tolerance. incon_keys : set or tuple Keys where there are serial d_inputs variables that are inconsistent across processes. Yields ------ tuple The (of, wrt) pair for the current derivatives being compared. float The FD norm. dict The FD options. bool True if the current derivatives are directional. bool True if the differences for the current derivatives are above the absolute error tolerance. bool True if the differences for the current derivatives are above the relative error tolerance. bool True if the current derivative was computed where some serial d_inputs variables were not consistent across processes. """ # Sorted keys ensures deterministic ordering sorted_keys = sorted(derivatives) for key in sorted_keys: _, wrt = key inconsistent = False derivative_info = derivatives[key] if totals: fd_opts = global_options[''] else: fd_opts = global_options[sys_name][wrt] if key in incon_keys: inconsistent = True directional = bool(fd_opts) and fd_opts.get('directional') fd_norm = _compute_deriv_errors(derivative_info, matrix_free, directional, totals) above_abs, above_rel = _errors_above_tol(derivative_info, abs_error_tol, rel_error_tol) if show_only_incorrect and not (above_abs or above_rel or inconsistent): continue yield key, fd_norm, fd_opts, directional, above_abs, above_rel, inconsistent def _fix_check_data(data): """ Modify the data dict to match the old format if there is only one fd step size. Parameters ---------- data : dict Dictionary containing derivative information keyed by system name. """ names = ['J_fd', 'abs error', 'rel error', 'magnitude', 'directional_fd_fwd', 'directional_fd_rev'] for sdata in data.values(): for dct in sdata.values(): for name in names: if name in dct: dct[name] = dct[name][0] if 'steps' in dct: del dct['steps'] def _assemble_derivative_data(derivative_data, rel_error_tol, abs_error_tol, out_stream, compact_print, system_list, global_options, comm, totals=False, indep_key=None, print_reverse=False, show_only_incorrect=False, lcons=None, sort=False): """ Compute the relative and absolute errors in the given derivatives and print to the out_stream. Parameters ---------- derivative_data : dict Dictionary containing derivative information keyed by system name. rel_error_tol : float Relative error tolerance. abs_error_tol : float Absolute error tolerance. out_stream : file-like object Where to send human readable output. Set to None to suppress. compact_print : bool If results should be printed verbosely or in a table. system_list : iterable The systems (in the proper order) that were checked. global_options : dict Dictionary containing the options for the approximation. comm : MPI.Comm or FakeComm The MPI communicator. totals : bool or _TotalJacInfo Set to _TotalJacInfo if we are doing check_totals to skip a bunch of stuff. indep_key : dict of sets, optional Keyed by component name, contains the of/wrt keys that are declared not dependent. print_reverse : bool, optional Set to True if compact_print results need to include columns for reverse mode. show_only_incorrect : bool, optional Set to True if output should print only the subjacs found to be incorrect. lcons : list or None For total derivatives only, list of outputs that are actually linear constraints. sort : bool If True, sort subjacobian keys alphabetically. """ suppress_output = out_stream is None # Keep track of the worst subjac in terms of relative error for fwd and rev if not suppress_output and show_only_incorrect: if totals: out_stream.write('\n** Only writing information about incorrect total derivatives **' '\n\n') else: out_stream.write('\n** Only writing information about components with ' 'incorrect Jacobians **\n\n') worst_subjac = None incon_keys = () for system in system_list: # Match header to appropriate type. if isinstance(system, Component): sys_type = 'Component' elif isinstance(system, Group): sys_type = 'Group' else: raise RuntimeError(f"Object type {type(system).__name__} is not a Component or Group.") sys_name = system.pathname sys_class_name = type(system).__name__ matrix_free = system.matrix_free if sys_name not in derivative_data: issue_warning(f"No derivative data found for {sys_type} '{sys_name}'.", category=DerivativesWarning) continue derivatives = derivative_data[sys_name] if totals: sys_name = 'Full Model' incon_keys = system._get_inconsistent_keys() num_bad_jacs = 0 # Keep track of number of bad derivative values for each component # Need to capture the output of a component's derivative # info so that it can be used if that component is the # worst subjac. That info is printed at the bottom of all the output out_buffer = StringIO() if not suppress_output: num_format = '{: 1.4e}' num_col_meta = {'format': num_format} if totals: title = "Total Derivatives" else: title = f"{sys_type}: {sys_class_name} '{sys_name}'" print(f"{add_border(title, '-')}\n", file=out_buffer) table_data = [] for key, fd_norm, fd_opts, directional, above_abs, above_rel, inconsistent in \ _iter_derivs(derivatives, sys_name, show_only_incorrect, global_options, totals, matrix_free, abs_error_tol, rel_error_tol, incon_keys): # Skip printing the non-dependent keys if the derivatives are fine. if not compact_print: if indep_key and key in indep_key[sys_name] and fd_norm < abs_error_tol: del derivatives[key] continue of, wrt = key derivative_info = derivatives[key] if above_abs or above_rel or inconsistent: num_bad_jacs += 1 if suppress_output: continue # Informative output for responses that were declared with an index. indices = derivative_info.get('indices') if indices is not None: of = f'{of} (index size: {indices})' abs_errs = derivative_info['abs error'] rel_errs = derivative_info['rel error'] magnitudes = derivative_info['magnitude'] steps = derivative_info['steps'] if len(steps) > 1: stepstrs = [f", step={step}" for step in steps] else: stepstrs = [""] if magnitudes[0].reverse is not None: Jrev = derivative_info['J_rev'] # use forward even if both fwd and rev are defined if magnitudes[0].forward is not None: Jfor = derivative_info['J_fwd'] if isinstance(wrt, str): wrt = f"'{wrt}'" if isinstance(of, str): of = f"'{of}'" if directional: wrt = f"(d){wrt}" if compact_print: err_desc = [] if above_abs: err_desc.append(' >ABS_TOL') if above_rel: err_desc.append(' >REL_TOL') if inconsistent: err_desc.append(' <RANK INCONSISTENT>') err_desc = ''.join(err_desc) for i in range(len(magnitudes)): if magnitudes[0].reverse is not None: calc_mag = magnitudes[i].reverse calc_abs = abs_errs[i].reverse calc_rel = rel_errs[i].reverse # use forward even if both fwd and rev are defined if magnitudes[0].forward is not None: calc_mag = magnitudes[i].forward calc_abs = abs_errs[i].forward calc_rel = rel_errs[i].forward if totals: if len(steps) > 1: table_data.append([of, wrt, steps[i], calc_mag, magnitudes[i].fd, calc_abs, calc_rel, err_desc]) else: table_data.append([of, wrt, calc_mag, magnitudes[i].fd, calc_abs, calc_rel, err_desc]) else: if print_reverse: if len(steps) > 1: table_data.append([of, wrt, steps[i], magnitudes[i].forward, magnitudes[i].reverse, magnitudes[i].fd, abs_errs[i].forward, abs_errs[i].reverse, abs_errs[i].forward_reverse, rel_errs[i].forward, rel_errs[i].reverse, rel_errs[i].forward_reverse, err_desc]) else: table_data.append([of, wrt, magnitudes[i].forward, magnitudes[i].reverse, magnitudes[i].fd, abs_errs[i].forward, abs_errs[i].reverse, abs_errs[i].forward_reverse, rel_errs[i].forward, rel_errs[i].reverse, rel_errs[i].forward_reverse, err_desc]) else: if len(steps) > 1: table_data.append([of, wrt, steps[i], magnitudes[i].forward, magnitudes[i].fd, abs_errs[i].forward, rel_errs[i].forward, err_desc]) else: table_data.append([of, wrt, magnitudes[i].forward, magnitudes[i].fd, abs_errs[i].forward, rel_errs[i].forward, err_desc]) assert abs_errs[i].forward_reverse is None assert rel_errs[i].forward_reverse is None assert abs_errs[i].reverse is None assert rel_errs[i].reverse is None # See if this component has the greater error in the derivative computation # compared to the other components so far for err in rel_errs[i][:2]: if err is None or np.isnan(err): continue if worst_subjac is None or err > worst_subjac[2]: worst_subjac = (sys_class_name, sys_name, err, table_data[-1]) else: # not compact print if fd_norm == 0.: if magnitudes[0].forward is None: divname = 'Jrev' else: divname = 'Jfor' else: divname = 'Jfd' if out_stream: # Magnitudes out_buffer.write(f" {sys_name}: {of} wrt {wrt}") if not isinstance(of, tuple) and lcons and of.strip("'") in lcons: out_buffer.write(" (Linear constraint)") out_buffer.write('\n') if magnitudes[0].forward is not None: out_buffer.write(f' Forward Magnitude: {magnitudes[0].forward:.6e}\n') if magnitudes[0].reverse is not None: out_buffer.write(f' Reverse Magnitude: {magnitudes[0].reverse:.6e}\n') fd_desc = f"{fd_opts['method']}:{fd_opts['form']}" for i in range(len(magnitudes)): out_buffer.write(f' Fd Magnitude: ' f'{magnitudes[i].fd:.6e} ({fd_desc}{stepstrs[i]})\n') out_buffer.write('\n') for i in range(len(magnitudes)): # Absolute Errors if directional: if totals and abs_errs[i].forward is not None: err = _format_error(abs_errs[i].forward, abs_error_tol) out_buffer.write(f' Absolute Error (Jfor - Jfd){stepstrs[i]} : ' f'{err}\n') if abs_errs[i].reverse is not None: err = _format_error(abs_errs[i].reverse, abs_error_tol) out_buffer.write(f' Absolute Error ([rev, fd] Dot Product Test)' f'{stepstrs[i]} : {err}\n') else: if abs_errs[i].forward is not None: err = _format_error(abs_errs[i].forward, abs_error_tol) out_buffer.write(f' Absolute Error (Jfor - Jfd){stepstrs[i]} : ' f'{err}\n') if abs_errs[i].reverse is not None: err = _format_error(abs_errs[i].reverse, abs_error_tol) out_buffer.write(f' Absolute Error (Jrev - Jfd){stepstrs[i]} : ' f'{err}\n') if directional: if abs_errs[0].forward_reverse is not None: err = _format_error(abs_errs[0].forward_reverse, abs_error_tol) out_buffer.write(' Absolute Error ([rev, for] Dot Product Test) : ' f'{err}\n') else: if abs_errs[0].forward_reverse is not None: err = _format_error(abs_errs[0].forward_reverse, abs_error_tol) out_buffer.write(f' Absolute Error (Jrev - Jfor) : {err}\n') out_buffer.write('\n') for i in range(len(magnitudes)): # Relative Errors if out_stream: if directional: if totals and rel_errs[i].forward is not None: err = _format_error(rel_errs[i].forward, rel_error_tol) out_buffer.write(f' Relative Error (Jfor - Jfd) / {divname}' f'{stepstrs[i]} : {err}\n') if rel_errs[i].reverse is not None: err = _format_error(rel_errs[i].reverse, rel_error_tol) out_buffer.write(f' Relative Error ([rev, fd] Dot Product Test) ' f'/ {divname}{stepstrs[i]} : {err}\n') else: if rel_errs[i].forward is not None: err = _format_error(rel_errs[i].forward, rel_error_tol) out_buffer.write(f' Relative Error (Jfor - Jfd) / {divname}' f'{stepstrs[i]} : {err}\n') if rel_errs[i].reverse is not None: err = _format_error(rel_errs[i].reverse, rel_error_tol) out_buffer.write(f' Relative Error (Jrev - Jfd) / {divname}' f'{stepstrs[i]} : {err}\n') if out_stream: if directional: if rel_errs[0].forward_reverse is not None: err = _format_error(rel_errs[0].forward_reverse, rel_error_tol) out_buffer.write(f' Relative Error ([rev, for] Dot Product Test) / ' f'{divname} : {err}\n') else: if rel_errs[0].forward_reverse is not None: err = _format_error(rel_errs[0].forward_reverse, rel_error_tol) out_buffer.write(f' Relative Error (Jrev - Jfor) / {divname} : ' f'{err}\n') if inconsistent: out_buffer.write('\n * Inconsistent value across ranks *\n') if MPI and comm.size > 1: out_buffer.write(f'\n MPI Rank {comm.rank}\n') out_buffer.write('\n') with np.printoptions(linewidth=240): # Raw Derivatives if magnitudes[0].forward is not None: if directional: out_buffer.write(' Directional Derivative (Jfor)') else: out_buffer.write(' Raw Forward Derivative (Jfor)') Jstr = textwrap.indent(str(Jfor), ' ') out_buffer.write(f"\n{Jstr}\n\n") fdtype = fd_opts['method'].upper() if magnitudes[0].reverse is not None: if directional: if totals: out_buffer.write(' Directional Derivative (Jrev) Dot Product') else: out_buffer.write(' Directional Derivative (Jrev)') else: out_buffer.write(' Raw Reverse Derivative (Jrev)') Jstr = textwrap.indent(str(Jrev), ' ') out_buffer.write(f"\n{Jstr}\n\n") try: fds = derivative_info['J_fd'] except KeyError: fds = [0.] for i in range(len(magnitudes)): fd = fds[i] if directional: if totals and magnitudes[i].reverse is not None: out_buffer.write(f' Directional {fdtype} Derivative (Jfd) ' f'Dot Product{stepstrs[i]}\n {fd}\n\n') else: out_buffer.write(f" Directional {fdtype} Derivative (Jfd)" f"{stepstrs[i]}\n {fd}\n\n") else: Jstr = textwrap.indent(str(fd), ' ') out_buffer.write(f" Raw {fdtype} Derivative (Jfd){stepstrs[i]}" f"\n{Jstr}\n\n") out_buffer.write(' -' * 30 + '\n') # End of if compact print if/else # End of for of, wrt in sorted_keys if not suppress_output: if compact_print and table_data: headers = ["of '<variable>'", "wrt '<variable>'"] if len(steps) > 1: headers.append('step') column_meta = [{}, {}] if print_reverse: headers.extend(['fwd mag.', 'rev mag.', 'check mag.', 'a(fwd-chk)', 'a(rev-chk)', 'a(fwd-rev)', 'r(fwd-chk)', 'r(rev-chk)', 'r(fwd-rev)', 'error desc']) else: headers.extend(['calc mag.', 'check mag.', 'a(cal-chk)', 'r(cal-chk)', 'error desc']) column_meta.extend([num_col_meta.copy() for _ in range(len(headers) - 3)]) column_meta.append({}) print(generate_table(table_data, headers=headers, tablefmt='grid', column_meta=column_meta, missing_val='n/a'), file=out_buffer) if totals or not show_only_incorrect or num_bad_jacs > 0: out_stream.write(out_buffer.getvalue()) # End of for system in system_list if not suppress_output: if compact_print and not totals and worst_subjac: class_name, name, _, worst_row = worst_subjac worst_header = f"Sub Jacobian with Largest Relative Error: {class_name} '{name}'" worst_table = generate_table([worst_row[:-1]], headers=headers[:-1], tablefmt='grid', column_meta=column_meta[:-1], missing_val='n/a') print(f"\n{add_border(worst_header, '#')}\n{worst_table}", file=out_stream) if incon_keys: # stick incon_keys into the first key's dict in order to avoid breaking existing code for key, dct in derivative_data['' if totals else sys_name].items(): dct['inconsistent_keys'] = incon_keys break if not suppress_output: if totals: msgstart = "During computation of totals, the " else: msgstart = "The " ders = [f"{sof} wrt {swrt}" for sof, swrt in sorted(incon_keys)] print(f"\n{msgstart}following partial derivatives resulted in\n" "inconsistent values across processes for certain serial inputs:\n" f"{ders}.\nThis can happen if a component 'compute_jacvec_product' " "or 'apply_linear'\nmethod does not properly reduce the value of a distributed " "output when computing the\nderivative of that output with respect to a serial " "input.\nOpenMDAO 3.25 changed the convention used " "when transferring data between distributed and non-distributed \nvariables " "within a matrix free component. See POEM 75 for details.") def _format_cell(val): """ Return string to represent deriv check value in compact display. Parameters ---------- val : float or None The deriv check value. Returns ------- str String which is the actual value or 'n/a' if val is None. """ if val is None: return pad_name('n/a') if np.isnan(val): return pad_name('nan') return f'{val:.4e}' def _format_error(error, tol): """ Format the error, flagging if necessary. Parameters ---------- error : float The absolute or relative error. tol : float Tolerance above which errors are flagged Returns ------- str Formatted and possibly flagged error. """ if np.isnan(error) or error < tol: return f'{error:.6e}' return f'{error:.6e} *' def _get_fd_options(var, global_method, local_opts, global_step, global_form, global_step_calc, alloc_complex, global_minimum_step): local_wrt = var # Determine if fd or cs. method = global_method if local_wrt in local_opts: local_method = local_opts[local_wrt]['method'] if local_method: method = local_method # We can't use CS if we haven't allocated a complex vector, so we fall back on fd. if method == 'cs' and not alloc_complex: method = 'fd' could_not_cs = True else: could_not_cs = False fd_options = {'order': None, 'method': method} if method == 'cs': fd_options = ComplexStep.DEFAULT_OPTIONS.copy() fd_options['method'] = 'cs' fd_options['form'] = None fd_options['step_calc'] = None fd_options['minimum_step'] = None elif method == 'fd': fd_options = FiniteDifference.DEFAULT_OPTIONS.copy() fd_options['method'] = 'fd' fd_options['form'] = global_form fd_options['step_calc'] = global_step_calc fd_options['minimum_step'] = global_minimum_step if global_step and global_method == method: fd_options['step'] = global_step fd_options['directional'] = False # Precedence: component options > global options > defaults if local_wrt in local_opts: for name in ['form', 'step', 'step_calc', 'minimum_step', 'directional']: value = local_opts[local_wrt][name] if value is not None: fd_options[name] = value return fd_options, could_not_cs