"""Define the ImplicitComponent class."""
from scipy.sparse import coo_matrix
import numpy as np
from openmdao.core.component import Component, _allowed_types
from openmdao.core.constants import _UNDEFINED, _SetupStatus
from openmdao.vectors.vector import _full_slice
from openmdao.recorders.recording_iteration_stack import Recording
from openmdao.utils.class_util import overrides_method
from openmdao.utils.array_utils import shape_to_len
from openmdao.utils.general_utils import format_as_float_or_array, _subjac_meta2value
from openmdao.utils.units import simplify_unit
from openmdao.utils.rangemapper import RangeMapper
from openmdao.utils.om_warnings import issue_warning
def _get_slice_shape_dict(name_shape_iter):
"""
Return a dict of (slice, shape) tuples using provided names and shapes.
Parameters
----------
name_shape_iter : iterator
An iterator yielding (name, shape) pairs
Returns
-------
dict
A dict of (slice, shape) tuples using provided names and shapes.
"""
dct = {}
start = end = 0
for name, shape in name_shape_iter:
size = shape_to_len(shape)
end += size
dct[name] = (slice(start, end), shape)
start = end
return dct
[docs]class ImplicitComponent(Component):
"""
Class to inherit from when all output variables are implicit.
Parameters
----------
**kwargs : dict of keyword arguments
Keyword arguments that will be mapped into the Component options.
Attributes
----------
_declared_residuals : dict
Contains local residual names mapped to metadata.
_has_solve_nl : bool
If True, this component has a solve_nonlinear method that overrides the ImplicitComponent
class method.
_has_solve_linear : bool
If True, this component has a solve_linear method that overrides the ImplicitComponent
class method.
"""
[docs] def __init__(self, **kwargs):
"""
Store some bound methods so we can detect runtime overrides.
"""
self._declared_residuals = {}
super().__init__(**kwargs)
self._has_solve_nl = _UNDEFINED
self._has_solve_linear = _UNDEFINED
def _configure(self):
"""
Configure this system to assign children settings.
Also tag component if it provides a guess_nonlinear.
"""
self._has_guess = overrides_method('guess_nonlinear', self, ImplicitComponent)
if self._has_solve_nl is _UNDEFINED:
self._has_solve_nl = overrides_method('solve_nonlinear', self, ImplicitComponent)
if self._has_solve_linear is _UNDEFINED:
self._has_solve_linear = overrides_method('solve_linear', self, ImplicitComponent)
if self.matrix_free == _UNDEFINED:
self.matrix_free = overrides_method('apply_linear', self, ImplicitComponent)
def _apply_nonlinear(self):
"""
Compute residuals. The model is assumed to be in a scaled state.
"""
with self._unscaled_context(outputs=[self._outputs], residuals=[self._residuals]):
with self._call_user_function('apply_nonlinear', protect_outputs=True):
if self._run_root_only():
if self.comm.rank == 0:
if self._discrete_inputs or self._discrete_outputs:
self.apply_nonlinear(self._inputs, self._outputs,
self._residuals_wrapper,
self._discrete_inputs, self._discrete_outputs)
else:
self.apply_nonlinear(self._inputs, self._outputs,
self._residuals_wrapper)
self.comm.bcast([self._residuals.asarray(), self._discrete_outputs], root=0)
else:
new_res, new_disc_outs = self.comm.bcast(None, root=0)
self._residuals.set_val(new_res)
if new_disc_outs:
for name, val in new_disc_outs.items():
self._discrete_outputs[name] = val
else:
if self._discrete_inputs or self._discrete_outputs:
self.apply_nonlinear(self._inputs, self._outputs, self._residuals_wrapper,
self._discrete_inputs, self._discrete_outputs)
else:
self.apply_nonlinear(self._inputs, self._outputs, self._residuals_wrapper)
self.iter_count_apply += 1
def _solve_nonlinear(self):
"""
Compute outputs. The model is assumed to be in a scaled state.
"""
if self._nonlinear_solver is not None:
with Recording(self.pathname + '._solve_nonlinear', self.iter_count, self):
self._nonlinear_solver._solve_with_cache_check()
elif self._has_solve_nl:
with self._unscaled_context(outputs=[self._outputs]):
with Recording(self.pathname + '._solve_nonlinear', self.iter_count, self):
with self._call_user_function('solve_nonlinear'):
if self._run_root_only():
if self.comm.rank == 0:
if self._discrete_inputs or self._discrete_outputs:
self.solve_nonlinear(self._inputs, self._outputs,
self._discrete_inputs,
self._discrete_outputs)
else:
self.solve_nonlinear(self._inputs, self._outputs)
self.comm.bcast([self._outputs.asarray(), self._discrete_outputs],
root=0)
else:
new_res, new_disc_outs = self.comm.bcast(None, root=0)
self._outputs.set_val(new_res)
if new_disc_outs:
for name, val in new_disc_outs.items():
self._discrete_outputs[name] = val
else:
if self._discrete_inputs or self._discrete_outputs:
self.solve_nonlinear(self._inputs, self._outputs,
self._discrete_inputs, self._discrete_outputs)
else:
self.solve_nonlinear(self._inputs, self._outputs)
# Iteration counter is incremented in the Recording context manager at exit.
def _guess_nonlinear(self):
"""
Provide initial guess for states.
"""
if self._has_guess:
self._apply_nonlinear()
complex_step = self._inputs._under_complex_step
try:
with self._unscaled_context(outputs=[self._outputs], residuals=[self._residuals]):
if complex_step:
self._inputs.set_complex_step_mode(False)
self._outputs.set_complex_step_mode(False)
self._residuals.set_complex_step_mode(False)
with self._call_user_function('guess_nonlinear', protect_residuals=True):
if self._discrete_inputs or self._discrete_outputs:
self.guess_nonlinear(self._inputs, self._outputs,
self._residuals_wrapper,
self._discrete_inputs, self._discrete_outputs)
else:
self.guess_nonlinear(self._inputs, self._outputs,
self._residuals_wrapper)
finally:
if complex_step:
self._inputs.set_complex_step_mode(True)
self._outputs.set_complex_step_mode(True)
self._residuals.set_complex_step_mode(True)
def _apply_linear_wrapper(self, *args):
"""
Call apply_linear based on the value of the "run_root_only" option.
Parameters
----------
*args : list
List of positional arguments.
"""
inputs, outputs, d_inputs, d_outputs, d_residuals, mode = args
if self._run_root_only():
if self.comm.rank == 0:
self.apply_linear(inputs, outputs, d_inputs, d_outputs, d_residuals, mode)
if mode == 'fwd':
self.comm.bcast(d_residuals.asarray(), root=0)
else: # rev
self.comm.bcast((d_inputs.asarray(), d_outputs.asarray()), root=0)
else:
if mode == 'fwd':
new_res = self.comm.bcast(None, root=0)
d_residuals.set_val(new_res)
else: # rev
new_ins, new_outs = self.comm.bcast(None, root=0)
d_inputs.set_val(new_ins)
d_outputs.set_val(new_outs)
else:
dochk = mode == 'rev' and self._problem_meta['checking'] and self.comm.size > 1
if dochk:
nzdresids = self._get_dist_nz_dresids()
self.apply_linear(inputs, outputs, d_inputs, d_outputs, d_residuals, mode)
if dochk:
self._check_consistent_serial_dinputs(nzdresids)
def _apply_linear(self, jac, mode, scope_out=None, scope_in=None):
"""
Compute jac-vec product. The model is assumed to be in a scaled state.
Parameters
----------
jac : Jacobian or None
If None, use local jacobian, else use assembled jacobian jac.
mode : str
Either 'fwd' or 'rev'.
scope_out : set or None
Set of absolute output names in the scope of this mat-vec product.
If None, all are in the scope.
scope_in : set or None
Set of absolute input names in the scope of this mat-vec product.
If None, all are in the scope.
"""
if jac is None:
jac = self._assembled_jac if self._assembled_jac is not None else self._jacobian
with self._matvec_context(scope_out, scope_in, mode) as vecs:
d_inputs, d_outputs, d_residuals = vecs
d_residuals = self._dresiduals_wrapper
# if we're not matrix free, we can skip the bottom of
# this loop because apply_linear does nothing.
if not self.matrix_free:
# Jacobian and vectors are all scaled, unitless
jac._apply(self, d_inputs, d_outputs, d_residuals, mode)
return
# Jacobian and vectors are all unscaled, dimensional
with self._unscaled_context(
outputs=[self._outputs, d_outputs], residuals=[d_residuals]):
# set appropriate vectors to read_only to help prevent user error
if mode == 'fwd':
d_inputs.read_only = d_outputs.read_only = True
elif mode == 'rev':
d_residuals.read_only = True
try:
with self._call_user_function('apply_linear', protect_outputs=True):
self._apply_linear_wrapper(self._inputs, self._outputs,
d_inputs, d_outputs, d_residuals, mode)
finally:
d_inputs.read_only = d_outputs.read_only = d_residuals.read_only = False
def _solve_linear(self, mode, scope_out=_UNDEFINED, scope_in=_UNDEFINED):
"""
Apply inverse jac product. The model is assumed to be in a scaled state.
Parameters
----------
mode : str
'fwd' or 'rev'.
scope_out : set, None, or _UNDEFINED
Outputs relevant to possible lower level calls to _apply_linear on Components.
scope_in : set, None, or _UNDEFINED
Inputs relevant to possible lower level calls to _apply_linear on Components.
"""
if self._linear_solver is not None:
self._linear_solver._set_matvec_scope(scope_out, scope_in)
self._linear_solver.solve(mode, None)
else:
d_outputs = self._doutputs
d_residuals = self._dresiduals_wrapper
with self._unscaled_context(outputs=[d_outputs], residuals=[d_residuals]):
# set appropriate vectors to read_only to help prevent user error
if mode == 'fwd':
d_residuals.read_only = True
elif mode == 'rev':
d_outputs.read_only = True
try:
with self._call_user_function('solve_linear'):
self.solve_linear(d_outputs, d_residuals, mode)
finally:
d_outputs.read_only = d_residuals.read_only = False
def _approx_subjac_keys_iter(self):
for abs_key, meta in self._subjacs_info.items():
if 'method' in meta:
method = meta['method']
if method is not None and method in self._approx_schemes:
yield abs_key
def _linearize_wrapper(self):
"""
Call linearize based on the value of the "run_root_only" option.
"""
with self._call_user_function('linearize', protect_outputs=True):
if self._run_root_only():
if self.comm.rank == 0:
if self._discrete_inputs or self._discrete_outputs:
self.linearize(self._inputs, self._outputs, self._jac_wrapper,
self._discrete_inputs, self._discrete_outputs)
else:
self.linearize(self._inputs, self._outputs, self._jac_wrapper)
if self._jacobian is not None:
self.comm.bcast(list(self._jacobian.items()), root=0)
elif self._jacobian is not None:
for key, val in self.comm.bcast(None, root=0):
self._jac_wrapper[key] = val
else:
if self._discrete_inputs or self._discrete_outputs:
self.linearize(self._inputs, self._outputs, self._jac_wrapper,
self._discrete_inputs, self._discrete_outputs)
else:
self.linearize(self._inputs, self._outputs, self._jac_wrapper)
def _linearize(self, jac=None, sub_do_ln=True):
"""
Compute jacobian / factorization. The model is assumed to be in a scaled state.
Parameters
----------
jac : Jacobian or None
If None, use local jacobian, else use assembled jacobian jac.
sub_do_ln : bool
Flag indicating if the children should call linearize on their linear solvers.
"""
self._check_first_linearize()
with self._unscaled_context(outputs=[self._outputs]):
# Computing the approximation before the call to compute_partials allows users to
# override FD'd values.
for approximation in self._approx_schemes.values():
approximation.compute_approximations(self, jac=self._jacobian)
self._linearize_wrapper()
if (jac is None or jac is self._assembled_jac) and self._assembled_jac is not None:
self._assembled_jac._update(self)
[docs] def add_output(self, name, val=1.0, **kwargs):
"""
Add an output variable to the component.
Parameters
----------
name : str
Name of the variable in this component's namespace.
val : float or list or tuple or ndarray
The initial value of the variable being added in user-defined units. Default is 1.0.
**kwargs : dict
Keyword args to store. The value corresponding to each key is a dict containing the
metadata for the input name that matches that key.
Returns
-------
dict
Metadata for added variable.
"""
metadata = super().add_output(name, val, **kwargs)
metadata['tags'].add('openmdao:allow_desvar')
return metadata
[docs] def add_residual(self, name, shape=(1,), units=None, desc='', ref=None):
"""
Add a residual variable to the component.
Note that the total size of the residual vector must match the total size of
the outputs vector for this component.
Parameters
----------
name : str
Name of the residual in this component's namespace.
shape : int or tuple
Shape of this residual.
units : str or None
Units in which this residual will be given to the user when requested.
Default is None, which means it has no units.
desc : str
Description of the residual.
ref : float or ndarray or None
Scaling parameter. The value in the user-defined units of this residual
when the scaled value is 1. Default is 1.
Returns
-------
dict
Metadata for the added residual.
"""
metadict = self._declared_residuals
# Catch duplicated residuals
if name in metadict:
raise ValueError(f"{self.msginfo}: Residual name '{name}' already exists.")
if self._problem_meta is not None:
if self._problem_meta['setup_status'] > _SetupStatus.POST_FINAL_SETUP:
raise RuntimeError(f"{self.msginfo}: Can't add residual '{name}' "
"after final_setup.")
# check ref shape
if ref is not None:
if np.isscalar(ref):
self._has_resid_scaling |= ref != 1.0
else:
self._has_resid_scaling |= np.any(ref != 1.0)
if not isinstance(ref, _allowed_types):
raise TypeError(f'{self.msginfo}: The ref argument should be a '
'float, list, tuple, ndarray or Iterable')
it = np.atleast_1d(ref)
if it.shape != shape:
raise ValueError(f"{self.msginfo}: When adding residual '{name}', expected "
f"shape {shape} but got shape {it.shape} for argument 'ref'.")
if units is not None:
if not isinstance(units, str):
raise TypeError(f"{self.msginfo}: The units argument should be a str or None")
units = simplify_unit(units, msginfo=self.msginfo)
metadict[name] = meta = {
'shape': shape,
'units': units,
'desc': desc,
'ref': format_as_float_or_array('ref', ref, flatten=True, val_if_none=None),
}
return meta
def _reset_setup_vars(self):
"""
Reset all the stuff that gets initialized in setup.
"""
super()._reset_setup_vars()
self._declared_residuals = {}
self._resid2out_subjac_map = {}
def _resid_name_shape_iter(self):
for name, meta in self._declared_residuals.items():
yield name, meta['shape']
[docs] def setup_residuals(self):
"""
User hook for adding named residuals to this component.
"""
pass
def _setup_residuals(self):
"""
Call setup_residuals if the user has defined it.
"""
self.setup_residuals()
def _setup_vectors(self, root_vectors):
"""
Compute all vectors for all vec names and assign excluded variables lists.
Parameters
----------
root_vectors : dict of dict of Vector
Root vectors: first key is 'input', 'output', or 'residual'; second key is vec_name.
"""
super()._setup_vectors(root_vectors)
if self._declared_residuals:
name2slcshape = _get_slice_shape_dict(self._resid_name_shape_iter())
if self._use_derivatives:
self._dresiduals_wrapper = _ResidsWrapper(self._dresiduals, name2slcshape)
self._residuals_wrapper = _ResidsWrapper(self._residuals, name2slcshape)
self._jac_wrapper = _JacobianWrapper(self._jacobian, self._resid2out_subjac_map)
else:
self._residuals_wrapper = self._residuals
self._dresiduals_wrapper = self._dresiduals
self._jac_wrapper = self._jacobian
def _resolve_partials_patterns(self, of, wrt, pattern_meta):
"""
Store subjacobian metadata for later use.
Parameters
----------
of : tuple of str
The names of the residuals that derivatives are being computed for.
May also contain glob patterns.
wrt : tuple of str
The names of the variables that derivatives are taken with respect to.
This can contain the name of any input or output variable.
May also contain glob patterns.
pattern_meta : dict
Metadata dict specifying shape, and/or approx properties.
"""
if self._declared_residuals:
# if we have renamed resids, remap them to use output naming
plen = len(self.pathname) + 1
resid_mapper = RangeMapper.create([(n, shape_to_len(meta['shape']))
for n, meta in self._declared_residuals.items()],
max_flat_range_size=100)
out_mapper = RangeMapper.create([(n[plen:], shape_to_len(meta['shape']))
for n, meta in self._var_abs2meta['output'].items()],
max_flat_range_size=100)
if resid_mapper.size != out_mapper.size:
raise RuntimeError(f"{self.msginfo}: The number of residuals ({resid_mapper.size}) "
f"doesn't match number of outputs ({out_mapper.size}). If any "
"residuals are added using 'add_residuals', their total size "
"must match the total size of the outputs.")
rmap = self._resid2out_subjac_map
omap = {}
# expand the glob patterns into a list of specific residuals and map overlaps to
# both outputs and residuals
for _, resids in self._find_of_matches(of, use_resname=True):
for resid in resids:
for tup in resid_mapper.overlap_iter(resid, out_mapper):
_, rstart, rstop, oname, ostart, ostop = tup
self._check_res_vs_out_meta(resid, oname)
if resid not in rmap:
rmap[resid] = []
if oname not in omap:
omap[oname] = []
data = (oname, pattern_meta.copy(),
slice(ostart, ostop), slice(rstart, rstop))
rmap[resid].append(data)
omap[oname].append(data)
pattern_val, pattern_rows, _ = _subjac_meta2value(pattern_meta)
abs_wrts = []
if pattern_val is not None or pattern_rows is not None:
for _, wrts in self._find_wrt_matches(wrt):
for w in wrts:
abs_wrts.append(self.pathname + '.' + w)
wrt_sizes = set()
for abs_wrt in abs_wrts:
if abs_wrt in self._var_abs2meta['input']:
wrtsize = shape_to_len(self._var_abs2meta['input'][abs_wrt]['shape'])
else:
wrtsize = shape_to_len(self._var_abs2meta['output'][abs_wrt]['shape'])
wrt_sizes.add(wrtsize)
if len(wrt_sizes) > 1:
raise ValueError(f"{self.msginfo}: declared residual partial ({of}, {wrt}) "
f"specifies a sub-jacobian value or shape, but it matches "
f"multiple 'wrt' values that don't all have the same size. "
f"Sizes found: {sorted(wrt_sizes)}.")
for oname, lst in omap.items():
oabs_name = self.pathname + '.' + oname
existing_metas = []
# gather any existing metadata dicts declared for the current output
for wabs in abs_wrts:
if (oabs_name, wabs) in self._subjacs_info:
existing_metas.append(self._subjacs_info[oabs_name, wabs])
newmeta = {'dependent': True, 'rows': None, 'cols': None}
if not existing_metas:
existing_metas.append(newmeta)
if 'method' in pattern_meta:
method = pattern_meta['method']
if method in ('fd', 'cs'):
existing_metas[0]['method'] = method
if pattern_rows is not None:
rows = []
cols = []
data = []
for _, patmeta, oslc, rslc in lst:
if 'rows' in patmeta and patmeta['rows'] is not None:
r, c, d = _get_sparse_slice(patmeta, oslc, rslc)
rows.append(r)
cols.append(c)
if d is not None:
data.append(d)
else:
raise RuntimeError("No support currently for sparse and dense resid "
"subjacs that overlap the same output.")
rows = np.concatenate(rows)
cols = np.concatenate(cols)
if data:
data = np.concatenate(data)
if len(data) != len(rows):
raise ValueError(f"{self.msginfo}: length of data array ({len(data)} "
f"!= number of rows ({len(rows)} for sparse partial "
f"({oname}, {wrt}).")
val = data
else:
val = None
for meta in existing_metas:
v, r, c = _subjac_meta2value(meta)
if r is not None:
meta['rows'] = np.concatenate((r, rows))
meta['cols'] = np.concatenate((c, cols))
if v is not None:
meta['val'] = np.concatenate((v, val))
else:
meta['val'] = val
elif v is not None:
issue_warning(f"{self.msginfo}: The existing subjac value for "
f"({oname}, {wrt}) is dense, but is being updated with a "
"sparse value. The combined subjac will be dense.",
RuntimeWarning)
meta['val'][oslc] = _get_dense_slice_from_sparse(meta, oslc, rslc)
else:
meta['rows'] = rows
meta['cols'] = cols
meta['val'] = val
else: # resid partials are all dense
outsize = shape_to_len(self._var_abs2meta['output'][self.pathname + '.' +
oname]['shape'])
for meta in existing_metas:
if pattern_val is not None:
val, r, c = _subjac_meta2value(meta)
if val is None:
val = meta['val'] = np.zeros((outsize, wrtsize), dtype=float)
for _, _, oslice, rslice in lst:
val[oslice, :] = pattern_val[rslice, :]
super()._resolve_partials_patterns(oname, wrt, meta)
else:
super()._resolve_partials_patterns(of, wrt, pattern_meta)
def _check_res_vs_out_meta(self, resid, output):
"""
Check for mismatch of 'ref' vs. 'res_ref' and 'units' vs. 'res_units'.
Raises an exception if a mismatch exists.
Parameters
----------
resid : str
Local name of residual that overlaps the output.
output : str
Local name of the output.
"""
resmeta = self._declared_residuals[resid]
outmeta = self._var_abs2meta['output'][self.pathname + '.' + output]
ref = resmeta['ref']
res_ref = outmeta['res_ref']
if ref is not None and res_ref is not None:
ref_arr = isinstance(ref, np.ndarray)
res_ref_arr = isinstance(res_ref, np.ndarray)
if (ref_arr != res_ref_arr or (ref_arr and not np.all(ref == res_ref) or
(not ref_arr and ref != res_ref))):
raise ValueError(f"{self.msginfo}: ({ref} != {res_ref}), 'ref' for residual "
f"'{resid}' != 'res_ref' for output '{output}'.")
units = resmeta['units']
res_units = outmeta['res_units']
# assume units and res_units are already simplified
if units is not None and res_units is not None and units != res_units:
raise ValueError(f"{self.msginfo}: residual units '{units}' for residual '{resid}' != "
f"output res_units '{res_units}' for output '{output}'.")
def _get_partials_wrts(self):
"""
Get the list of wrt variables that form the partial jacobian.
Returns
-------
list
List of wrt variable names (relative names).
"""
return list(self._var_rel_names['output']) + list(self._var_rel_names['input'])
def _get_partials_ofs(self, use_resname=False):
"""
Get the list of 'of' variables that form the partial jacobian.
Parameters
----------
use_resname : bool
If True, 'of' will be a list of residual names instead of output names.
Returns
-------
list
List of of variable names (relative names).
"""
if use_resname and self._declared_residuals:
return list(self._declared_residuals)
return super()._get_partials_ofs()
[docs] def apply_nonlinear(self, inputs, outputs, residuals, discrete_inputs=None,
discrete_outputs=None):
"""
Compute residuals given inputs and outputs.
The model is assumed to be in an unscaled state.
Parameters
----------
inputs : Vector
Unscaled, dimensional input variables read via inputs[key].
outputs : Vector
Unscaled, dimensional output variables read via outputs[key].
residuals : Vector
Unscaled, dimensional residuals written to via residuals[key].
discrete_inputs : dict or None
If not None, dict containing discrete input values.
discrete_outputs : dict or None
If not None, dict containing discrete output values.
"""
raise NotImplementedError('ImplicitComponent.apply_nonlinear() must be overridden '
'by the child class.')
[docs] def solve_nonlinear(self, inputs, outputs):
"""
Compute outputs given inputs. The model is assumed to be in an unscaled state.
Parameters
----------
inputs : Vector
Unscaled, dimensional input variables read via inputs[key].
outputs : Vector
Unscaled, dimensional output variables read via outputs[key].
"""
pass
[docs] def guess_nonlinear(self, inputs, outputs, residuals,
discrete_inputs=None, discrete_outputs=None):
"""
Provide initial guess for states.
Override this method to set the initial guess for states.
Parameters
----------
inputs : Vector
Unscaled, dimensional input variables read via inputs[key].
outputs : Vector
Unscaled, dimensional output variables read via outputs[key].
residuals : Vector
Unscaled, dimensional residuals written to via residuals[key].
discrete_inputs : dict or None
If not None, dict containing discrete input values.
discrete_outputs : dict or None
If not None, dict containing discrete output values.
"""
pass
[docs] def apply_linear(self, inputs, outputs, d_inputs, d_outputs, d_residuals, mode):
r"""
Compute jac-vector product. The model is assumed to be in an unscaled state.
If mode is:
'fwd': (d_inputs, d_outputs) \|-> d_residuals
'rev': d_residuals \|-> (d_inputs, d_outputs)
Parameters
----------
inputs : Vector
Unscaled, dimensional input variables read via inputs[key].
outputs : Vector
Unscaled, dimensional output variables read via outputs[key].
d_inputs : Vector
See inputs; product must be computed only if var_name in d_inputs.
d_outputs : Vector
See outputs; product must be computed only if var_name in d_outputs.
d_residuals : Vector
See outputs.
mode : str
Either 'fwd' or 'rev'.
"""
pass
[docs] def solve_linear(self, d_outputs, d_residuals, mode):
r"""
Apply inverse jac product. The model is assumed to be in an unscaled state.
If mode is:
'fwd': d_residuals \|-> d_outputs
'rev': d_outputs \|-> d_residuals
Note : this is not the linear solution for the implicit component. We use identity so
that simple implicit components can function in a preconditioner under linear gauss-seidel.
To correctly solve this component, you should slot a solver in linear_solver or override
this method.
Parameters
----------
d_outputs : Vector
Unscaled, dimensional quantities read via d_outputs[key].
d_residuals : Vector
Unscaled, dimensional quantities read via d_residuals[key].
mode : str
Either 'fwd' or 'rev'.
"""
if mode == 'fwd':
d_outputs.set_vec(d_residuals)
else: # rev
d_residuals.set_vec(d_outputs)
[docs] def linearize(self, inputs, outputs, jacobian, discrete_inputs=None, discrete_outputs=None):
"""
Compute sub-jacobian parts and any applicable matrix factorizations.
The model is assumed to be in an unscaled state.
Parameters
----------
inputs : Vector
Unscaled, dimensional input variables read via inputs[key].
outputs : Vector
Unscaled, dimensional output variables read via outputs[key].
jacobian : Jacobian
Sub-jac components written to jacobian[output_name, input_name].
discrete_inputs : dict or None
If not None, dict containing discrete input values.
discrete_outputs : dict or None
If not None, dict containing discrete output values.
"""
pass
def _list_states(self):
"""
Return list of all states at and below this system.
If final setup has not been performed yet, return relative names for this system only.
Returns
-------
list
List of all states.
"""
prefix = self.pathname + '.'
return sorted(list(self._var_abs2meta['output']) +
[prefix + n for n in self._var_discrete['output']])
def _list_states_allprocs(self):
"""
Return list of all states for this component.
Returns
-------
list
List of all states.
"""
return self._list_states()
def _overlap_range_iter(meta_dict1, meta_dict2, names1=None, names2=None):
"""
Yield names and ranges of overlapping variables from two metadata dictionaries.
The metadata dicts are assumed to contain a 'shape' entry, and the total size of the
variables in meta_dict1 must equal the total size of the variables in meta_dict2.
"""
iter2 = meta2range_iter(meta_dict2, names=names2)
start2 = end2 = -1
for name1, start1, end1 in meta2range_iter(meta_dict1, names=names1):
try:
while not (start2 <= start1 < end2 or start2 <= end1 < end2):
name2, start2, end2 = next(iter2)
if end1 < end2:
yield name1, start1, end1, name2, start2, end2
else:
while end1 >= end2:
yield name1, start1, end1, name2, start2, end2
name2, start2, end2 = next(iter2)
except StopIteration:
return
class _ResidsWrapper(object):
def __init__(self, vec, name2slice_shape):
self.__dict__['_vec'] = vec
self.__dict__['_dct'] = name2slice_shape
def __getitem__(self, name):
arr = self._vec.asarray(copy=False)
if name in self._dct:
slc, shape = self._dct[name]
view = arr[slc]
view.shape = shape
return view
return self._vec.__getitem__(name) # handles errors
def __setitem__(self, name, val):
arr = self._vec.asarray(copy=False)
if name in self._dct:
slc, _ = self._dct[name]
arr[slc] = np.asarray(val).flat
return
self._vec.__setitem__(name, val) # handles errors
def __getattr__(self, name):
return getattr(self._vec, name)
def __setattr__(self, name, val):
setattr(self._vec, name, val)
class _JacobianWrapper(object):
def __init__(self, jac, res2outmap):
self.__dict__['_jac'] = jac
self.__dict__['_dct'] = res2outmap
def __getitem__(self, key):
res, wrt = key
if len(self._dct) == 1:
of, _, slc, _ = self._dct[res]
return self._jac[(of, wrt)][slc]
return np.vstack([self._jac[(of, wrt)][slc] for of, _, _, slc, _ in self._dct[res]])
def __setitem__(self, key, val):
res, wrt = key
for of, _, outslc, resslc in self._dct[res]:
if isinstance(val, np.ndarray):
v = val[resslc]
else:
v = val
if outslc is _full_slice:
self._jac[of, wrt] = v
else:
# setting only subset of the rows in the subjac
sjac = self._jac[of, wrt]
sjac[outslc] = v
self._jac[of, wrt] = sjac
def __getattr__(self, name):
return getattr(self._jac, name)
def __setattr__(self, name, val):
setattr(self._jac, name, val)
def _get_sparse_slice(meta, oslc, rslc):
r = np.asarray(meta['rows'], dtype=int)
c = np.asarray(meta['cols'], dtype=int)
mask = np.logical_and(r >= rslc.start, r < rslc.stop)
if 'val' in meta and meta['val'] is not None:
if np.isscalar(meta['val']):
d = np.full((len(r),), meta['val'], dtype=float)
else:
d = np.atleast_1d(meta['val'])
return r[mask] - rslc.start + oslc.start, c[mask], d[mask]
else:
return r[mask] - rslc.start + oslc.start, c[mask], None
def _get_dense_slice_from_sparse(meta, oslc, rslc):
r, c, d = _get_sparse_slice(meta, oslc, rslc)
coo = coo_matrix((d, (r, c)), shape=(rslc.stop - rslc.start, meta['shape'][1]))
return coo.toarray()