Source code for openmdao.core.driver

"""Define a base class for all Drivers in OpenMDAO."""
import functools
from itertools import chain
import pprint
import sys
import time
import os
import weakref

import numpy as np

from openmdao.core.group import Group
from openmdao.core.total_jac import _TotalJacInfo
from openmdao.core.constants import INT_DTYPE, _SetupStatus
from openmdao.recorders.recording_manager import RecordingManager
from openmdao.recorders.recording_iteration_stack import Recording
from openmdao.utils.record_util import create_local_meta, check_path, has_match
from openmdao.utils.general_utils import _src_name_iter, DriverMetaclass
from openmdao.utils.mpi import MPI
from openmdao.utils.options_dictionary import OptionsDictionary
import openmdao.utils.coloring as coloring_mod
from openmdao.utils.array_utils import sizes2offsets
from openmdao.vectors.vector import _full_slice, _flat_full_indexer
from openmdao.utils.indexer import indexer
from openmdao.utils.om_warnings import issue_warning, DerivativesWarning, \
    DriverWarning, OMDeprecationWarning, warn_deprecation


[docs] class DriverResult(): """ A container that stores information pertaining to the result of a driver execution. Parameters ---------- driver : Driver The Driver associated with this DriverResult. Attributes ---------- _driver : weakref to Driver A weakref to the Driver associated with this DriverResult. runtime : float The time required to execute the driver, in seconds. iter_count : int The number of iterations used by the optimizer. model_evals : int The number of times the objective function was evaluated (model solve_nonlinear calls). model_time : float The time spent in model solve_nonlinear evaluations. deriv_evals : int The number of times the total jacobian was computed. deriv_time : float The time spent computing the total jacobian. exit_status : str A string that may provide more detail about the results of the driver run. success : bool A boolean that dictates whether or not the driver was successful. """
[docs] def __init__(self, driver): """ Initialize the DriverResult object. """ self._driver = weakref.ref(driver) self.runtime = 0.0 self.iter_count = 0 self.model_evals = 0 self.model_time = 0.0 self.deriv_evals = 0 self.deriv_time = 0.0 self.exit_status = 'NOT_RUN' self.success = False
[docs] def reset(self): """ Set the driver result attributes back to their default value. """ self.runtime = 0.0 self.iter_count = 0 self.model_evals = 0 self.model_time = 0.0 self.deriv_evals = 0 self.deriv_time = 0.0 self.exit_status = 'NOT_RUN' self.success = False
[docs] def __getitem__(self, s): """ Provide key access to the attributes of DriverResult. This is included for backward compatibility with some tests which require dictionary-like access. Parameters ---------- s : str The name of the attribute. Returns ------- object The value of the attribute """ return getattr(self, s)
def __repr__(self): """ Return a string representation of the DriverResult. Returns ------- str A string-representation of the DriverResult object """ driver = self._driver() prob = driver._problem() s = (f'Problem: {prob._name}\n' f'Driver: {driver.__class__.__name__}\n' f' success : {self.success}\n' f' iterations : {self.iter_count}\n' f' runtime : {self.runtime:-10.4E} s\n' f' model_evals : {self.model_evals}\n' f' model_time : {self.model_time:-10.4E} s\n' f' deriv_evals : {self.deriv_evals}\n' f' deriv_time : {self.deriv_time:-10.4E} s\n' f' exit_status : {self.exit_status}') return s def __bool__(self): """ Mimick the behavior of the previous `failed` return value of run_driver. The return value is True if the driver was NOT successful. An OMDeprecationWarning is currently issued so users know to change their code. Users should utilize the `success` attribute to test for driver success. Returns ------- bool True if the Driver was NOT successful. """ issue_warning(msg='boolean evaluation of DriverResult is temporarily implemented ' 'to mimick the previous `failed` return behavior of run_driver.\n' 'Use the `success` attribute of the returned DriverResult ' 'object to test for successful driver completion.', category=OMDeprecationWarning) return not self.success
[docs] @staticmethod def track_stats(kind): """ Decorate methods to track the model solve_nonlinear or deriv time and count. This decorator should be applied to the _objfunc or _gradfunc (or equivalent) methods of drivers. It will either accumulate the elapsed time in driver.result.model_time or driver.result.deriv_time, based on the value of kind. Parameters ---------- kind : str One of 'model' or 'deriv', specifying which statistics should be accumulated. Returns ------- Callable A wrapped version of the decorated function such that it accumulates the time and call count for either the objective or derivatives. """ if kind not in ('model', 'deriv'): raise AttributeError('time_type must be one of "model" or "deriv".') def _track_time(func): @functools.wraps(func) def wrapper(*args, **kwargs): start_time = time.perf_counter() ret = func(*args, **kwargs) end_time = time.perf_counter() result = args[0].result if kind == 'model': result.model_time += end_time - start_time result.model_evals += 1 else: result.deriv_time += end_time - start_time result.deriv_evals += 1 return ret return wrapper return _track_time
[docs] class Driver(object, metaclass=DriverMetaclass): """ Top-level container for the systems and drivers. Parameters ---------- **kwargs : dict of keyword arguments Keyword arguments that will be mapped into the Driver options. Attributes ---------- iter_count : int Keep track of iterations for case recording. options : <OptionsDictionary> Dictionary with general pyoptsparse options. recording_options : <OptionsDictionary> Dictionary with driver recording options. cite : str Listing of relevant citations that should be referenced when publishing work that uses this class. _problem : weakref to <Problem> Pointer to the containing problem. supports : <OptionsDictionary> Provides a consistent way for drivers to declare what features they support. _designvars : dict Contains all design variable info. _designvars_discrete : list List of design variables that are discrete. _dist_driver_vars : dict Dict of constraints that are distributed outputs. Key is a 'user' variable name, typically promoted name or an alias. Values are (local indices, local sizes). _cons : dict Contains all constraint info. _objs : dict Contains all objective info. _responses : dict Contains all response info. _lin_dvs : dict Contains design variables relevant to linear constraints. _nl_dvs : dict Contains design variables relevant to nonlinear constraints. _remote_dvs : dict Dict of design variables that are remote on at least one proc. Values are (owning rank, size). _remote_cons : dict Dict of constraints that are remote on at least one proc. Values are (owning rank, size). _remote_objs : dict Dict of objectives that are remote on at least one proc. Values are (owning rank, size). _rec_mgr : <RecordingManager> Object that manages all recorders added to this driver. _coloring_info : dict Metadata pertaining to total coloring. _total_jac_format : str Specifies the format of the total jacobian. Allowed values are 'flat_dict', 'dict', and 'array'. _con_subjacs : dict Dict of sparse subjacobians for use with certain optimizers, e.g. pyOptSparseDriver. Keyed by sources and aliases. _total_jac : _TotalJacInfo or None Cached total jacobian handling object. _total_jac_linear : _TotalJacInfo or None Cached linear total jacobian handling object. result : DriverResult DriverResult object containing information for use in the optimization report. _has_scaling : bool If True, scaling has been set for this driver. """
[docs] def __init__(self, **kwargs): """ Initialize the driver. """ self._rec_mgr = RecordingManager() self._problem = None self._designvars = None self._designvars_discrete = [] self._cons = None self._objs = None self._responses = None self._lin_dvs = None self._nl_dvs = None # Driver options self.options = OptionsDictionary(parent_name=type(self).__name__) self.options.declare('debug_print', types=list, values=['desvars', 'nl_cons', 'ln_cons', 'objs', 'totals'], desc="List of what type of Driver variables to print at each " "iteration.", default=[]) default_desvar_behavior = os.environ.get('OPENMDAO_INVALID_DESVAR_BEHAVIOR', 'warn').lower() self.options.declare('invalid_desvar_behavior', values=('warn', 'raise', 'ignore'), desc='Behavior of driver if the initial value of a design ' 'variable exceeds its bounds. The default value may be' 'set using the `OPENMDAO_INVALID_DESVAR_BEHAVIOR` environment ' 'variable to one of the valid options.', default=default_desvar_behavior) # Case recording options self.recording_options = OptionsDictionary(parent_name=type(self).__name__) self.recording_options.declare('record_desvars', types=bool, default=True, desc='Set to True to record design variables at the ' 'driver level') self.recording_options.declare('record_responses', types=bool, default=False, desc='Set True to record constraints and objectives at the ' 'driver level') self.recording_options.declare('record_objectives', types=bool, default=True, desc='Set to True to record objectives at the driver level') self.recording_options.declare('record_constraints', types=bool, default=True, desc='Set to True to record constraints at the ' 'driver level') self.recording_options.declare('includes', types=list, default=[], desc='Patterns for variables to include in recording. ' 'Uses fnmatch wildcards') self.recording_options.declare('excludes', types=list, default=[], desc='Patterns for vars to exclude in recording ' '(processed post-includes). Uses fnmatch wildcards') self.recording_options.declare('record_derivatives', types=bool, default=False, desc='Set to True to record derivatives at the driver ' 'level') self.recording_options.declare('record_inputs', types=bool, default=True, desc='Set to True to record inputs at the driver level') self.recording_options.declare('record_outputs', types=bool, default=True, desc='Set True to record outputs at the ' 'driver level.') self.recording_options.declare('record_residuals', types=bool, default=False, desc='Set True to record residuals at the ' 'driver level.') # What the driver supports. self.supports = OptionsDictionary(parent_name=type(self).__name__) self.supports.declare('optimization', types=bool, default=False) self.supports.declare('inequality_constraints', types=bool, default=False) self.supports.declare('equality_constraints', types=bool, default=False) self.supports.declare('linear_constraints', types=bool, default=False) self.supports.declare('linear_only_designvars', types=bool, default=False) self.supports.declare('two_sided_constraints', types=bool, default=False) self.supports.declare('multiple_objectives', types=bool, default=False) self.supports.declare('integer_design_vars', types=bool, default=True) self.supports.declare('gradients', types=bool, default=False) self.supports.declare('active_set', types=bool, default=False) self.supports.declare('simultaneous_derivatives', types=bool, default=False) self.supports.declare('total_jac_sparsity', types=bool, default=False) self.supports.declare('distributed_design_vars', types=bool, default=True) self.iter_count = 0 self.cite = "" self._coloring_info = coloring_mod.ColoringMeta() self._total_jac_format = 'flat_dict' self._con_subjacs = {} self._total_jac = None self._total_jac_linear = None self._declare_options() self.options.update(kwargs) self.result = DriverResult(self) self._has_scaling = False
def _get_inst_id(self): if self._problem is None: return None return f"{self._problem()._get_inst_id()}.driver" @property def msginfo(self): """ Return info to prepend to messages. Returns ------- str Info to prepend to messages. """ return type(self).__name__
[docs] def add_recorder(self, recorder): """ Add a recorder to the driver. Parameters ---------- recorder : CaseRecorder A recorder instance. """ self._rec_mgr.append(recorder)
[docs] def cleanup(self): """ Clean up resources prior to exit. """ # shut down all recorders self._rec_mgr.shutdown()
def _declare_options(self): """ Declare options before kwargs are processed in the init method. This is optionally implemented by subclasses of Driver. """ pass def _setup_comm(self, comm): """ Perform any driver-specific setup of communicators for the model. Parameters ---------- comm : MPI.Comm or <FakeComm> or None The communicator for the Problem. Returns ------- MPI.Comm or <FakeComm> or None The communicator for the Problem model. """ return comm def _set_problem(self, problem): """ Set a reference to the containing Problem. Parameters ---------- problem : <Problem> Reference to the containing problem. """ self._problem = weakref.ref(problem) def _setup_driver(self, problem): """ Prepare the driver for execution. This is the final thing to run during setup. Parameters ---------- problem : <Problem> Pointer to the containing problem. """ model = problem.model self._total_jac = None # Determine if any design variables are discrete. self._designvars_discrete = [name for name, meta in self._designvars.items() if meta['source'] in model._discrete_outputs] if not self.supports['integer_design_vars'] and len(self._designvars_discrete) > 0: msg = "Discrete design variables are not supported by this driver: " msg += '.'.join(self._designvars_discrete) raise RuntimeError(msg) self._split_dvs(model) self._remote_dvs = {} self._remote_cons = {} self._dist_driver_vars = {} self._remote_objs = {} # Only allow distributed design variables on drivers that support it. if self.supports['distributed_design_vars'] is False: dist_vars = [] abs2meta_in = model._var_allprocs_abs2meta['input'] discrete_in = model._var_allprocs_discrete['input'] for dv, meta in self._designvars.items(): # For Auto-ivcs, we need to check the distributed metadata on the target instead. if meta['source'].startswith('_auto_ivc.'): for abs_name in model._var_allprocs_prom2abs_list['input'][dv]: # we can use abs name to check for discrete vars here because # relative names are absolute names at the model level. if abs_name in discrete_in: # Discrete vars aren't distributed. break if abs2meta_in[abs_name]['distributed']: dist_vars.append(dv) break elif meta['distributed']: dist_vars.append(dv) if dist_vars: dstr = ', '.join(dist_vars) msg = "Distributed design variables are not supported by this driver, but the " msg += f"following variables are distributed: [{dstr}]" raise RuntimeError(msg) # Now determine if later we'll need to allgather cons, objs, or desvars. if model.comm.size > 1: loc_vars = set(model._outputs._abs_iter()) # some of these lists could have duplicate src names if aliases are used. We'll # fix that when we convert to sets after the allgather. remote_dvs = [n for n in _src_name_iter(self._designvars) if n not in loc_vars] remote_cons = [n for n in _src_name_iter(self._cons) if n not in loc_vars] remote_objs = [n for n in _src_name_iter(self._objs) if n not in loc_vars] con_set = set() obj_set = set() dv_set = set() all_remote_vois = model.comm.allgather((remote_dvs, remote_cons, remote_objs)) for rem_dvs, rem_cons, rem_objs in all_remote_vois: con_set.update(rem_cons) obj_set.update(rem_objs) dv_set.update(rem_dvs) # If we have remote VOIs, pick an owning rank for each and use that # to bcast to others later owning_ranks = model._owning_rank abs2idx = model._var_allprocs_abs2idx abs2meta_out = model._var_allprocs_abs2meta['output'] sizes = model._var_sizes['output'] rank = model.comm.rank nprocs = model.comm.size dist_dict = self._dist_driver_vars # Loop over all VOIs. for vname, voimeta in chain(self._responses.items(), self._designvars.items()): # vname may be a promoted name or an alias indices = voimeta['indices'] vsrc = voimeta['source'] meta = abs2meta_out[vsrc] i = abs2idx[vsrc] if meta['distributed']: dist_sizes = sizes[:, i] tot_size = np.sum(dist_sizes) # Determine which indices are on our proc. offsets = sizes2offsets(dist_sizes) if indices is not None: indices = indices.shaped_array() true_sizes = np.zeros(nprocs, dtype=INT_DTYPE) for irank in range(nprocs): dist_inds = indices[np.logical_and(indices >= offsets[irank], indices < (offsets[irank] + dist_sizes[irank]))] true_sizes[irank] = dist_inds.size if irank == rank: local_indices = dist_inds - offsets[rank] distrib_indices = dist_inds ind = indexer(local_indices, src_shape=(tot_size,), flat_src=True) dist_dict[vname] = (ind, true_sizes, distrib_indices) else: dist_dict[vname] = (_flat_full_indexer, dist_sizes, slice(offsets[rank], offsets[rank] + dist_sizes[rank])) else: owner = owning_ranks[vsrc] sz = sizes[owner, i] if vsrc in dv_set: self._remote_dvs[vname] = (owner, sz) if vsrc in con_set: self._remote_cons[vname] = (owner, sz) if vsrc in obj_set: self._remote_objs[vname] = (owner, sz) self._remote_responses = self._remote_cons.copy() self._remote_responses.update(self._remote_objs) # set up simultaneous deriv coloring if coloring_mod._use_total_sparsity: # reset the coloring if self._coloring_info.dynamic or self._coloring_info.static is not None: self._coloring_info.coloring = None coloring = self._get_static_coloring() if coloring is not None and self.supports['simultaneous_derivatives']: if model._owns_approx_jac: coloring._check_config_partial(model) else: coloring._check_config_total(self, model) if not problem.model._use_derivatives: issue_warning("Derivatives are turned off. Skipping simul deriv coloring.", category=DerivativesWarning) def _split_dvs(self, model): """ Determine which design vars are relevant to linear constraints vs nonlinear constraints. For some optimizers, this information will be used to determine the columns of the total linear jacobian vs. the total nonlinear jacobian. Parameters ---------- model : <Group> The model being used in the optimization problem. """ lin_cons = tuple([meta['source'] for meta in self._cons.values() if meta['linear']]) if lin_cons: relevance = model._relevance dvs = tuple([meta['source'] for meta in self._designvars.values()]) with relevance.seeds_active(fwd_seeds=dvs, rev_seeds=lin_cons): self._lin_dvs = {dv: meta for dv, meta in self._designvars.items() if relevance.is_relevant(meta['source'])} nl_resps = [meta['source'] for meta in self._cons.values() if not meta['linear']] nl_resps.extend([meta['source'] for meta in self._objs.values()]) with relevance.seeds_active(fwd_seeds=dvs, rev_seeds=tuple(nl_resps)): self._nl_dvs = {dv: meta for dv, meta in self._designvars.items() if relevance.is_relevant(meta['source'])} else: self._lin_dvs = {} self._nl_dvs = self._designvars def _get_lin_dvs(self): """ Get the design variables relevant to linear constraints. If the driver does not support linear-only design variables, this will return all design variables. Returns ------- dict Dictionary containing design variables relevant to linear constraints. """ return self._lin_dvs if self.supports['linear_only_designvars'] else self._designvars def _get_nl_dvs(self): """ Get the design variables relevant to nonlinear constraints. If the driver does not support linear-only design variables, this will return all design variables. Returns ------- dict Dictionary containing design variables relevant to nonlinear constraints. """ return self._nl_dvs if self.supports['linear_only_designvars'] else self._designvars def _check_for_missing_objective(self): """ Check for missing objective and raise error if no objectives found. """ if len(self._objs) == 0: msg = "Driver requires objective to be declared" raise RuntimeError(msg) def _check_for_invalid_desvar_values(self): """ Check for design variable values that exceed their bounds. This method's behavior is controlled by the OPENMDAO_INVALID_DESVAR environment variable, which may take on values 'ignore', 'raise'', 'warn'. - 'ignore' : Proceed without checking desvar bounds. - 'warn' : Issue a warning if one or more desvar values exceed bounds. - 'raise' : Raise an exception if one or more desvar values exceed bounds. These options are case insensitive. """ if self.options['invalid_desvar_behavior'] != 'ignore': invalid_desvar_data = [] for var, meta in self._designvars.items(): _val = self._problem().get_val(var, units=meta['units'], get_remote=True) val = np.array([_val]) if np.ndim(_val) == 0 else _val # Handle discrete desvars idxs = meta['indices']() if meta['indices'] else None flat_idxs = meta['flat_indices'] scaler = meta['scaler'] if meta['scaler'] is not None else 1. adder = meta['adder'] if meta['adder'] is not None else 0. lower = meta['lower'] / scaler - adder upper = meta['upper'] / scaler - adder flat_val = val.ravel()[idxs] if flat_idxs else val[idxs].ravel() if (flat_val < lower).any() or (flat_val > upper).any(): invalid_desvar_data.append((var, val, lower, upper)) if invalid_desvar_data: s = 'The following design variable initial conditions are out of their ' \ 'specified bounds:' for var, val, lower, upper in invalid_desvar_data: s += f'\n {var}\n val: {val.ravel()}' \ f'\n lower: {lower}\n upper: {upper}' s += '\nSet the initial value of the design variable to a valid value or set ' \ 'the driver option[\'invalid_desvar_behavior\'] to \'ignore\'.' if self.options['invalid_desvar_behavior'] == 'raise': raise ValueError(s) else: issue_warning(s, category=DriverWarning) def _get_vars_to_record(self, obj=None): """ Get variables to record based on recording options. Parameters ---------- obj : Problem or Driver Parent object which has recording options. Returns ------- dict Dictionary containing lists of variables to record. """ if obj is None: obj = self recording_options = obj.recording_options problem = self._problem() model = problem.model incl = recording_options['includes'] excl = recording_options['excludes'] # includes and excludes for outputs are specified using promoted names # includes and excludes for inputs are specified using _absolute_ names abs2prom_output = model._var_allprocs_abs2prom['output'] abs2prom_inputs = model._var_allprocs_abs2prom['input'] # set of promoted output names and absolute input and residual names # used for matching includes/excludes match_names = set() # 1. If record_outputs is True, get the set of outputs # 2. Filter those using includes and excludes to get the baseline set of variables to record # 3. Add or remove from that set any desvars, objs, and cons based on the recording # options of those # includes and excludes for outputs are specified using _promoted_ names # vectors are keyed on absolute name, discretes on relative/promoted name myinputs = myoutputs = myresiduals = [] if recording_options['record_outputs']: match_names = match_names | set(abs2prom_output.values()) myoutputs = [n for n, prom in abs2prom_output.items() if check_path(prom, incl, excl)] model_outs = model._outputs if model._var_discrete['output']: # if we have discrete outputs then residual name set doesn't match output one if recording_options['record_residuals']: myresiduals = [n for n in myoutputs if model_outs._contains_abs(n)] elif recording_options['record_residuals']: myresiduals = myoutputs elif recording_options['record_residuals']: match_names = match_names | set(model._residuals.keys()) myresiduals = [n for n in model._residuals._abs_iter() if check_path(abs2prom_output[n], incl, excl)] myoutputs = set(myoutputs) if recording_options['record_desvars']: myoutputs.update(_src_name_iter(self._designvars)) if recording_options['record_objectives'] or recording_options['record_responses']: myoutputs.update(_src_name_iter(self._objs)) if recording_options['record_constraints'] or recording_options['record_responses']: myoutputs.update(_src_name_iter(self._cons)) # inputs (if in options). inputs use _absolute_ names for includes/excludes if 'record_inputs' in recording_options: if recording_options['record_inputs']: match_names = match_names | set(abs2prom_inputs.keys()) myinputs = [n for n in abs2prom_inputs if check_path(n, incl, excl)] # check that all exclude/include globs have at least one matching output or input name for pattern in excl: if not has_match(pattern, match_names): issue_warning(f"{obj.msginfo}: No matches for pattern '{pattern}' in " "recording_options['excludes'].") for pattern in incl: if not has_match(pattern, match_names): issue_warning(f"{obj.msginfo}: No matches for pattern '{pattern}' in " "recording_options['includes'].") # sort lists to ensure that vars are iterated over in the same order on all procs vars2record = { 'input': sorted(myinputs), 'output': sorted(myoutputs), 'residual': sorted(myresiduals) } return vars2record def _setup_recording(self): """ Set up case recording. """ self._filtered_vars_to_record = self._get_vars_to_record() self._rec_mgr.startup(self, self._problem().comm) def _run(self): """ Execute this driver. This calls the run() method, which should be overriden by the subclass. Returns ------- DriverResult DriverResult object, containing information about the run. """ problem = self._problem() model = problem.model if self.supports['optimization'] and problem.options['group_by_pre_opt_post']: if model._pre_components: with model._relevance.nonlinear_active('pre'): self._run_solve_nonlinear() with SaveOptResult(self): with model._relevance.nonlinear_active('iter'): self.result.success = not self.run() if model._post_components: with model._relevance.nonlinear_active('post'): self._run_solve_nonlinear() else: with SaveOptResult(self): self.result.success = not self.run() return self.result def _get_voi_val(self, name, meta, remote_vois, driver_scaling=True, get_remote=True, rank=None): """ Get the value of a variable of interest (objective, constraint, or design var). This will retrieve the value if the VOI is remote. Parameters ---------- name : str Name of the variable of interest. meta : dict Metadata for the variable of interest. remote_vois : dict Dict containing (owning_rank, size) for all remote vois of a particular type (design var, constraint, or objective). driver_scaling : bool When True, return values that are scaled according to either the adder and scaler or the ref and ref0 values that were specified when add_design_var, add_objective, and add_constraint were called on the model. Default is True. get_remote : bool or None If True, retrieve the value even if it is on a remote process. Note that if the variable is remote on ANY process, this function must be called on EVERY process in the Problem's MPI communicator. If False, only retrieve the value if it is on the current process, or only the part of the value that's on the current process for a distributed variable. rank : int or None If not None, gather value to this rank only. Returns ------- float or ndarray The value of the named variable of interest. """ model = self._problem().model comm = model.comm get = model._outputs._abs_get_val indices = meta['indices'] src_name = meta['source'] if MPI: distributed = comm.size > 0 and name in self._dist_driver_vars else: distributed = False if name in remote_vois: owner, size = remote_vois[name] # if var is distributed or only gathering to one rank # TODO - support distributed var under a parallel group. if owner is None or rank is not None: val = model.get_val(src_name, get_remote=get_remote, rank=rank, flat=True) if indices is not None: val = val[indices.flat()] else: if owner == comm.rank: if indices is None: val = get(src_name, flat=True).copy() else: val = get(src_name, flat=True)[indices.as_array()] else: if indices is not None: size = indices.indexed_src_size val = np.empty(size) if get_remote: comm.Bcast(val, root=owner) elif distributed: local_val = model.get_val(src_name, get_remote=False, flat=True) local_indices, sizes, _ = self._dist_driver_vars[name] if local_indices is not _full_slice: local_val = local_val[local_indices()] if get_remote: local_val = np.ascontiguousarray(local_val) offsets = np.zeros(sizes.size, dtype=INT_DTYPE) offsets[1:] = np.cumsum(sizes[:-1]) val = np.zeros(np.sum(sizes)) comm.Allgatherv(local_val, [val, sizes, offsets, MPI.DOUBLE]) else: val = local_val else: if src_name in model._discrete_outputs: val = model._discrete_outputs[src_name] if name in self._designvars_discrete: # At present, only integers are supported by OpenMDAO drivers. # We check the values here. if not ((np.isscalar(val) and isinstance(val, (int, np.integer))) or (isinstance(val, np.ndarray) and np.issubdtype(val[0], np.integer))): if np.isscalar(val): suffix = f"A value of type '{type(val).__name__}' was specified." elif isinstance(val, np.ndarray): suffix = f"An array of type '{val.dtype.name}' was specified." else: suffix = '' raise ValueError("Only integer scalars or ndarrays are supported as values " "for discrete variables when used as a design variable. " + suffix) elif indices is None: val = get(src_name, flat=True).copy() else: val = get(src_name, flat=True)[indices.as_array()] if self._has_scaling and driver_scaling: # Scale design variable values adder = meta['total_adder'] if adder is not None: val += adder scaler = meta['total_scaler'] if scaler is not None: val *= scaler return val
[docs] def get_driver_objective_calls(self): """ Return number of objective evaluations made during a driver run. Returns ------- int Number of objective evaluations made during a driver run. """ warn_deprecation('get_driver_objective_calls is deprecated. ' 'Use `driver.result.model_evals`') return self.result.model_evals
[docs] def get_driver_derivative_calls(self): """ Return number of derivative evaluations made during a driver run. Returns ------- int Number of derivative evaluations made during a driver run. """ warn_deprecation('get_driver_derivative_calls is deprecated. ' 'Use `driver.result.deriv_evals`') return self.result.deriv_evals
[docs] def get_design_var_values(self, get_remote=True, driver_scaling=True): """ Return the design variable values. Parameters ---------- get_remote : bool or None If True, retrieve the value even if it is on a remote process. Note that if the variable is remote on ANY process, this function must be called on EVERY process in the Problem's MPI communicator. If False, only retrieve the value if it is on the current process, or only the part of the value that's on the current process for a distributed variable. driver_scaling : bool When True, return values that are scaled according to either the adder and scaler or the ref and ref0 values that were specified when add_design_var, add_objective, and add_constraint were called on the model. Default is True. Returns ------- dict Dictionary containing values of each design variable. """ return {n: self._get_voi_val(n, dvmeta, self._remote_dvs, get_remote=get_remote, driver_scaling=driver_scaling) for n, dvmeta in self._designvars.items()}
[docs] def set_design_var(self, name, value, set_remote=True): """ Set the value of a design variable. 'name' can be a promoted output name or an alias. Parameters ---------- name : str Global pathname of the design variable. value : float or ndarray Value for the design variable. set_remote : bool If True, set the global value of the variable (value must be of the global size). If False, set the local value of the variable (value must be of the local size). """ problem = self._problem() meta = self._designvars[name] src_name = meta['source'] # if the value is not local, don't set the value if (src_name in self._remote_dvs and problem.model._owning_rank[src_name] != problem.comm.rank): return if name in self._designvars_discrete: # Note, drivers set values here and generally should know it is setting an integer. # However, the DOEdriver may pull a non-integer value from its generator, so we # convert it. if isinstance(value, float): value = int(value) elif isinstance(value, np.ndarray): if isinstance(problem.model._discrete_outputs[src_name], int): # Setting an integer value with a 1D array - don't want to convert to array. value = int(value.item()) else: value = value.astype(int) problem.model._discrete_outputs[src_name] = value elif problem.model._outputs._contains_abs(src_name): desvar = problem.model._outputs._abs_get_val(src_name) if name in self._dist_driver_vars: loc_idxs, _, dist_idxs = self._dist_driver_vars[name] loc_idxs = loc_idxs() # don't use indexer here else: loc_idxs = meta['indices'] if loc_idxs is None: loc_idxs = _full_slice else: loc_idxs = loc_idxs() dist_idxs = _full_slice if set_remote: # provided value is the global value, use indices for this proc desvar[loc_idxs] = np.atleast_1d(value)[dist_idxs] else: # provided value is the local value desvar[loc_idxs] = np.atleast_1d(value) # Undo driver scaling when setting design var values into model. if self._has_scaling: scaler = meta['total_scaler'] if scaler is not None: desvar[loc_idxs] *= 1.0 / scaler adder = meta['total_adder'] if adder is not None: desvar[loc_idxs] -= adder
[docs] def get_objective_values(self, driver_scaling=True): """ Return objective values. Parameters ---------- driver_scaling : bool When True, return values that are scaled according to either the adder and scaler or the ref and ref0 values that were specified when add_design_var, add_objective, and add_constraint were called on the model. Default is True. Returns ------- dict Dictionary containing values of each objective. """ return {n: self._get_voi_val(n, obj, self._remote_objs, driver_scaling=driver_scaling) for n, obj in self._objs.items()}
[docs] def get_constraint_values(self, ctype='all', lintype='all', driver_scaling=True): """ Return constraint values. Parameters ---------- ctype : str Default is 'all'. Optionally return just the inequality constraints with 'ineq' or the equality constraints with 'eq'. lintype : str Default is 'all'. Optionally return just the linear constraints with 'linear' or the nonlinear constraints with 'nonlinear'. driver_scaling : bool When True, return values that are scaled according to either the adder and scaler or the ref and ref0 values that were specified when add_design_var, add_objective, and add_constraint were called on the model. Default is True. Returns ------- dict Dictionary containing values of each constraint. """ con_dict = {} it = self._cons.items() if lintype == 'linear': it = filter_by_meta(it, 'linear') elif lintype == 'nonlinear': it = filter_by_meta(it, 'linear', exclude=True) if ctype == 'eq': it = filter_by_meta(it, 'equals', chk_none=True) elif ctype == 'ineq': it = filter_by_meta(it, 'equals', chk_none=True, exclude=True) for name, meta in it: con_dict[name] = self._get_voi_val(name, meta, self._remote_cons, driver_scaling=driver_scaling) return con_dict
def _get_ordered_nl_responses(self): """ Return the names of nonlinear responses in the order used by the driver. Default order is objectives followed by nonlinear constraints. This is used for simultaneous derivative coloring and sparsity determination. Returns ------- list of str The nonlinear response names in order. """ order = list(self._objs) order.extend(n for n, meta in self._cons.items() if not meta['linear']) return order def _update_voi_meta(self, model, responses, desvars): """ Collect response and design var metadata from the model and size desvars and responses. Parameters ---------- model : System The System that represents the entire model. responses : dict Response metadata dictionary. desvars : dict Design variable metadata dictionary. Returns ------- int Total size of responses, with linear constraints excluded. int Total size of design vars. """ self._objs = objs = {} self._cons = cons = {} self._responses = responses self._designvars = desvars # driver _responses are keyed by either the alias or the promoted name response_size = 0 for name, meta in responses.items(): if meta['type'] == 'con': cons[name] = meta if meta['linear']: continue # don't add to response size else: objs[name] = meta response_size += meta['global_size'] desvar_size = sum(meta['global_size'] for meta in desvars.values()) self._has_scaling = model._setup_driver_units() return response_size, desvar_size
[docs] def get_exit_status(self): """ Return exit status of driver run. Returns ------- str String indicating result of driver run. """ return 'SUCCESS' if self.result.success else 'FAIL'
[docs] def check_relevance(self): """ Check if there are constraints that don't depend on any design vars. This usually indicates something is wrong with the problem formulation. """ # relevance not relevant if not using derivatives if not self.supports['gradients']: return if 'singular_jac_behavior' in self.options: singular_behavior = self.options['singular_jac_behavior'] if singular_behavior == 'ignore': return else: singular_behavior = 'warn' problem = self._problem() # Do not perform this check if any subgroup uses approximated partials. # This causes the relevance graph to be invalid. for system in problem.model.system_iter(include_self=True, recurse=True, typ=Group): if system._has_approx: return bad = {n for n in self._problem().model._relevance._no_dv_responses if n not in self._designvars} if bad: bad_conns = [n for n, m in self._cons.items() if m['source'] in bad] bad_objs = [n for n, m in self._objs.items() if m['source'] in bad] badmsg = [] if bad_conns: badmsg.append(f"constraint(s) {bad_conns}") if bad_objs: badmsg.append(f"objective(s) {bad_objs}") bad = ' and '.join(badmsg) # Note: There is a hack in ScipyOptimizeDriver for older versions of COBYLA that # implements bounds on design variables by adding them as constraints. # These design variables as constraints will not appear in the wrt list. msg = f"{self.msginfo}: {bad} do not depend on any " \ "design variables. Please check your problem formulation." if singular_behavior == 'error': raise RuntimeError(msg) else: issue_warning(msg, category=DriverWarning)
[docs] def run(self): """ Execute this driver. The base `Driver` just runs the model. All other drivers overload this method. Returns ------- bool Failure flag; True if failed to converge, False is successful. """ self.result.reset() with RecordingDebugging(self._get_name(), self.iter_count, self): self._run_solve_nonlinear() self.iter_count += 1 return False
@property def _recording_iter(self): return self._problem()._metadata['recording_iter'] @DriverResult.track_stats(kind='model') def _run_solve_nonlinear(self): return self._problem().model.run_solve_nonlinear() @DriverResult.track_stats(kind='deriv') def _compute_totals(self, of=None, wrt=None, return_format='flat_dict', driver_scaling=True): """ Compute derivatives of desired quantities with respect to desired inputs. All derivatives are returned using driver scaling. Parameters ---------- of : list of variable name str or None Variables whose derivatives will be computed. Default is None, which uses the driver's objectives and constraints. wrt : list of variable name str or None Variables with respect to which the derivatives will be computed. Default is None, which uses the driver's desvars. return_format : str Format to return the derivatives. Default is a 'flat_dict', which returns them in a dictionary whose keys are tuples of form (of, wrt). For the scipy optimizer, 'array' is also supported. driver_scaling : bool If True (default), scale derivative values by the quantities specified when the desvars and responses were added. If False, leave them unscaled. Returns ------- derivs : object Derivatives in form requested by 'return_format'. """ problem = self._problem() debug_print = 'totals' in self.options['debug_print'] and (not MPI or problem.comm.rank == 0) if debug_print: header = 'Driver total derivatives for iteration: ' + str(self.iter_count) print(header) print(len(header) * '-' + '\n') if self._total_jac is None: total_jac = _TotalJacInfo(problem, of, wrt, return_format, approx=problem.model._owns_approx_jac, debug_print=debug_print, driver_scaling=driver_scaling) if total_jac.has_lin_cons and self.supports['linear_constraints']: self._total_jac_linear = total_jac else: self._total_jac = total_jac else: total_jac = self._total_jac totals = total_jac.compute_totals() if self.recording_options['record_derivatives']: self.record_derivatives() return totals
[docs] def record_derivatives(self): """ Record the current total jacobian. """ if self._total_jac is not None and self._rec_mgr._recorders: metadata = create_local_meta(self._get_name()) self._total_jac.record_derivatives(self, metadata)
[docs] def record_iteration(self): """ Record an iteration of the current Driver. """ status = -1 if self._problem is None else self._problem()._metadata['setup_status'] if status >= _SetupStatus.POST_FINAL_SETUP: record_iteration(self, self._problem(), self._get_name()) else: raise RuntimeError(f'{self.msginfo} attempted to record iteration but ' 'driver has not been initialized; `run_model()`, ' '`run_driver()`, or `final_setup()` must be called ' 'before recording.')
def _get_recorder_metadata(self, case_name): """ Return metadata from the latest iteration for use in the recorder. Parameters ---------- case_name : str Name of current case. Returns ------- dict Metadata dictionary for the recorder. """ return create_local_meta(case_name) def _get_name(self): """ Get name of current Driver. Returns ------- str Name of current Driver. """ return "Driver"
[docs] def declare_coloring(self, num_full_jacs=coloring_mod._DEF_COMP_SPARSITY_ARGS['num_full_jacs'], tol=coloring_mod._DEF_COMP_SPARSITY_ARGS['tol'], orders=coloring_mod._DEF_COMP_SPARSITY_ARGS['orders'], perturb_size=coloring_mod._DEF_COMP_SPARSITY_ARGS['perturb_size'], min_improve_pct=coloring_mod._DEF_COMP_SPARSITY_ARGS['min_improve_pct'], show_summary=coloring_mod._DEF_COMP_SPARSITY_ARGS['show_summary'], show_sparsity=coloring_mod._DEF_COMP_SPARSITY_ARGS['show_sparsity'], use_scaling=coloring_mod._DEF_COMP_SPARSITY_ARGS['use_scaling']): """ Set options for total deriv coloring. Parameters ---------- num_full_jacs : int Number of times to repeat partial jacobian computation when computing sparsity. tol : float Tolerance used to determine if an array entry is nonzero during sparsity determination. orders : int Number of orders above and below the tolerance to check during the tolerance sweep. perturb_size : float Size of input/output perturbation during generation of sparsity. min_improve_pct : float If coloring does not improve (decrease) the number of solves more than the given percentage, coloring will not be used. show_summary : bool If True, display summary information after generating coloring. show_sparsity : bool If True, display sparsity with coloring info after generating coloring. use_scaling : bool If True, use driver scaling when generating the sparsity. """ self._coloring_info.coloring = None self._coloring_info.num_full_jacs = num_full_jacs self._coloring_info.tol = tol self._coloring_info.orders = orders self._coloring_info.perturb_size = perturb_size self._coloring_info.min_improve_pct = min_improve_pct if self._coloring_info.static is None: self._coloring_info.dynamic = True else: self._coloring_info.dynamic = False self._coloring_info.show_summary = show_summary self._coloring_info.show_sparsity = show_sparsity self._coloring_info.use_scaling = use_scaling
[docs] def use_fixed_coloring(self, coloring=coloring_mod._STD_COLORING_FNAME): """ Tell the driver to use a precomputed coloring. Parameters ---------- coloring : str or Coloring A coloring filename or a Coloring object. If no arg is passed, filename will be determined automatically. """ if self.supports['simultaneous_derivatives']: if coloring_mod._force_dyn_coloring and coloring is coloring_mod._STD_COLORING_FNAME: # force the generation of a dynamic coloring this time self._coloring_info.dynamic = True self._coloring_info.static = None else: self._coloring_info.static = coloring self._coloring_info.dynamic = False self._coloring_info.coloring = None else: raise RuntimeError("Driver '%s' does not support simultaneous derivatives." % self._get_name())
def _setup_tot_jac_sparsity(self, coloring=None): """ Set up total jacobian subjac sparsity. Drivers that can use subjac sparsity should override this. Parameters ---------- coloring : Coloring or None Current coloring. """ pass def _get_static_coloring(self): """ Get the Coloring for this driver. If necessary, load the Coloring from a file. Returns ------- Coloring or None The pre-existing or loaded Coloring, or None """ coloring = None info = self._coloring_info static = info.static model = self._problem().model if isinstance(static, coloring_mod.Coloring): coloring = static info.coloring = coloring else: coloring = info.coloring if coloring is None and (static is coloring_mod._STD_COLORING_FNAME or isinstance(static, str)): if static is coloring_mod._STD_COLORING_FNAME: fname = self._get_total_coloring_fname(mode='input') else: fname = static print(f"loading total coloring from file {fname}") coloring = info.coloring = coloring_mod.Coloring.load(fname) info.update(coloring._meta) ofname = self._get_total_coloring_fname(mode='output') if ((model._full_comm is not None and model._full_comm.rank == 0) or (model._full_comm is None and model.comm.rank == 0)): coloring.save(ofname) if coloring is not None and info.static is not None: problem = self._problem() if coloring._rev and problem._orig_mode not in ('rev', 'auto'): revcol = coloring._rev[0][0] if revcol: raise RuntimeError("Simultaneous coloring does reverse solves but mode has " f"been set to '{problem._orig_mode}'") if coloring._fwd and problem._orig_mode not in ('fwd', 'auto'): fwdcol = coloring._fwd[0][0] if fwdcol: raise RuntimeError("Simultaneous coloring does forward solves but mode has " f"been set to '{problem._orig_mode}'") return coloring def _get_total_coloring_fname(self, mode='output'): return self._problem().get_coloring_dir(mode='output') / 'total_coloring.pkl'
[docs] def scaling_report(self, outfile='driver_scaling_report.html', title=None, show_browser=True, jac=True): """ Generate a self-contained html file containing a detailed connection viewer. Optionally pops up a web browser to view the file. Parameters ---------- outfile : str, optional The name of the output html file. Defaults to 'driver_scaling_report.html'. title : str, optional Sets the title of the web page. show_browser : bool, optional If True, pop up a browser to view the generated html file. Defaults to True. jac : bool If True, show jacobian information. Returns ------- dict Data used to create html file. """ from openmdao.visualization.scaling_viewer.scaling_report import view_driver_scaling # Run the model if it hasn't been run yet. status = -1 if self._problem is None else self._problem()._metadata['setup_status'] if status < _SetupStatus.POST_FINAL_SETUP: raise RuntimeError("Either 'run_model' or 'final_setup' must be called before the " "scaling report can be generated.") prob = self._problem() if prob._run_counter < 0: prob.run_model() return view_driver_scaling(self, outfile=outfile, show_browser=show_browser, jac=jac, title=title)
def _pre_run_model_debug_print(self): """ Optionally print some debugging information before the model runs. """ debug_opt = self.options['debug_print'] rank = self._problem().comm.rank if not debug_opt or debug_opt == ['totals']: return if not MPI or rank == 0: header = 'Driver debug print for iter coord: {}'.format( self._recording_iter.get_formatted_iteration_coordinate()) print(header) print(len(header) * '-') if 'desvars' in debug_opt: model = self._problem().model desvar_vals = {n: model.get_val(n, get_remote=True, rank=0) for n in self._designvars} if not MPI or rank == 0: print("Design Vars") if desvar_vals: pprint.pprint(desvar_vals) else: print("None") print() sys.stdout.flush() def _post_run_model_debug_print(self): """ Optionally print some debugging information after the model runs. """ rank = self._problem().comm.rank if 'nl_cons' in self.options['debug_print']: cons = self.get_constraint_values(lintype='nonlinear', driver_scaling=False) if not MPI or rank == 0: print("Nonlinear constraints") if cons: pprint.pprint(cons) else: print("None") print() if 'ln_cons' in self.options['debug_print']: cons = self.get_constraint_values(lintype='linear', driver_scaling=False) if not MPI or rank == 0: print("Linear constraints") if cons: pprint.pprint(cons) else: print("None") print() if 'objs' in self.options['debug_print']: objs = self.get_objective_values(driver_scaling=False) if not MPI or rank == 0: print("Objectives") if objs: pprint.pprint(objs) else: print("None") print() sys.stdout.flush()
[docs] def get_reports_dir(self): """ Get the path to the directory where the report files should go. If it doesn't exist, it will be created. Returns ------- str The path to the directory where reports should be written. """ return self._problem().get_reports_dir()
def _get_coloring(self, run_model=None): """ Get the total coloring for this driver. If necessary, dynamically generate it. Parameters ---------- run_model : bool or None If False, don't run model, else use problem _run_counter to decide. This is ignored if the coloring has already been computed. Returns ------- Coloring or None Coloring object, possible loaded from a file or dynamically generated, or None """ if coloring_mod._use_total_sparsity: if run_model and self._coloring_info.coloring is not None: issue_warning("The 'run_model' argument is ignored because the coloring has " "already been computed.") if self._coloring_info.dynamic and self._coloring_info.do_compute_coloring(): ofname = self._get_total_coloring_fname(mode='output') self._coloring_info.coloring = \ coloring_mod.dynamic_total_coloring(self, run_model=run_model, fname=ofname) return self._coloring_info.coloring def _update_result(self, result): """ Set additional attributes and information to the DriverResult. """ pass
[docs] class SaveOptResult(object): """ A context manager that saves details about a driver run. Parameters ---------- driver : Driver The driver. Attributes ---------- _driver : Driver The driver for which we are saving results. _start_time : float The start time used to compute the run time. """
[docs] def __init__(self, driver): """ Initialize attributes. """ self._driver = driver
def __enter__(self): """ Set start time for the driver run. This uses 'perf_counter()' which gives "the value (in fractional seconds) of a performance counter, i.e. a clock with the highest available resolution to measure a short duration. It does include time elapsed during sleep and is system-wide." Returns ------- self : object self """ self._start_time = time.perf_counter() return self def __exit__(self, *args): """ Save driver run information in the 'opt_result' attribute. Parameters ---------- *args : array Solver recording requires extra args. """ driver = self._driver # The standard driver results driver.result.runtime = time.perf_counter() - self._start_time driver.result.iter_count = driver.iter_count driver.result.exit_status = driver.get_exit_status() # The custom driver results driver._update_result(driver.result)
[docs] class RecordingDebugging(Recording): """ A class that acts as a context manager. Handles doing the case recording and also the Driver debugging printing. Parameters ---------- name : str Name of object getting recorded. iter_count : int Current counter of iterations completed. recording_requester : object Object to which this recorder is attached. """ def __enter__(self): """ Do things before the code inside the 'with RecordingDebugging' block. Returns ------- self : object self """ super().__enter__() self.recording_requester()._pre_run_model_debug_print() return self def __exit__(self, *args): """ Do things after the code inside the 'with RecordingDebugging' block. Parameters ---------- *args : array Solver recording requires extra args. """ self.recording_requester()._post_run_model_debug_print() super().__exit__()
[docs] def record_iteration(requester, prob, case_name): """ Record an iteration of the current Problem or Driver. Parameters ---------- requester : Problem or Driver The recording requester. prob : Problem The Problem. case_name : str The name of this case. """ rec_mgr = requester._rec_mgr if not rec_mgr._recorders: return # Get the data to record (collective calls that get across all ranks) model = prob.model parallel = rec_mgr._check_parallel() if model.comm.size > 1 else False inputs, outputs, residuals = model.get_nonlinear_vectors() discrete_inputs = model._discrete_inputs discrete_outputs = model._discrete_outputs opts = requester.recording_options data = {'input': {}, 'output': {}, 'residual': {}} filt = requester._filtered_vars_to_record if opts['record_inputs'] and (inputs._names or len(discrete_inputs) > 0): data['input'] = model._retrieve_data_of_kind(filt, 'input', 'nonlinear', parallel) if opts['record_outputs'] and (outputs._names or len(discrete_outputs) > 0): data['output'] = model._retrieve_data_of_kind(filt, 'output', 'nonlinear', parallel) if opts['record_residuals'] and residuals._names: data['residual'] = model._retrieve_data_of_kind(filt, 'residual', 'nonlinear', parallel) from openmdao.core.problem import Problem if isinstance(requester, Problem): # Record total derivatives if opts['record_derivatives'] and prob.driver._designvars and prob.driver._responses: data['totals'] = requester.compute_totals(return_format='flat_dict_structured_key') # Record solver info if opts['record_abs_error'] or opts['record_rel_error']: norm = residuals.get_norm() if opts['record_abs_error']: data['abs'] = norm if opts['record_rel_error']: solver = model.nonlinear_solver norm0 = solver._norm0 if solver._norm0 != 0.0 else 1.0 # runonce never sets _norm0 data['rel'] = norm / norm0 rec_mgr.record_iteration(requester, data, requester._get_recorder_metadata(case_name))
[docs] def filter_by_meta(metadict_items, key, chk_none=False, exclude=False): """ Filter metadata items based on their value. Parameters ---------- metadict_items : iter of (name, meta) Iterable of (name, meta) tuples. key : str Metadata key. chk_none : bool If True, compare items to None. If False, check if items are truthy. exclude : bool If True, exclude matching items rather than yielding them. Yields ------ tuple Tuple of the form (name, meta) for each item in metadict_items that satisfies the condition. """ if chk_none: for tup in metadict_items: none = tup[1][key] is None if exclude: if none: yield tup elif not none: yield tup else: for tup in metadict_items: if exclude: if not tup[1][key]: yield tup elif tup[1][key]: yield tup