Source code for openmdao.approximation_schemes.approximation_scheme

"""Base class used to define the interface for derivative approximation schemes."""
import time
from collections import defaultdict
import numpy as np

from openmdao.core.constants import INT_DTYPE
from openmdao.vectors.vector import _full_slice
from openmdao.utils.array_utils import get_input_idx_split, ValueRepeater
import openmdao.utils.coloring as coloring_mod
from openmdao.utils.general_utils import LocalRangeIterable
from openmdao.utils.mpi import check_mpi_env
from openmdao.utils.rangemapper import RangeMapper


use_mpi = check_mpi_env()
if use_mpi is False:
    PETSc = None
else:
    try:
        from petsc4py import PETSc
    except ImportError:
        if use_mpi:
            raise ImportError("Importing petsc4py failed and OPENMDAO_USE_MPI is true.")
        PETSc = None


[docs]class ApproximationScheme(object): """ Base class used to define the interface for derivative approximation schemes. Attributes ---------- _approx_groups : list A list of approximation tuples ordered into groups of 'of's matching the same 'wrt'. _colored_approx_groups: list A list containing info for all colored approximation groups. _approx_groups_cached_under_cs : bool Flag indicates whether approx_groups was generated under complex step from higher in the model hieararchy. _wrt_meta : dict A dict that maps wrt name to its fd/cs metadata. _progress_out : None or file-like object Attribute to output the progress of check_totals _jac_scatter : tuple Data needed to scatter values from results array to a total jacobian column. _totals_directions : dict If directional total derivatives are being computed, this will contain the direction keyed by mode ('fwd' or 'rev'). _totals_directional_mode : str or None If directional total derivatives are being computed, this will contain the top level mode ('fwd' or 'rev'), else None. """
[docs] def __init__(self): """ Initialize the ApproximationScheme. """ self._approx_groups = None self._colored_approx_groups = None self._approx_groups_cached_under_cs = False self._wrt_meta = {} self._progress_out = None self._jac_scatter = None self._totals_directions = {} self._totals_directional_mode = None
def __repr__(self): """ Return a simple string representation. Returns ------- str String containing class name and added approximation keys. """ return f"at {id(self)}, {self.__class__.__name__}: {list(self._wrt_meta.keys())}" def _reset(self): """ Get rid of any existing approx groups. """ self._colored_approx_groups = None self._approx_groups = None def _get_approx_groups(self, system, under_cs=False): """ Retrieve data structure that contains all the approximations. This data structure is regenerated if we transition to or from being under a complex step from higher in the model hierarchy. Parameters ---------- system : <System> Group or component instance. under_cs : bool Flag that indicates if we are under complex step. Returns ------- Tuple (approx_groups, colored_approx_groups) Each approx_groups entry contains specific data for a wrt var. Each colored_approx_groups entry contains data for a group of columns. """ if under_cs != self._approx_groups_cached_under_cs: if coloring_mod._use_partial_sparsity: self._init_colored_approximations(system) self._init_approximations(system) else: if self._colored_approx_groups is None and coloring_mod._use_partial_sparsity: self._init_colored_approximations(system) if self._approx_groups is None: self._init_approximations(system) self._approx_groups_cached_under_cs = under_cs return self._approx_groups, self._colored_approx_groups
[docs] def add_approximation(self, abs_key, system, kwargs): """ Use this approximation scheme to approximate the derivative d(of)/d(wrt). Parameters ---------- abs_key : tuple(str,str) Absolute name pairing of (of, wrt) for the derivative. system : System Containing System. kwargs : dict Additional keyword arguments, to be interpreted by sub-classes. """ raise NotImplementedError("add_approximation has not been implemented")
def _init_colored_approximations(self, system): is_total = system.pathname == '' is_semi = _is_group(system) and not is_total self._colored_approx_groups = [] wrt_ranges = [] # don't do anything if the coloring doesn't exist yet, or if there is no # forward coloring coloring = system._coloring_info.coloring if not isinstance(coloring, coloring_mod.Coloring) or coloring._fwd is None: return wrt_matches = system._coloring_info._update_wrt_matches(system) out_slices = system._outputs.get_slice_dict() # this maps column indices into colored jac into indices into full jac if wrt_matches is not None: ccol2jcol = np.empty(coloring._shape[1], dtype=INT_DTYPE) # colored col to out vec idx if is_total: ccol2outvec = np.empty(coloring._shape[1], dtype=INT_DTYPE) if is_total or wrt_matches is not None: colored_start = colored_end = 0 for abs_wrt, cstart, cend, _, cinds, _ in system._jac_wrt_iter(): if wrt_matches is None or abs_wrt in wrt_matches: colored_end += cend - cstart if wrt_matches is not None: ccol2jcol[colored_start:colored_end] = range(cstart, cend) if is_total and abs_wrt in out_slices: slc = out_slices[abs_wrt] if cinds is not None: rng = np.arange(slc.start, slc.stop)[cinds] else: rng = range(slc.start, slc.stop) wrt_ranges.append((abs_wrt, slc.stop - slc.start)) ccol2outvec[colored_start:colored_end] = rng colored_start = colored_end row_var_sizes = {v: sz for v, sz in zip(coloring._row_vars, coloring._row_var_sizes)} row_map = np.empty(coloring._shape[0], dtype=INT_DTYPE) abs2prom = system._var_allprocs_abs2prom['output'] if is_total: it = ((of, end - start) for of, start, end, _, _ in system._jac_of_iter()) rangemapper = RangeMapper.create(wrt_ranges) else: it = ((n, arr.size) for n, arr in system._outputs._abs_item_iter()) start = end = colorstart = colorend = 0 for name, sz in it: end += sz prom = name if is_total else abs2prom[name] if prom in row_var_sizes: colorend += row_var_sizes[prom] row_map[colorstart:colorend] = range(start, end) colorstart = colorend start = end for wrt, meta in self._wrt_meta.items(): if wrt_matches is None or wrt in wrt_matches: # data is the same for all colored approxs so we only need the first data = self._get_approx_data(system, wrt, meta) break outputs = system._outputs inputs = system._inputs from openmdao.core.implicitcomponent import ImplicitComponent use_full_cols = is_semi or isinstance(system, ImplicitComponent) for cols, nzrows in coloring.color_nonzero_iter('fwd'): nzrows = [row_map[r] for r in nzrows] jaccols = cols if wrt_matches is None else ccol2jcol[cols] if is_total: vcols = ccol2outvec[cols] seed_vars = tuple(rangemapper.inds2keys(cols)) else: vcols = jaccols seed_vars = None vec_ind_list = get_input_idx_split(vcols, inputs, outputs, use_full_cols, is_total) self._colored_approx_groups.append((data, jaccols, vec_ind_list, nzrows, seed_vars)) def _init_approximations(self, system): """ Prepare for later approximations. Parameters ---------- system : System The system having its derivs approximated. """ total = system.pathname == '' in_slices = system._inputs.get_slice_dict() out_slices = system._outputs.get_slice_dict() coloring = system._get_static_coloring() self._approx_groups = [] self._nruns_uncolored = 0 if system._during_sparsity: wrt_matches = system._coloring_info.wrt_matches else: wrt_matches = None if self._totals_directional_mode == 'rev': wrts_directional = [] in_inds_directional = [] vec_inds_directional = defaultdict(list) # wrt here is an absolute name (source if total) for wrt, start, end, vec, sinds, _ in system._jac_wrt_iter(wrt_matches): if wrt in self._wrt_meta: meta = self._wrt_meta[wrt] if coloring is not None and 'coloring' in meta: continue if vec is system._inputs: slices = in_slices else: slices = out_slices data = self._get_approx_data(system, wrt, meta) directional = meta['directional'] or self._totals_directions in_idx = range(start, end) if total and sinds is not _full_slice: if vec is None: vec_idx = ValueRepeater(None, sinds.size) else: # local index into var vec_idx = sinds.copy() # convert into index into input or output vector vec_idx += slices[wrt].start # Directional derivatives for quick deriv checking. # Place the indices in a list so that they are all stepped at the same time. if directional: in_idx = [list(in_idx)] vec_idx = [vec_idx] else: vec_idx = LocalRangeIterable(system, wrt) if directional and vec is not None: vec_idx = [v for v in vec_idx if v is not None] # Directional derivatives for quick deriv checking. # Place the indices in a list so that they are all stepped at the same time. if directional: in_idx = [list(in_idx)] vec_idx = [list(vec_idx)] if directional: self._nruns_uncolored += 1 else: self._nruns_uncolored += end - start if self._totals_directional_mode == 'rev': wrts_directional.append(wrt) data_directional = data in_inds_directional.extend(in_idx[0]) vec_inds_directional[vec].extend(vec_idx[0]) else: if self._totals_directions: direction = self._totals_directions['fwd'][start:end] else: direction = meta['vector'] self._approx_groups.append(((wrt,) if directional else wrt, data, in_idx, [(vec, vec_idx)], directional, direction)) if total: if self._totals_directional_mode == 'rev': self._nruns_uncolored = 1 vector = self._totals_directions['fwd'] self._approx_groups = [(tuple(wrts_directional), data_directional, [in_inds_directional], list(vec_inds_directional.items()), True, vector)] # compute scatter from the results vector into a column of the total jacobian sinds, tinds, colsize, has_dist_data = system._get_jac_col_scatter() if has_dist_data: src_vec = PETSc.Vec().createWithArray(np.zeros(len(system._outputs), dtype=float), comm=system._comm) tgt_vec = PETSc.Vec().createWithArray(np.zeros(colsize, dtype=float), comm=system._comm) src_inds = PETSc.IS().createGeneral(sinds, comm=system._comm) tgt_inds = PETSc.IS().createGeneral(tinds, comm=system._comm) self._jac_scatter = (has_dist_data, PETSc.Scatter().create(src_vec, src_inds, tgt_vec, tgt_inds), src_vec, tgt_vec) else: self._jac_scatter = (has_dist_data, sinds, tinds) else: self._jac_scatter = None def _colored_column_iter(self, system, colored_approx_groups): """ Perform colored approximations and yields (column_index, column) for each jac column. Parameters ---------- system : System System where this approximation is occurring. colored_approx_groups : list of tuples of the form (data, jaccols, vec_ind_list, nzrows) data -> metadata needed to perform cs or fd jaccols -> jacobian columns corresponding to a colored solve vec_ind_list -> list of tuples of the form (Vector, ndarray of int) Tuple of wrt indices and corresponding data vector to perturb. nzrows -> rows containing nonzero values for each column in jaccols Yields ------ int column index ndarray solution array corresponding to the jacobian column at the given column index """ total = system.pathname == '' total_or_semi = total or _is_group(system) if total: tot_result = np.zeros(sum([end - start for _, start, end, _, _ in system._jac_of_iter()])) scratch = tot_result.copy() else: scratch = np.empty(len(system._outputs)) # Clean vector for results (copy of the outputs or resids) vec = system._outputs if total_or_semi else system._residuals results_array = vec.asarray(copy=True) use_parallel_fd = system._num_par_fd > 1 and (system._full_comm is not None and system._full_comm.size > 1) num_par_fd = system._num_par_fd if use_parallel_fd else 1 par_fd_w_serial_model = use_parallel_fd and system._num_par_fd == system._full_comm.size fd_count = 0 mycomm = system._full_comm if use_parallel_fd else system.comm nruns = len(colored_approx_groups) tosend = None for data, jcols, vec_ind_list, nzrows, seed_vars, in colored_approx_groups: mult = self._get_multiplier(data) if fd_count % num_par_fd == system._par_fd_id: # run the finite difference with system._relevance.seeds_active(fwd_seeds=seed_vars): result = self._run_point(system, vec_ind_list, data, results_array, total_or_semi) if par_fd_w_serial_model or not use_parallel_fd: result = self._transform_result(result) if mult != 1.0: result *= mult if total: result = self._get_total_result(result, tot_result) tosend = (fd_count, result) else: # parallel model (some vars are remote) raise NotImplementedError("simul approx coloring with parallel FD/CS is " "only supported currently when using " "a serial model, i.e., when " "num_par_fd == number of MPI procs.") fd_count += 1 # check if it's time to collect parallel FD columns if use_parallel_fd and (nruns < num_par_fd or fd_count % num_par_fd == 0 or fd_count == nruns): allres = mycomm.allgather(tosend) tosend = None else: allres = [tosend] for tup in allres: if tup is None: continue i, res = tup _, jcols, _, nzrows, _ = colored_approx_groups[i] for i, col in enumerate(jcols): scratch[:] = 0.0 scratch[nzrows[i]] = res[nzrows[i]] yield col, scratch def _vec_ind_iter(self, vec_ind_list): """ Yield the vector index list as one chunk if doing directional totals. If not, yield each index individually, along with the vector to index into. Parameters ---------- vec_ind_list : list List of (Vector, indices) tuples. Yields ------ list [[Vector, inds]] """ if self._totals_directions: yield vec_ind_list, vec_ind_list[0][1] else: entry = [[None, None]] ent0 = entry[0] for vec, vec_idxs in vec_ind_list: if vec_idxs is None: continue for vinds in vec_idxs: ent0[0] = vec ent0[1] = vinds yield entry, vinds def _uncolored_column_iter(self, system, approx_groups): """ Perform approximations and yield (column_index, column) for each jac column. Parameters ---------- system : System System where this approximation is occurring. approx_groups : list of tuples of the form (wrt, data, jaccols, vec, vec_idx, directional, dir_vector) wrt -> name of the 'with respect to' variable data -> metadata needed to perform cs or fd jaccols -> jacobian columns corresponding to all solves for the 'wrt' variable vec -> Vector being perturbed vec_idx -> indices where the vector will be perturbed (one per approximation) directional -> if True we're computing a directional derivative (one approx for the whole wrt variable instead of 1 per entry in the variable) dir_vector -> if directional is True, this may contain the direction vector Yields ------ int column index ndarray solution array corresponding to the jacobian column at the given column index """ total = system.pathname == '' if total: for _, _, end, _, _ in system._jac_of_iter(): pass tot_result = np.zeros(end) total_or_semi = total or _is_group(system) # Clean vector for results (copy of the outputs or resids) results_array = system._outputs.asarray(copy=True) if total_or_semi \ else system._residuals.asarray(copy=True) use_parallel_fd = system._num_par_fd > 1 and (system._full_comm is not None and system._full_comm.size > 1) num_par_fd = system._num_par_fd if use_parallel_fd else 1 nruns = self._nruns_uncolored tosend = None fd_count = 0 mycomm = system._full_comm if use_parallel_fd else system.comm # now do uncolored solves for group_i, tup in enumerate(approx_groups): wrt, data, jcol_idxs, vec_ind_list, directional, direction = tup if self._progress_out: start_time = time.perf_counter() if direction is not None: app_data = self.apply_directional(data, direction) else: app_data = data mult = self._get_multiplier(data) jidx_iter = iter(range(len(jcol_idxs))) for vec_ind_info, vecidxs in self._vec_ind_iter(vec_ind_list): if fd_count % num_par_fd == system._par_fd_id: # run the finite difference if total: seeds = wrt if directional else (wrt,) with system._relevance.seeds_active(fwd_seeds=seeds): result = self._run_point(system, vec_ind_info, app_data, results_array, total_or_semi, jcol_idxs) else: result = self._run_point(system, vec_ind_info, app_data, results_array, total_or_semi, jcol_idxs) result = self._transform_result(result) if direction is not None or mult != 1.0: result *= mult if total: result = self._get_total_result(result, tot_result) if vecidxs is None and not total_or_semi: tosend = (group_i, None, None) else: tosend = (group_i, next(jidx_iter), result) # use local jac row var index if self._progress_out: end_time = time.perf_counter() if wrt in system._var_allprocs_abs2prom['output']: prom_name = system._var_allprocs_abs2prom['output'][wrt] else: prom_name = system._var_allprocs_abs2prom['input'][wrt] self._progress_out.write(f"{fd_count + 1}/{len(result)}: Checking " f"derivatives with respect to: " f"'{prom_name} [{vecidxs}]' ... " f"{round(end_time - start_time, 4)} seconds\n") elif use_parallel_fd: next(jidx_iter) # skip this column index fd_count += 1 # check if it's time to collect parallel FD columns if use_parallel_fd: if fd_count == nruns or fd_count % num_par_fd == 0: allres = mycomm.allgather(tosend) tosend = None else: continue else: allres = [tosend] for tup in allres: if tup is None: continue gi, icount, res = tup if icount is None: continue # skip yield for non-local partial jac column # approx_groups[gi] -> (wrt, data, jcol_idxs, vec_ind_list, direction) # [2] -> jcol_idxs, and [icount] -> actual indices used for the fd run. jinds = approx_groups[gi][2][icount] if directional: yield jinds[0], res else: yield jinds, res
[docs] def compute_approximations(self, system, jac=None): """ Execute the system to compute the approximate sub-Jacobians. Parameters ---------- system : System System on which the execution is run. jac : None or dict-like If None, update system with the approximated sub-Jacobians. Otherwise, store the approximations in the given dict-like object. """ if not self._wrt_meta: return if system._tot_jac is not None: jac = system._tot_jac elif jac is None: jac = system._jacobian for ic, col in self.compute_approx_col_iter(system, under_cs=system._outputs._under_complex_step): jac.set_col(system, ic, col)
def _compute_approx_col_iter(self, system, under_cs): # This will either generate new approx groups or use cached ones approx_groups, colored_approx_groups = self._get_approx_groups(system, under_cs) if colored_approx_groups: yield from self._colored_column_iter(system, colored_approx_groups) yield from self._uncolored_column_iter(system, approx_groups) def _get_total_result(self, outarr, totarr): """ Convert output array into a column array that matches the size of the total jacobian. Also gather any remote vars, if necessary, into the column array. Parameters ---------- outarr : ndarray Array containing local results from the outputs vector. totarr : ndarray Array sized to fit a total jac column. Returns ------- ndarray totarr, now filled with current values, potentially from other mpi procs. """ if self._jac_scatter[0]: # dist data passing _, scatter, svec, tvec = self._jac_scatter svec.array = outarr tvec.array[:] = totarr scatter.scatter(svec, tvec, addv=False, mode=False) totarr[:] = tvec.array else: _, sinds, tinds = self._jac_scatter totarr[tinds] = outarr[sinds] return totarr
def _is_group(obj): """ Return True if the given object is Group. Parameters ---------- obj : object Object to be checked. """ from openmdao.core.group import Group return isinstance(obj, Group)