Case Reader#

The CaseReader object is provided to read case recordings, regardless of which case recorder was used.

Currently, OpenMDAO only implements SqliteCaseRecorder, therefore all the examples will make use of this recorder. Other types of case recorders are expected to be supported in the future.

CaseReader Constructor#

The call signature for the CaseReader constructor is:

SqliteCaseReader.__init__(filename, pre_load=False, metadata_filename=None)[source]

Initialize.

Determining What Sources and Variables Were Recorded#

The CaseReader object provides methods to determine which objects in the original problem were sources for for the recorded cases and what variables they recorded. Sources can include the problem, driver, components and solvers.

The list_sources method provides a list of the names of objects that are the sources of recorded data in the file.

BaseCaseReader.list_sources(out_stream=DEFAULT_OUT_STREAM)[source]

List of all the different recording sources for which there is recorded data.

Parameters:
out_streamfile-like object

Where to send human readable output. Default is sys.stdout. Set to None to suppress.

Returns:
list
One or more of: problem, driver, <system hierarchy location>,

<solver hierarchy location>

The complementary list_source_vars method will provide a list of the input and output variables recorded for a given source.

BaseCaseReader.list_source_vars(source, out_stream=DEFAULT_OUT_STREAM)[source]

List of all inputs and outputs recorded by the specified source.

Parameters:
source{‘problem’, ‘driver’, <system hierarchy location>, <solver hierarchy location>}

Identifies the source for which to return information.

out_streamfile-like object

Where to send human readable output. Default is sys.stdout. Set to None to suppress.

Returns:
dict

{‘inputs’:[key list], ‘outputs’:[key list], ‘residuals’:[key list]}. No recurse.

Here is an example of their usage:

import openmdao.api as om
from openmdao.test_suite.components.sellar_feature import SellarMDA

import numpy as np

# define Sellar MDA problem
prob = om.Problem(model=SellarMDA())

model = prob.model
model.add_design_var('z', lower=np.array([-10.0, 0.0]),
                          upper=np.array([10.0, 10.0]))
model.add_design_var('x', lower=0.0, upper=10.0)
model.add_objective('obj')
model.add_constraint('con1', upper=0.0)
model.add_constraint('con2', upper=0.0)

prob.driver = om.ScipyOptimizeDriver(optimizer='SLSQP', tol=1e-9, disp=False)

# add recorder to the driver, model and solver
recorder = om.SqliteRecorder('cases.sql')

prob.driver.add_recorder(recorder)
model.add_recorder(recorder)
model.nonlinear_solver.add_recorder(recorder)

# run the problem
prob.setup()
prob.set_solver_print(0)
prob.run_driver()
prob.cleanup()

cr = om.CaseReader(prob.get_outputs_dir() / 'cases.sql')
sources = cr.list_sources()

Sources
driver
root.nonlinear_solver
root
driver_vars = cr.list_source_vars('driver')

inputsoutputsresiduals
z
x
con1
con2
obj
model_vars = cr.list_source_vars('root')

inputsoutputsresiduals
con_cmp1.y1zz
con_cmp2.y2xx
cycle.d1.xcon1con1
cycle.d1.y2con2con2
cycle.d1.zy1y1
cycle.d2.y1y2y2
cycle.d2.zobjobj
obj_cmp.x
obj_cmp.y1
obj_cmp.y2
obj_cmp.z
solver_vars = cr.list_source_vars('root.nonlinear_solver')

inputsoutputsresiduals
con_cmp1.y1z
con_cmp2.y2x
cycle.d1.zcon1
cycle.d1.xcon2
cycle.d1.y2y1
cycle.d2.zy2
cycle.d2.y1obj
obj_cmp.x
obj_cmp.y1
obj_cmp.y2
obj_cmp.z

Case Names#

The CaseReader provides access to Case objects, each of which encapsulates a data point recorded by one of the sources.

Case objects are uniquely identified in a case recorder file by their case names. A case name is a string. As an example, here is a case name:

'rank0:ScipyOptimize_SLSQP|1|root._solve_nonlinear|1'

The first part of the case name indicates which rank or process that the case was recorded from. The remainder of the case name shows the hierarchical path to the object that was recorded along with the iteration counts for each object along the path. It follows a pattern of repeated pairs of

- object name ( problem, driver, system, or solver )
- iteration count

These are separated by the | character.

So in the given example, the case is:

- from rank 0
- the first iteration of the driver, `ScipyOptimize_SLSQP`
- the first execution of the `root` system which is the top-level model

Getting Names of the Cases#

The list_cases method returns the names of the cases in the order in which the cases were executed. You can optionally request cases only from a specific source.

BaseCaseReader.list_cases(source=None, recurse=True, flat=True, out_stream=DEFAULT_OUT_STREAM)[source]

Iterate over Driver, Solver and System cases in order.

Parameters:
source‘problem’, ‘driver’, component pathname, solver pathname, case_name

If not None, only cases originating from the specified source or case are returned.

recursebool, optional

If True, will enable iterating over all successors in case hierarchy.

flatbool, optional

If False and there are child cases, then a nested ordered dictionary is returned rather than an iterator.

out_streamfile-like object

Where to send human readable output. Default is sys.stdout. Set to None to suppress.

Returns:
iterator or dict

An iterator or a nested dictionary of identified cases.

There are two optional arguments to the list_cases method that affect what is returned.

- recurse: causes the returned value to include child cases.

- flat: works in conjunction with the `recurse` argument to determine if the returned
  results are in the form of a list or nested dict. If recurse=True, flat=False, and there
  are child cases, then the returned value is a nested ordered dict. Otherwise, it is a list.

Accessing Cases#

Getting information from the cases is a two-step process. First, you need to get access to the Case object and then you can call a variety of methods on the Case object to get values from it. The second step is described on the Getting Data from a Case page.

There are two methods used to get a specific Case:

- get_cases
- get_case

Accessing Cases Using get_cases Method#

The get_cases method provides a quick and easy way to iterate over all the cases.

BaseCaseReader.get_cases(source, recurse=True, flat=False)[source]

Iterate over the cases.

Parameters:
source‘problem’, ‘driver’, component pathname, solver pathname, case_name

Identifies which cases to return.

recursebool, optional

If True, will enable iterating over all successors in case hierarchy.

flatbool, optional

If False and there are child cases, then a nested ordered dictionary is returned rather than an iterator.

Returns:
list or dict

The cases identified by source.

This method is similar to the list_cases method in that it has the two optional arguments recurse and flat to control what is returned as described above.

Here is an example of its usage:

import openmdao.api as om
from openmdao.test_suite.components.sellar_feature import SellarMDA

import numpy as np

prob = om.Problem(model=SellarMDA())

model = prob.model
model.add_design_var('z', lower=np.array([-10.0, 0.0]),
                          upper=np.array([10.0, 10.0]))
model.add_design_var('x', lower=0.0, upper=10.0)
model.add_objective('obj')
model.add_constraint('con1', upper=0.0)
model.add_constraint('con2', upper=0.0)

driver = prob.driver = om.ScipyOptimizeDriver(optimizer='SLSQP', tol=1e-5)
driver.add_recorder(om.SqliteRecorder('cases.sql'))

prob.setup()
prob.set_solver_print(0)
prob.run_driver()
prob.cleanup()
Optimization terminated successfully    (Exit mode 0)
            Current function value: 3.18339553462378
            Iterations: 8
            Function evaluations: 9
            Gradient evaluations: 8
Optimization Complete
-----------------------------------
cr = om.CaseReader(prob.get_outputs_dir() / 'cases.sql')
cases = cr.get_cases()
for case in cases:
    print(case.name, sorted(case.outputs))
rank0:ScipyOptimize_SLSQP|0 ['con1', 'con2', 'obj', 'x', 'z']
rank0:ScipyOptimize_SLSQP|1 ['con1', 'con2', 'obj', 'x', 'z']
rank0:ScipyOptimize_SLSQP|2 ['con1', 'con2', 'obj', 'x', 'z']
rank0:ScipyOptimize_SLSQP|3 ['con1', 'con2', 'obj', 'x', 'z']
rank0:ScipyOptimize_SLSQP|4 ['con1', 'con2', 'obj', 'x', 'z']
rank0:ScipyOptimize_SLSQP|5 ['con1', 'con2', 'obj', 'x', 'z']
rank0:ScipyOptimize_SLSQP|6 ['con1', 'con2', 'obj', 'x', 'z']
rank0:ScipyOptimize_SLSQP|7 ['con1', 'con2', 'obj', 'x', 'z']
rank0:ScipyOptimize_SLSQP|8 ['con1', 'con2', 'obj', 'x', 'z']
rank0:ScipyOptimize_SLSQP|9 ['con1', 'con2', 'obj', 'x', 'z']

Accessing Cases Using get_case Method#

The get_case method returns a Case object given a case name.

BaseCaseReader.get_case(case_id, recurse=True)[source]

Get case identified by case_id.

Parameters:
case_idstr or int

The unique identifier of the case to return or an index into all cases.

recursebool, optional

If True, will return all successors to the case as well.

Returns:
dict

The case identified by case_id.

You can use the get_case method to get a specific case from the list of case names returned by list_cases as shown here:

case_names = cr.list_cases()

driver
rank0:ScipyOptimize_SLSQP|0
rank0:ScipyOptimize_SLSQP|1
rank0:ScipyOptimize_SLSQP|2
rank0:ScipyOptimize_SLSQP|3
rank0:ScipyOptimize_SLSQP|4
rank0:ScipyOptimize_SLSQP|5
rank0:ScipyOptimize_SLSQP|6
rank0:ScipyOptimize_SLSQP|7
rank0:ScipyOptimize_SLSQP|8
rank0:ScipyOptimize_SLSQP|9
# access a Case by name (e.g. first case)
case = cr.get_case("rank0:ScipyOptimize_SLSQP|0")
print(case.name, sorted(case.outputs))
rank0:ScipyOptimize_SLSQP|0 ['con1', 'con2', 'obj', 'x', 'z']
# access a Case by index (e.g. first case)
case = cr.get_case(0)
print(case.name, sorted(case.outputs))
rank0:ScipyOptimize_SLSQP|0 ['con1', 'con2', 'obj', 'x', 'z']
# access a Case by index (e.g. last case)
case = cr.get_case(-1)
print(case.name, sorted(case.outputs))
rank0:ScipyOptimize_SLSQP|9 ['con1', 'con2', 'obj', 'x', 'z']
# get each case by looping over case names
for name in case_names:
    case = cr.get_case(name)
    print(case.name, sorted(case.outputs))
rank0:ScipyOptimize_SLSQP|0 ['con1', 'con2', 'obj', 'x', 'z']
rank0:ScipyOptimize_SLSQP|1 ['con1', 'con2', 'obj', 'x', 'z']
rank0:ScipyOptimize_SLSQP|2 ['con1', 'con2', 'obj', 'x', 'z']
rank0:ScipyOptimize_SLSQP|3 ['con1', 'con2', 'obj', 'x', 'z']
rank0:ScipyOptimize_SLSQP|4 ['con1', 'con2', 'obj', 'x', 'z']
rank0:ScipyOptimize_SLSQP|5 ['con1', 'con2', 'obj', 'x', 'z']
rank0:ScipyOptimize_SLSQP|6 ['con1', 'con2', 'obj', 'x', 'z']
rank0:ScipyOptimize_SLSQP|7 ['con1', 'con2', 'obj', 'x', 'z']
rank0:ScipyOptimize_SLSQP|8 ['con1', 'con2', 'obj', 'x', 'z']
rank0:ScipyOptimize_SLSQP|9 ['con1', 'con2', 'obj', 'x', 'z']

Processing a Nested Dictionary of Its Child Cases#

The following example demonstrates selecting a case from a case list and processing a nested dictionary of its child cases.

import openmdao.api as om
from openmdao.test_suite.components.sellar_feature import SellarMDA

import numpy as np

# define Sellar MDA problem
prob = om.Problem(model=SellarMDA())

model = prob.model
model.add_design_var('z', lower=np.array([-10.0, 0.0]),
                          upper=np.array([10.0, 10.0]))
model.add_design_var('x', lower=0.0, upper=10.0)
model.add_objective('obj')
model.add_constraint('con1', upper=0.0)
model.add_constraint('con2', upper=0.0)

prob.driver = om.ScipyOptimizeDriver(optimizer='SLSQP', tol=1e-5)

# add recorder to the driver, model and solver
recorder = om.SqliteRecorder('cases.sql')

prob.driver.add_recorder(recorder)
model.add_recorder(recorder)
model.nonlinear_solver.add_recorder(recorder)

# run the problem
prob.setup()
prob.set_solver_print(0)
prob.run_driver()
prob.cleanup()
Optimization terminated successfully    (Exit mode 0)
            Current function value: 3.18339553462378
            Iterations: 8
            Function evaluations: 9
            Gradient evaluations: 8
Optimization Complete
-----------------------------------
cr = om.CaseReader(prob.get_outputs_dir() / 'cases.sql')

# get the last driver case
driver_cases = cr.list_cases('driver')

driver
rank0:ScipyOptimize_SLSQP|0|root._solve_nonlinear|0|NLRunOnce|0
rank0:ScipyOptimize_SLSQP|0|root._solve_nonlinear|0
rank0:ScipyOptimize_SLSQP|0
rank0:ScipyOptimize_SLSQP|1|root._solve_nonlinear|1|NLRunOnce|0
rank0:ScipyOptimize_SLSQP|1|root._solve_nonlinear|1
rank0:ScipyOptimize_SLSQP|1
rank0:ScipyOptimize_SLSQP|2|root._solve_nonlinear|2|NLRunOnce|0
rank0:ScipyOptimize_SLSQP|2|root._solve_nonlinear|2
rank0:ScipyOptimize_SLSQP|2
rank0:ScipyOptimize_SLSQP|3|root._solve_nonlinear|3|NLRunOnce|0
rank0:ScipyOptimize_SLSQP|3|root._solve_nonlinear|3
rank0:ScipyOptimize_SLSQP|3
rank0:ScipyOptimize_SLSQP|4|root._solve_nonlinear|4|NLRunOnce|0
rank0:ScipyOptimize_SLSQP|4|root._solve_nonlinear|4
rank0:ScipyOptimize_SLSQP|4
rank0:ScipyOptimize_SLSQP|5|root._solve_nonlinear|5|NLRunOnce|0
rank0:ScipyOptimize_SLSQP|5|root._solve_nonlinear|5
rank0:ScipyOptimize_SLSQP|5
rank0:ScipyOptimize_SLSQP|6|root._solve_nonlinear|6|NLRunOnce|0
rank0:ScipyOptimize_SLSQP|6|root._solve_nonlinear|6
rank0:ScipyOptimize_SLSQP|6
rank0:ScipyOptimize_SLSQP|7|root._solve_nonlinear|7|NLRunOnce|0
rank0:ScipyOptimize_SLSQP|7|root._solve_nonlinear|7
rank0:ScipyOptimize_SLSQP|7
rank0:ScipyOptimize_SLSQP|8|root._solve_nonlinear|8|NLRunOnce|0
rank0:ScipyOptimize_SLSQP|8|root._solve_nonlinear|8
rank0:ScipyOptimize_SLSQP|8
rank0:ScipyOptimize_SLSQP|9|root._solve_nonlinear|9|NLRunOnce|0
rank0:ScipyOptimize_SLSQP|9|root._solve_nonlinear|9
rank0:ScipyOptimize_SLSQP|9
# get a recursive dict of child cases of the last driver case
last_driver_case = driver_cases[-1]
cases = cr.get_cases(last_driver_case, recurse=True, flat=False)

# display selected information from nested dict of cases
def print_cases(cases, indent=0):
    for case, children in cases.items():
        print(indent*' ', case.source, '-', case.name.split('.')[-1], sorted(case.outputs))
        if children:
            print_cases(children, indent+2)

print_cases(cases)
 driver - rank0:ScipyOptimize_SLSQP|9 ['con1', 'con2', 'obj', 'x', 'z']
   root - _solve_nonlinear|9 ['con1', 'con2', 'obj', 'x', 'y1', 'y2', 'z']
     root.nonlinear_solver - _solve_nonlinear|9|NLRunOnce|0 ['con1', 'con2', 'obj', 'x', 'y1', 'y2', 'z']