Source code for openmdao.test_suite.components.three_bar_truss

"""
3 Bar Truss Problem.

- 3 continuous design variables -  Cross sectional area of each bar.

- 3 discrete material choices for each bar. Complete enumeration requires 64 continuous optimization.

The global optima is 3,3,x (x can be anything), with mass = 5.28 kg
"""

import numpy as np

import openmdao.api as om


[docs]def stress_calc(A, E): """ Calculate stress in a 3-bar truss given area and Young's modulus. Parameters ---------- A : float or ndarray Area of the bar. E : float or ndarray Young's Modules of the bar. Returns ------- float or ndarray Stress in the bar. """ P = 120000.0 L = np.array([np.sqrt(1.2**2 + 1.2**2), 1.2, np.sqrt(1.2**2 + 1.2**2)]) #Local stiffness matrix theta1 = -45.0*np.pi/180.0 theta2 = -90.0*np.pi/180.0 theta3 = -135*np.pi/180.0 K0 = (E[0]*A[0]/L[0])*np.dot(np.array([[np.cos(theta1), np.sin(theta1)]]).T, np.array([[np.cos(theta1), np.sin(theta1)]])) K1 = (E[1]*A[1]/L[1])*np.dot(np.array([[np.cos(theta2), np.sin(theta2)]]).T, np.array([[np.cos(theta2), np.sin(theta2)]])) K2 = (E[2]*A[2]/L[2])*np.dot(np.array([[np.cos(theta3), np.sin(theta3)]]).T, np.array([[np.cos(theta3), np.sin(theta3)]])) # Global (total) stiffness matrix K = K0 + K1 + K2 # Load vector theta4 = -65.0*np.pi/180.0 p = P*np.array([[np.cos(theta4), np.sin(theta4)]]).T # Displacement matrix u = np.dot(np.linalg.inv(K), p) #Delta change in length DL = np.zeros([3]) DL[0] = np.sqrt((-L[0]*np.cos(theta1) - u[0])**2 + (-L[0]*np.sin(theta1) - u[1])**2).item() - L[0] DL[1] = np.sqrt((-L[1]*np.cos(theta2) - u[0])**2 + (-L[1]*np.sin(theta2) - u[1])**2).item() - L[1] DL[2] = np.sqrt((-L[2]*np.cos(theta3) - u[0])**2 + (-L[2]*np.sin(theta3) - u[1])**2).item() - L[2] #Stress in each element sigma = E*DL/L return sigma
[docs]class ThreeBarTruss(om.ExplicitComponent): """ 3 Bar truss problem with 3 continuous design variables and 3 discrete material choices. Material chosen as follows: 1 Aluminum 2 Titanium 3 Steel 4 Nickel This component calculates the total mass of the truss. """
[docs] def setup(self): # Continuous Inputs self.add_input('area1', 0.0, units='cm**2', desc='Cross-sectional area of beam 1') self.add_input('area2', 0.0, units='cm**2', desc='Cross-sectional area of beam 2') self.add_input('area3', 0.0, units='cm**2', desc='Cross-sectional area of beam 3') # Discrete Inputs self.add_input('mat1', 1, #lower=1, upper=4, desc='Material ID of beam 1') self.add_input('mat2', 1, #lower=1, upper=4, desc='Material ID of beam 2') self.add_input('mat3', 1, #lower=1, upper=4, desc='Material ID of beam 3') # Outputs self.add_output('mass', val=0.0) self.add_output('stress', val=np.zeros((3, ))) self.rho = { 1 : 2700.0, 2 : 4500.0, 3 : 7872.0, 4 : 8800.0 } self.E = { 1 : 68.9e9, 2 : 116.0e9, 3 : 205.0e9, 4 : 207.0e9 } self.sigma_y = { 1 : 55.2e6, 2 : 140.0e6, 3 : 285.0e6, 4 : 59.0e6 }
[docs] def setup_partials(self): self.declare_partials(of='*', wrt='area*', method='fd')
[docs] def compute(self, inputs, outputs): """ Define the function f(xI, xC). Here xI is integer and xC is continuous. """ # Convert areas to m**2 area1 = inputs['area1']*.0001 area2 = inputs['area2']*.0001 area3 = inputs['area3']*.0001 mat1 = int(inputs['mat1'].item()) mat2 = int(inputs['mat2'].item()) mat3 = int(inputs['mat3'].item()) area1 *= 2. len1 = np.sqrt(1.2**2 + 1.2**2) len2 = 1.2 len3 = np.sqrt(1.2**2 + 1.2**2) rho1 = self.rho[mat1] rho2 = self.rho[mat2] rho3 = self.rho[mat3] outputs['mass'] = rho1*area1*len1 + rho2*area2*len2 + rho3*area3*len3 E1 = self.E[mat1] E2 = self.E[mat2] E3 = self.E[mat3] sigma_y1 = self.sigma_y[mat1] sigma_y2 = self.sigma_y[mat2] sigma_y3 = self.sigma_y[mat3] E = np.array([E1, E2, E3]) A = np.array([area1, area2, area3]) sigma_y = np.array([sigma_y1, sigma_y2, sigma_y3]) sigma = stress_calc(A, E) outputs['stress'] = (np.abs(sigma)/sigma_y)
[docs]class ThreeBarTrussVector(om.ExplicitComponent): """ 3 Bar truss problem with 3 continuous design variables and 3 discrete material choices. Material chosen as follows: 1 Aluminum 2 Titanium 3 Steel 4 Nickel This component calculates the total mass of the truss. This version places all areas in a single vector and all materials in a single vector for test purporses. """
[docs] def setup(self): # Continuous Inputs self.add_input('area', np.array([0.0, 0.0, 0.0]), units='cm**2', desc='Cross-sectional area of beams') # Discrete Inputs self.add_input('mat', np.array([1, 1, 1]), #lower=1, upper=4, desc='Material ID of beams') # Outputs self.add_output('mass', val=0.0) self.add_output('stress', val=np.zeros((3, ))) self.rho = { 1 : 2700.0, 2 : 4500.0, 3 : 7872.0, 4 : 8800.0 } self.E = { 1 : 68.9e9, 2 : 116.0e9, 3 : 205.0e9, 4 : 207.0e9 } self.sigma_y = { 1 : 55.2e6, 2 : 140.0e6, 3 : 285.0e6, 4 : 59.0e6 }
[docs] def setup_partials(self): self.declare_partials(of='*', wrt='area', method='fd')
[docs] def compute(self, inputs, outputs): """ Define the function f(xI, xC) Here xI is integer and xC is continuous""" # Area convert to m**2 area = inputs['area']*.0001 mat = inputs['mat'] length = np.array([np.sqrt(1.2**2 + 1.2**2), 1.2, np.sqrt(1.2**2 + 1.2**2)]) rho = np.zeros((3, )) try: rho[0] = self.rho[mat[0]] except Exception: pass rho[1] = self.rho[mat[1]] rho[2] = self.rho[mat[2]] outputs['mass'] = np.sum(rho*area*length) E = np.zeros((3, )) E[0] = self.E[mat[0]] E[1] = self.E[mat[1]] E[2] = self.E[mat[2]] sigma_y = np.zeros((3, )) sigma_y[0] = self.sigma_y[mat[0]] sigma_y[1] = self.sigma_y[mat[1]] sigma_y[2] = self.sigma_y[mat[2]] sigma = stress_calc(area, E) outputs['stress'] = (np.abs(sigma)/sigma_y)