Source code for openmdao.test_suite.components.distributed_components

"""
Distributed components.

Components that are used in multiple places for testing distributed components.
"""
import numpy as np
import openmdao.api as om

from openmdao.utils.array_utils import evenly_distrib_idxs


[docs]class DistribComp(om.ExplicitComponent): """Simple Distributed Component."""
[docs] def initialize(self): self.options.declare('size', types=int, default=1, desc="Size of input and output vectors.")
[docs] def setup(self): comm = self.comm rank = comm.rank size = self.options['size'] # if comm.size is 2 and size is 15, this results in # 8 entries for proc 0 and 7 entries for proc 1 sizes, _ = evenly_distrib_idxs(comm.size, size) mysize = sizes[rank] self.add_input('invec', np.ones(mysize, float), distributed=True) self.add_output('outvec', np.ones(mysize, float), distributed=True,)
[docs] def compute(self, inputs, outputs): if self.comm.rank == 0: outputs['outvec'] = inputs['invec'] * 2.0 else: outputs['outvec'] = inputs['invec'] * -3.0
[docs]class Summer(om.ExplicitComponent): """Sums an input array."""
[docs] def initialize(self): self.options.declare('size', types=int, default=1, desc="Size of input and output vectors.")
[docs] def setup(self): self.add_input('invec', np.ones(self.options['size'], float)) self.add_output('sum', 0.0, shape=1)
[docs] def compute(self, inputs, outputs): outputs['sum'] = np.sum(inputs['invec'])
[docs]class DistribCompDerivs(om.ExplicitComponent): """Simple Distributed Component with Derivatives."""
[docs] def initialize(self): self.options.declare('size', types=int, default=1, desc="Size of input and output vectors.")
[docs] def setup(self): comm = self.comm rank = comm.rank size = self.options['size'] # if comm.size is 2 and size is 15, this results in # 8 entries for proc 0 and 7 entries for proc 1 sizes, _ = evenly_distrib_idxs(comm.size, size) self.mysize = mysize = sizes[rank] # don't set src_indices on the input, just use default behavior self.add_input('invec', np.ones(mysize, float), distributed=True) self.add_output('outvec', np.ones(mysize, float), distributed=True)
[docs] def setup_partials(self): # declare partial derivatives (diagonal of mysize) self.declare_partials('outvec', 'invec', rows=np.arange(0, self.mysize), cols=np.arange(0, self.mysize))
[docs] def compute(self, inputs, outputs): if self.comm.rank == 0: outputs['outvec'] = inputs['invec'] * 2.0 else: outputs['outvec'] = inputs['invec'] * -3.0
[docs] def compute_partials(self, inputs, J): # get mysize from the input vector for this process mysize = inputs['invec'].size if self.comm.rank == 0: J['outvec', 'invec'] = np.ones((mysize,)) * 2.0 else: J['outvec', 'invec'] = np.ones((mysize,)) * -3.0
[docs]class SummerDerivs(om.ExplicitComponent): """Sums an input array."""
[docs] def initialize(self): self.options.declare('size', types=int, default=1, desc="Size of input and output vectors.")
[docs] def setup(self): self.add_input('invec', np.ones(self.options['size'], float)) self.add_output('sum', 0.0, shape=1)
[docs] def setup_partials(self): # the derivative is constant self.declare_partials('sum', 'invec', val=1.)
[docs] def compute(self, inputs, outputs): outputs['sum'] = np.sum(inputs['invec'])