Source code for openmdao.surrogate_models.response_surface


"""
Surrogate Model based on second order response surface equations.
"""

from numpy import zeros, einsum
import numpy as np
from packaging.version import Version
from openmdao.surrogate_models.surrogate_model import SurrogateModel

if Version(np.__version__) >= Version("1.20"):
    from numpy.linalg import lstsq
else:
    from numpy.dual import lstsq


[docs]class ResponseSurface(SurrogateModel): """ Surrogate Model based on second order response surface equations. Attributes ---------- betas : ndarray Vector of response surface equation coefficients. m : int Number of training points. n : int Number of independent variables. """
[docs] def __init__(self): """ Initialize all attributes. """ super().__init__() self.m = 0 # number of training points self.n = 0 # number of independents # vector of response surface equation coefficients self.betas = zeros(0)
[docs] def train(self, x, y): """ Calculate response surface equation coefficients using least squares regression. Parameters ---------- x : array-like Training input locations. y : array-like Model responses at given inputs. """ super().train(x, y) m = self.m = x.shape[0] n = self.n = x.shape[1] X = zeros((m, ((n + 1) * (n + 2)) // 2)) # Modify X to include constant, squared terms and cross terms # Constant Terms X[:, 0] = 1.0 # Linear Terms X[:, 1:n + 1] = x # Quadratic Terms X_offset = X[:, n + 1:] for i in range(n): # Z = einsum('i,ij->ij', X, Y) is equivalent to, but much faster and # memory efficient than, diag(X).dot(Y) for vector X and 2D array Y. # I.e. Z[i,j] = X[i]*Y[i,j] X_offset[:, :n - i] = einsum('i,ij->ij', x[:, i], x[:, i:]) X_offset = X_offset[:, n - i:] # Determine response surface equation coefficients (betas) using least # squares self.betas, rs, r, s = lstsq(X, y)
[docs] def predict(self, x): """ Calculate predicted value of response based on the current response surface model. Parameters ---------- x : array-like Point at which the surrogate is evaluated. Returns ------- float Predicted response. """ super().predict(x) n = x.size X = zeros(((self.n + 1) * (self.n + 2)) // 2) # Modify X to include constant, squared terms and cross terms # Constant Terms X[0] = 1.0 # Linear Terms X[1:n + 1] = x # Quadratic Terms X_offset = X[n + 1:] for i in range(n): X_offset[:n - i] = x[i] * x[i:] X_offset = X_offset[n - i:] # Predict new_y using X and betas return X.dot(self.betas)
[docs] def linearize(self, x): """ Calculate the jacobian of the Kriging surface at the requested point. Parameters ---------- x : array-like Point at which the surrogate Jacobian is evaluated. Returns ------- ndarray Jacobian of surrogate output wrt inputs. """ n = self.n betas = self.betas x = x.flat jac = betas[1:n + 1, :].copy() beta_offset = betas[n + 1:, :] for i in range(n): jac[i, :] += x[i:].dot(beta_offset[:n - i, :]) jac[i:, :] += x[i] * beta_offset[:n - i, :] beta_offset = beta_offset[n - i:, :] return jac.T