"""
A Case class.
"""
import sys
import itertools
from collections import OrderedDict
from fnmatch import fnmatchcase
import numpy as np
from openmdao.core.constants import _DEFAULT_OUT_STREAM
from openmdao.core.system import allowed_meta_names
from openmdao.recorders.sqlite_recorder import blob_to_array
from openmdao.utils.record_util import deserialize, get_source_system
from openmdao.utils.variable_table import write_var_table, NA
from openmdao.utils.general_utils import match_prom_or_abs
from openmdao.utils.units import unit_conversion, simplify_unit
from openmdao.recorders.sqlite_recorder import format_version as current_version
_AMBIGOUS_PROM_NAME = object()
[docs]class Case(object):
"""
Case wraps the data from a single iteration of a recording to make it more easily accessible.
Parameters
----------
source : str
The unique id of the system/solver/driver/problem that did the recording.
data : dict-like
Dictionary of data for a case.
prom2abs : {'input': dict, 'output': dict}
Dictionary mapping promoted names of all variables to absolute names.
abs2prom : {'input': dict, 'output': dict}
Dictionary mapping absolute names of all variables to promoted names.
abs2meta : dict
Dictionary mapping absolute names of all variables to variable metadata.
conns : dict
Dictionary of all model connections.
auto_ivc_map : dict
Dictionary that maps all auto_ivc sources to either an absolute input name for single
connections or a promoted input name for multiple connections. This is for output
display.
var_info : dict
Dictionary with information about variables (scaling, indices, execution order).
data_format : int
A version number specifying the format of array data, if not numpy arrays.
Attributes
----------
source : str
The unique id of the system/solver/driver/problem that did the recording.
name : str
The unique identifier for this case.
parent : str
The iteration coordinate of the parent case for this iteration if any, else None.
counter : int
The unique sequential index of this case in the recording.
timestamp : float
Time of execution of the case.
success : str
Success flag for the case.
msg : str
Message associated with the case.
outputs : PromAbsDict
Map of outputs to values recorded.
inputs : PromAbsDict or None
Map of inputs to values recorded, None if not recorded.
residuals : PromAbsDict or None
Map of outputs to residuals recorded, None if not recorded.
derivatives : PromAbsDict or None
Map of (output, input) to derivatives recorded, None if not recorded.
parent : str
The full unique identifier for the parent this iteration.
abs_err : float or None
Absolute tolerance (None if not recorded).
rel_err : float or None
Relative tolerance (None if not recorded).
_prom2abs : {'input': dict, 'output': dict}
Dictionary mapping promoted names of all variables to absolute names.
_abs2prom : {'input': dict, 'output': dict}
Dictionary mapping absolute names of all variables to promoted names.
_abs2meta : dict
Dictionary mapping absolute names of all variables to variable metadata.
_conns : dict
Dictionary of all model connections.
_auto_ivc_map : dict
Dictionary that maps all auto_ivc sources to either an absolute input name for single
connections or a promoted input name for multiple connections. This is for output display.
_var_info : dict
Dictionary with information about variables (scaling, indices, execution order).
_format_version : int
A version number specifying the format of array data, if not numpy arrays.
"""
[docs] def __init__(self, source, data, prom2abs, abs2prom, abs2meta, conns, auto_ivc_map, var_info,
data_format=-1):
"""
Initialize.
"""
self.source = source
self._format_version = data_format
# save VOI dict reference for use by self._scale()
self._var_info = var_info
if 'iteration_coordinate' in data.keys():
self.name = data['iteration_coordinate']
parts = self.name.split('|')
if len(parts) > 2:
self.parent = '|'.join(parts[:-2])
else:
self.parent = None
elif 'case_name' in data.keys():
self.name = data['case_name'] # problem cases
self.parent = None
else:
self.name = None
self.parent = None
self.counter = data['counter']
self.timestamp = data['timestamp']
self.success = data['success']
self.msg = data['msg']
# for a solver or problem case
self.abs_err = data['abs_err'] if 'abs_err' in data.keys() else None
self.rel_err = data['rel_err'] if 'rel_err' in data.keys() else None
# rename solver keys
if 'solver_inputs' in data.keys():
if not isinstance(data, dict):
data = dict(zip(data.keys(), data))
data['inputs'] = data.pop('solver_inputs')
data['outputs'] = data.pop('solver_output')
data['residuals'] = data.pop('solver_residuals')
# default properties to None
self.inputs = None
self.outputs = None
self.residuals = None
self.derivatives = None
if 'inputs' in data.keys():
if data_format >= 3:
inputs = deserialize(data['inputs'], abs2meta, prom2abs, conns)
elif data_format in (1, 2):
inputs = blob_to_array(data['inputs'])
if type(inputs) is np.ndarray and not inputs.shape:
inputs = None
else:
inputs = data['inputs']
if inputs is not None:
self.inputs = PromAbsDict(inputs, prom2abs['input'], abs2prom['input'])
if 'outputs' in data.keys():
if data_format >= 3:
outputs = deserialize(data['outputs'], abs2meta, prom2abs, conns)
elif self._format_version in (1, 2):
outputs = blob_to_array(data['outputs'])
if type(outputs) is np.ndarray and not outputs.shape:
outputs = None
else:
outputs = data['outputs']
if outputs is not None:
self.outputs = PromAbsDict(outputs, prom2abs['output'], abs2prom['output'],
in_prom2abs=prom2abs['input'],
auto_ivc_map=auto_ivc_map)
if 'residuals' in data.keys():
if data_format >= 3:
residuals = deserialize(data['residuals'], abs2meta, prom2abs, conns)
elif data_format in (1, 2):
residuals = blob_to_array(data['residuals'])
if type(residuals) is np.ndarray and not residuals.shape:
residuals = None
else:
residuals = data['residuals']
if residuals is not None:
self.residuals = PromAbsDict(residuals, prom2abs['output'], abs2prom['output'],
in_prom2abs=prom2abs['input'],
auto_ivc_map=auto_ivc_map)
if 'jacobian' in data.keys():
if data_format >= 2:
jacobian = blob_to_array(data['jacobian'])
if type(jacobian) is np.ndarray and not jacobian.shape:
jacobian = None
else:
jacobian = data['jacobian']
if jacobian is not None:
self.derivatives = PromAbsDict(jacobian, prom2abs['output'], abs2prom['output'],
in_prom2abs=prom2abs['input'],
auto_ivc_map=auto_ivc_map,
var_info=var_info)
# save var name & meta dict references for use by self._get_variables_of_type()
self._prom2abs = prom2abs
self._abs2prom = abs2prom
self._abs2meta = abs2meta
self._conns = conns
self._auto_ivc_map = auto_ivc_map
def __str__(self):
"""
Get string representation of the case.
Returns
-------
str
String representation of the case.
"""
return ' '.join([self.source, self.name, str(self.outputs)])
[docs] def __getitem__(self, name):
"""
Get an output/input variable.
Parameters
----------
name : str
Promoted or relative variable name in the root system's namespace.
Returns
-------
float or ndarray or any python object
the requested output/input variable.
"""
if self.outputs is not None:
try:
return self.outputs[name]
except KeyError:
if name in self._auto_ivc_map:
return self.inputs[self._auto_ivc_map[name]]
if self.inputs is not None:
return self.inputs[name]
elif self.inputs is not None:
return self.inputs[name]
raise KeyError('Variable name "%s" not found.' % name)
[docs] def get_val(self, name, units=None, indices=None):
"""
Get an output/input variable.
Function is used if you want to specify display units.
Parameters
----------
name : str
Promoted or relative variable name in the root system's namespace.
units : str, optional
Units to convert to before upon return.
indices : int or list of ints or tuple of ints or int ndarray or Iterable or None, optional
Indices or slice to return.
Returns
-------
float or ndarray
The requested output/input variable.
"""
val = self[name]
if indices is not None:
val = val[indices]
if units is not None:
base_units = self._get_units(name)
simp_units = simplify_unit(units)
if base_units is None:
msg = "Can't express variable '{}' with units of 'None' in units of '{}'."
raise TypeError(msg.format(name, simp_units))
try:
scale, offset = unit_conversion(base_units, simp_units)
except TypeError:
msg = "Can't express variable '{}' with units of '{}' in units of '{}'."
raise TypeError(msg.format(name, base_units, simp_units))
val = (val + offset) * scale
return val
def _get_units(self, name):
"""
Get the units for a variable name.
Parameters
----------
name : str
Promoted or relative variable name in the root system's namespace.
Returns
-------
str
Unit string.
"""
meta = self._abs2meta
if name in meta:
return meta[name]['units']
proms = self._prom2abs
if name in proms['output']:
abs_name = proms['output'][name][0]
return meta[abs_name]['units']
elif name in proms['input']:
if len(proms['input'][name]) > 1:
# The promoted name maps to multiple absolute names, require absolute name.
msg = "Can't get units for the promoted name '%s' because it refers to " + \
"multiple inputs: %s. Access the units using an absolute path name."
raise RuntimeError(msg % (name, str(proms['input'][name])))
abs_name = proms['input'][name][0]
return meta[abs_name]['units']
raise KeyError('Variable name "{}" not found.'.format(name))
[docs] def get_design_vars(self, scaled=True, use_indices=True):
"""
Get the values of the design variables, as seen by the driver, for this case.
Parameters
----------
scaled : bool
If True, then return scaled values.
use_indices : bool
If True, apply indices.
Returns
-------
PromAbsDict
Map of variables to their values.
"""
return self._get_variables_of_type('desvar', scaled, use_indices)
[docs] def get_objectives(self, scaled=True, use_indices=True):
"""
Get the values of the objectives, as seen by the driver, for this case.
Parameters
----------
scaled : bool
If True, then return scaled values.
use_indices : bool
If True, apply indices.
Returns
-------
PromAbsDict
Map of variables to their values.
"""
return self._get_variables_of_type('objective', scaled, use_indices)
[docs] def get_constraints(self, scaled=True, use_indices=True):
"""
Get the values of the constraints, as seen by the driver, for this case.
Parameters
----------
scaled : bool
If True, then return scaled values.
use_indices : bool
If True, apply indices.
Returns
-------
PromAbsDict
Map of variables to their values.
"""
return self._get_variables_of_type('constraint', scaled, use_indices)
[docs] def get_responses(self, scaled=True, use_indices=True):
"""
Get the values of the responses, as seen by the driver, for this case.
Parameters
----------
scaled : bool
If True, then return scaled values.
use_indices : bool
If True, apply indices.
Returns
-------
PromAbsDict
Map of variables to their values.
"""
return self._get_variables_of_type('response', scaled, use_indices)
[docs] def list_vars(self,
val=True,
prom_name=True,
residuals=False,
residuals_tol=None,
units=False,
shape=False,
bounds=False,
scaling=False,
desc=False,
print_arrays=False,
tags=None,
print_tags=False,
includes=None,
excludes=None,
is_indep_var=None,
is_design_var=None,
list_autoivcs=False,
out_stream=_DEFAULT_OUT_STREAM,
print_min=False,
print_max=False,
return_format='list'):
"""
Write a list of inputs and outputs sorted by component in execution order.
Parameters
----------
val : bool, optional
When True, display output values. Default is True.
prom_name : bool, optional
When True, display the promoted name of the variable.
Default is True.
residuals : bool, optional
When True, display residual values. Default is False.
residuals_tol : float, optional
If set, limits the output of list_outputs to only variables where
the norm of the resids array is greater than the given 'residuals_tol'.
Default is None.
units : bool, optional
When True, display units. Default is False.
shape : bool, optional
When True, display/return the shape of the value. Default is False.
bounds : bool, optional
When True, display/return bounds (lower and upper). Default is False.
scaling : bool, optional
When True, display/return scaling (ref, ref0, and res_ref). Default is False.
desc : bool, optional
When True, display/return description. Default is False.
print_arrays : bool, optional
When False, in the columnar display, just display norm of any ndarrays with size > 1.
The norm is surrounded by vertical bars to indicate that it is a norm.
When True, also display full values of the ndarray below the row. Format is affected
by the values set with numpy.set_printoptions
Default is False.
tags : str or list of strs
User defined tags that can be used to filter what gets listed. Only outputs with the
given tags will be listed.
Default is None, which means there will be no filtering based on tags.
print_tags : bool
When true, display tags in the columnar display.
includes : None, str, or iter of str
Collection of glob patterns for pathnames of variables to include. Default is None,
which includes all output variables.
excludes : None, str, or iter of str
Collection of glob patterns for pathnames of variables to exclude. Default is None.
is_indep_var : bool or None
If None (the default), do no additional filtering of the inputs.
If True, list only outputs tagged `openmdao:indep_var`.
If False, list only outputs that are _not_ tagged `openmdao:indep_var`.
is_design_var : bool or None
If None (the default), do no additional filtering of the inputs.
If True, list only inputs connected to outputs that are driver design variables.
If False, list only inputs _not_ connected to outputs that are driver design variables.
list_autoivcs : bool
If True, include auto_ivc outputs in the listing. Defaults to False.
out_stream : file-like
Where to send human readable output. Default is sys.stdout.
Set to None to suppress.
print_min : bool
When true, if the output value is an array, print its smallest value.
print_max : bool
When true, if the output value is an array, print its largest value.
return_format : str
Indicates the desired format of the return value. Can have value of 'list' or 'dict'.
If 'list', the return value is a list of (name, metadata) tuples.
if 'dict', the return value is a dictionary mapping {name: metadata}.
Returns
-------
list of (name, metadata) or dict of {name: metadata}
List or dict of output names and other optional information about those outputs.
"""
if return_format not in ('list', 'dict'):
badarg = f"'{return_format}'" if isinstance(return_format, str) else f"{return_format}"
raise ValueError(f"Invalid value ({badarg}) for return_format, "
"must be a string value of 'list' or 'dict'")
keynames = ['val', 'units', 'shape', 'desc', 'tags']
keyflags = [val, units, shape, desc, tags or print_tags]
keys = [name for i, name in enumerate(keynames) if keyflags[i]]
if bounds:
keys.extend(('lower', 'upper'))
if scaling:
keys.extend(('ref', 'ref0', 'res_ref'))
outputs = self.get_io_metadata('output', keys, includes, excludes,
is_indep_var, is_design_var, tags)
# filter auto_ivcs if requested
if outputs and not list_autoivcs:
outputs = {n: m for n, m in outputs.items() if not n.startswith('_auto_ivc.')}
# get output values & resids
if outputs and (val or residuals or residuals_tol):
to_remove = []
print_options = np.get_printoptions()
np_precision = print_options['precision']
for name, meta in outputs.items():
if val:
# we want value from the case, not from the metadata
meta['val'] = self.outputs[name]
if isinstance(meta['val'], np.ndarray):
if print_min:
meta['min'] = np.round(np.min(meta['val']), np_precision)
if print_max:
meta['max'] = np.round(np.max(meta['val']), np_precision)
if residuals or residuals_tol:
if self.residuals is None:
meta['resids'] = 'Not Recorded'
else:
try:
resids = self.residuals[name]
if residuals_tol and np.linalg.norm(resids) < residuals_tol:
to_remove.append(name)
elif residuals:
meta['resids'] = resids
except KeyError:
if residuals:
meta['resids'] = 'Not Recorded'
# remove any outputs that don't pass the residuals_tol filter
for name in to_remove:
del outputs[name]
if self.inputs is not None:
inputs = self.get_io_metadata('input', keys, includes, excludes,
is_indep_var, is_design_var, tags)
else:
inputs = {}
# get input values
if inputs and val is not None:
print_options = np.get_printoptions()
np_precision = print_options['precision']
for name, meta in inputs.items():
# we want value from the case, not from the metadata
meta['val'] = self.inputs[name]
if isinstance(meta['val'], np.ndarray):
if print_min:
meta['min'] = np.round(np.min(meta['val']), np_precision)
if print_max:
meta['max'] = np.round(np.max(meta['val']), np_precision)
# combine inputs and outputs create return value
var_dict = inputs
var_dict.update(outputs)
# remove metadata we don't want to show/return
to_remove = ['discrete', 'explicit']
if not prom_name:
to_remove.append('prom_name')
if not print_tags:
to_remove.append('tags')
for meta in var_dict.values():
for key in to_remove:
try:
del meta[key]
except KeyError:
pass
if var_dict:
if 'execution_order' in self._var_info:
var_list = []
for var_name in self._var_info['execution_order']:
if var_name in var_dict:
var_list.append(var_name)
else:
# don't have execution order, just sort for determinism
var_list = sorted(var_dict.keys())
write_var_table('', var_list, 'all', var_dict,
True, print_arrays, out_stream)
return var_dict if return_format == 'dict' else list(var_dict.items())
[docs] def list_outputs(self,
explicit=True, implicit=True,
val=True,
prom_name=True,
residuals=False,
residuals_tol=None,
units=False,
shape=False,
global_shape=False,
bounds=False,
scaling=False,
desc=False,
hierarchical=True,
print_arrays=False,
tags=None,
print_tags=False,
includes=None,
excludes=None,
is_indep_var=None,
is_design_var=None,
list_autoivcs=False,
out_stream=_DEFAULT_OUT_STREAM,
print_min=False,
print_max=False,
return_format='list'):
"""
Return and optionally log a list of output names and other optional information.
Parameters
----------
explicit : bool, optional
Include outputs from explicit components. Default is True.
implicit : bool, optional
Include outputs from implicit components. Default is True.
val : bool, optional
When True, display/return output values. Default is True.
prom_name : bool, optional
When True, display/return the promoted name of the variable.
Default is False.
residuals : bool, optional
When True, display/return residual values. Default is False.
residuals_tol : float, optional
If set, limits the output of list_outputs to only variables where
the norm of the resids array is greater than the given 'residuals_tol'.
Default is None.
units : bool, optional
When True, display/return units. Default is False.
shape : bool, optional
When True, display/return the shape of the value. Default is False.
global_shape : bool, optional
When True, display/return the global shape of the value. Default is False.
bounds : bool, optional
When True, display/return bounds (lower and upper). Default is False.
scaling : bool, optional
When True, display/return scaling (ref, ref0, and res_ref). Default is False.
desc : bool, optional
When True, display/return description. Default is False.
hierarchical : bool, optional
When True, human readable output shows variables in hierarchical format.
print_arrays : bool, optional
When False, in the columnar display, just display norm of any ndarrays with size > 1.
The norm is surrounded by vertical bars to indicate that it is a norm.
When True, also display full values of the ndarray below the row. Format is affected
by the values set with numpy.set_printoptions
Default is False.
tags : str or list of strs
User defined tags that can be used to filter what gets listed. Only outputs with the
given tags will be listed.
Default is None, which means there will be no filtering based on tags.
print_tags : bool
When true, display tags in the columnar display.
includes : str, iter of str, or None
Glob patterns for pathnames to include in the check. Default is None, which
includes all.
excludes : str, iter of str, or None
Glob patterns for pathnames to exclude from the check. Default is None, which
excludes nothing.
is_indep_var : bool or None
If None (the default), do no additional filtering of the inputs.
If True, list only inputs connected to an output tagged `openmdao:indep_var`.
If False, list only inputs _not_ connected to outputs tagged `openmdao:indep_var`.
is_design_var : bool or None
If None (the default), do no additional filtering of the inputs.
If True, list only inputs connected to outputs that are driver design variables.
If False, list only inputs _not_ connected to outputs that are driver design variables.
list_autoivcs : bool
If True, include auto_ivc outputs in the listing. Defaults to False.
out_stream : file-like
Where to send human readable output. Default is sys.stdout.
Set to None to suppress.
print_min : bool, optional
When true, if the output value is an array, print its smallest value.
print_max : bool, optional
When true, if the output value is an array, print its largest value.
return_format : str
Indicates the desired format of the return value. Can have value of 'list' or 'dict'.
If 'list', the return value is a list of (name, metadata) tuples.
if 'dict', the return value is a dictionary mapping {name: metadata}.
Returns
-------
list of (name, metadata) or dict of {name: metadata}
List or dict of output names and other optional information about those outputs.
"""
if return_format not in ('list', 'dict'):
badarg = f"'{return_format}'" if isinstance(return_format, str) else f"{return_format}"
raise ValueError(f"Invalid value ({badarg}) for return_format, "
"must be a string value of 'list' or 'dict'")
if not self.outputs:
return {} if return_format == 'dict' else []
keynames = ['val', 'units', 'shape', 'global_shape', 'desc', 'tags']
keyvals = [val, units, shape, global_shape, desc, tags or print_tags]
keys = [n for i, n in enumerate(keynames) if keyvals[i]]
if bounds:
keys.extend(('lower', 'upper'))
if scaling:
keys.extend(('ref', 'ref0', 'res_ref'))
outputs = self.get_io_metadata('output', keys, includes, excludes,
is_indep_var, is_design_var, tags)
# filter auto_ivcs if requested
if outputs and not list_autoivcs:
outputs = {n: m for n, m in outputs.items() if not n.startswith('_auto_ivc.')}
# get output values & resids
if outputs and (val or residuals or residuals_tol):
to_remove = []
print_options = np.get_printoptions()
np_precision = print_options['precision']
for name, meta in outputs.items():
if val:
# we want value from the case, not from the metadata
meta['val'] = self.outputs[name]
if isinstance(meta['val'], np.ndarray):
if print_min:
meta['min'] = np.round(np.min(meta['val']), np_precision)
if print_max:
meta['max'] = np.round(np.max(meta['val']), np_precision)
if residuals or residuals_tol:
if self.residuals is None:
meta['resids'] = 'Not Recorded'
else:
try:
resids = self.residuals[name]
if residuals_tol and np.linalg.norm(resids) < residuals_tol:
to_remove.append(name)
elif residuals:
meta['resids'] = resids
except KeyError:
if residuals:
meta['resids'] = 'Not Recorded'
# remove any outputs that don't pass the residuals_tol filter
for name in to_remove:
del outputs[name]
expl_outputs = {n: m for n, m in outputs.items() if m['explicit']}
impl_outputs = {n: m for n, m in outputs.items() if not m['explicit']}
# remove metadata we don't want to show/return
to_remove = ['discrete', 'explicit']
if not prom_name:
to_remove.append('prom_name')
if not print_tags:
to_remove.append('tags')
for meta in itertools.chain(outputs.values(), expl_outputs.values(), impl_outputs.values()):
for key in to_remove:
try:
del meta[key]
except KeyError:
pass
if out_stream:
if not self.outputs:
ostream = sys.stdout if out_stream is _DEFAULT_OUT_STREAM else out_stream
ostream.write('WARNING: Outputs not recorded. Make sure your recording ' +
'settings have record_outputs set to True\n')
if explicit:
self._write_table('explicit', expl_outputs, hierarchical, print_arrays, out_stream)
if implicit:
self._write_table('implicit', impl_outputs, hierarchical, print_arrays, out_stream)
if explicit and implicit:
pass
elif explicit:
outputs = expl_outputs
elif implicit:
outputs = impl_outputs
else:
raise RuntimeError('You have excluded both Explicit and Implicit components.')
return outputs if return_format == 'dict' else list(outputs.items())
def _write_table(self, var_type, var_data, hierarchical, print_arrays, out_stream):
"""
Write table of variable names, values, residuals, and metadata to out_stream.
Parameters
----------
var_type : 'input', 'explicit' or 'implicit'
Indicates type of variables, input or explicit/implicit output.
var_data : dict or list
Dict of {name: metadata} or list of (name, metadata).
hierarchical : bool
When True, human readable output shows variables in hierarchical format.
print_arrays : bool
When False, in the columnar display, just display norm of any ndarrays with size > 1.
The norm is surrounded by vertical bars to indicate that it is a norm.
When True, also display full values of the ndarray below the row. Format is affected
by the values set with numpy.set_printoptions
Default is False.
out_stream : file-like object
Where to send human readable output.
Set to None to suppress.
"""
if out_stream is None:
return
# Make a dict of variables. Makes it easier to work with in this method
if isinstance(var_data, dict):
var_dict = var_data
else:
var_dict = OrderedDict()
for name, meta in var_data:
var_dict[name] = meta
# determine pathname of the system
if self.source in ('root', 'driver', 'problem', 'root.nonlinear_solver'):
pathname = ''
elif '|' in self.source:
pathname = get_source_system(self.source)
else:
pathname = self.source.replace('root.', '')
if pathname.endswith('.nonlinear_solver'):
pathname = pathname[:-17] # len('.nonlinear_solver') == 17
# vars should be in execution order
if 'execution_order' in self._var_info:
var_order = self._var_info['execution_order']
var_list = [var_name for var_name in var_order if var_name in var_dict]
else:
# don't have execution order, just sort for determinism
var_list = sorted(var_dict.keys())
write_var_table(pathname, var_list, var_type, var_dict,
hierarchical=hierarchical, print_arrays=print_arrays,
out_stream=out_stream)
def _get_variables_of_type(self, var_type, scaled=False, use_indices=False):
"""
Get the variables of a given type and their values.
Parameters
----------
var_type : str
String indicating which value for 'type' should be accepted for a variable
to be included in the returned map. Allowed values are: ['desvar', 'objective',
'constraint', 'response'].
scaled : bool
If True, then return scaled values.
use_indices : bool
If True, apply indices.
Returns
-------
PromAbsDict
Map of variables to their values.
"""
if self.outputs is None:
return PromAbsDict({}, self._prom2abs, self._abs2prom)
abs2meta = self._abs2meta
prom2abs_in = self._prom2abs['input']
auto_ivc_map = self._auto_ivc_map
ret_vars = {}
for name, meta in self._var_info.items():
# FIXME: _var_info contains dvs, responses, and 'execution_order'. It
# should be reorganized to prevent dvs and responses from being at the
# same level as execution_order. While unlikely, it is possible that
# a dv/response could have the name 'execution_order'. Mainly though,
# separating them will prevent needing the following kludge.
if name == 'execution_order':
continue
src = meta['source']
if var_type in abs2meta[src]['type']:
try:
val = self.outputs[src].copy()
except KeyError:
# not recorded
continue
if use_indices and meta['indices'] is not None:
val = val[meta['indices']]
if scaled:
if meta['total_adder'] is not None:
val += meta['total_adder']
if meta['total_scaler'] is not None:
val *= meta['total_scaler']
ret_vars[name] = val
return PromAbsDict(ret_vars, self._prom2abs['output'], self._abs2prom['output'],
in_prom2abs=prom2abs_in, auto_ivc_map=auto_ivc_map,
var_info=self._var_info)
[docs]class PromAbsDict(dict):
"""
A dictionary that enables accessing values via absolute or promoted variable names.
Parameters
----------
values : array or dict
Numpy structured array or dictionary of values.
prom2abs : dict
Dictionary mapping promoted names to absolute names.
abs2prom : dict
Dictionary mapping absolute names in the output vector to promoted names.
data_format : int
A version number specifying the OpenMDAO SQL case database version.
in_prom2abs : dict
Dictionary mapping promoted names in the input vector to absolute names.
auto_ivc_map : dict
Dictionary that maps all auto_ivc sources to either an absolute input name for single
connections or a promoted input name for multiple connections. This is for output
display.
var_info : dict
Dictionary of variable metadata. Needed when there are constraint aliases.
Attributes
----------
_values : array or dict
Array or dict of values accessible via absolute variable name.
_keys : array
Absolute variable names that map to the values in the _values array.
_prom2abs : dict
Dictionary mapping promoted names in the output vector to absolute names.
_abs2prom : dict
Dictionary mapping absolute names to promoted names.
_auto_ivc_map : dict
Dictionary that maps all auto_ivc sources to either an absolute input name for single
connections or a promoted input name for multiple connections. This is for output display.
_var_info : dict
Dictionary of variable metadata. Needed when there are constraint aliases.
_DERIV_KEY_SEP : str
Separator character for derivative keys.
"""
[docs] def __init__(self, values, prom2abs, abs2prom, data_format=current_version,
in_prom2abs=None, auto_ivc_map=None, var_info=None):
"""
Initialize.
"""
super().__init__()
self._prom2abs = prom2abs
self._abs2prom = abs2prom
auto_ivc_map = auto_ivc_map if auto_ivc_map is not None else {}
self._var_info = var_info
self._auto_ivc_map = auto_ivc_map
if data_format <= 8:
DERIV_KEY_SEP = self._DERIV_KEY_SEP = ','
else:
DERIV_KEY_SEP = self._DERIV_KEY_SEP = '!'
if isinstance(values, dict):
# dict of values, keyed on either absolute or promoted names
self._values = {}
for key in values.keys():
if key in auto_ivc_map:
# key is auto_ivc, so translate to a readable input name.
self._values[key] = values[key]
in_key = auto_ivc_map[key]
super().__setitem__(in_key, values[key])
elif key in abs2prom:
# key is absolute name
self._values[key] = values[key]
prom_key = abs2prom[key]
super().__setitem__(prom_key, values[key])
elif key in prom2abs:
# key is promoted name
for abs_key in prom2abs[key]:
self._values[abs_key] = values[key]
super().__setitem__(key, values[key])
elif isinstance(key, tuple) or DERIV_KEY_SEP in key:
# derivative keys can be either (of, wrt) or 'of!wrt'
abs_keys, prom_key = self._deriv_keys(key)
for abs_key in abs_keys:
self._values[abs_key] = values[key]
super().__setitem__(prom_key, values[key])
elif in_prom2abs is not None and key in in_prom2abs:
# Auto-ivc outputs, use abs source (which is prom source.)
self._values[key] = values[key]
super().__setitem__(key, values[key])
else:
# Constraint alias support.
self._values[key] = values[key]
super().__setitem__(key, values[key])
self._keys = self._values.keys()
else:
# numpy structured array, which will always use absolute names
self._values = values[0]
self._keys = values.dtype.names
for key in self._keys:
if key in auto_ivc_map:
# key is auto_ivc, so translate to a readable input name.
in_key = auto_ivc_map[key]
super().__setitem__(in_key, self._values[key])
elif key in abs2prom:
prom_key = abs2prom[key]
if prom_key in self:
# We already set a value for this promoted name, which means
# it is an input that maps to multiple absolute names. Set the
# value to AMBIGOUS and require access via absolute name.
super().__setitem__(prom_key, _AMBIGOUS_PROM_NAME)
else:
super().__setitem__(prom_key, self._values[key])
elif DERIV_KEY_SEP in key:
# derivative keys will be a string in the form of 'of!wrt'
abs_keys, prom_key = self._deriv_keys(key)
super().__setitem__(prom_key, self._values[key])
elif in_prom2abs is not None and key in in_prom2abs:
# Auto-ivc outputs, use abs source (which is prom source.)
# TODO - maybe get rid of this by always saving the source name
super().__setitem__(key, self._values[key])
def _deriv_keys(self, key):
"""
Get the absolute and promoted name versions of the provided derivative key.
Parameters
----------
key : tuple or string
derivative key as either (of, wrt) or 'of!wrt'.
Returns
-------
list of tuples:
list of (of, wrt) mapping the provided key to absolute names.
tuple :
(of, wrt) mapping the provided key to promoted names.
"""
prom2abs = self._prom2abs
abs2prom = self._abs2prom
DERIV_KEY_SEP = self._DERIV_KEY_SEP
# derivative could be tuple or string, using absolute or promoted names
of, wrt = key if isinstance(key, tuple) else key.split(DERIV_KEY_SEP)
if of in abs2prom:
# if promoted, will map to all connected absolute names
abs_of = [of]
prom_of = abs2prom[of]
elif of in prom2abs:
abs_of = prom2abs[of]
prom_of = of
else:
# Support for constraint aliases.
abs_of = [self._var_info[of]['source']]
# The "of" part of the key name should be the alias.
prom_of = of
if wrt in prom2abs:
abs_wrt = [prom2abs[wrt]][0]
else:
abs_wrt = [wrt]
abs_keys = [f'{o}{DERIV_KEY_SEP}{w}' for o, w in itertools.product(abs_of, abs_wrt)]
if wrt in abs2prom:
prom_wrt = abs2prom[wrt]
else:
prom_wrt = wrt
prom_key = (prom_of, prom_wrt)
return abs_keys, prom_key
[docs] def __getitem__(self, key):
"""
Use the variable name to get the corresponding value.
Parameters
----------
key : str
Absolute or promoted variable name.
Returns
-------
array :
An array entry value that corresponds to the given variable name.
"""
if key in self._keys:
# absolute name
return self._values[key]
elif key in self._auto_ivc_map:
# We allow the user to query with auto_ivc varname.
src_key = self._auto_ivc_map[key]
if src_key in self._keys:
return self._values[self._auto_ivc_map[key]]
elif key in self:
# promoted name
val = super().__getitem__(key)
if val is _AMBIGOUS_PROM_NAME:
msg = "The promoted name '%s' is invalid because it refers to multiple " + \
"inputs: %s. Access the value using an absolute path name or the " + \
"connected output variable instead."
raise RuntimeError(msg % (key, str(self._prom2abs[key])))
else:
return val
elif isinstance(key, tuple) or self._DERIV_KEY_SEP in key:
# derivative keys can be either (of, wrt) or 'of!wrt'
_, prom_key = self._deriv_keys(key)
return super().__getitem__(prom_key)
raise KeyError('Variable name "%s" not found.' % key)
[docs] def __setitem__(self, key, value):
"""
Set the value for the given key, which may use absolute or promoted names.
Parameters
----------
key : str
Absolute or promoted variable name.
value : any
value for variable
"""
auto_ivc_map = self._auto_ivc_map
abs2prom = self._abs2prom
prom2abs = self._prom2abs
if isinstance(key, tuple):
_, prom_key = self._deriv_keys(key)
self._values[f"{prom_key[0]}!{prom_key[1]}"] = value
super().__setitem__(prom_key, value)
elif self._DERIV_KEY_SEP in key:
# derivative keys can be either (of, wrt) or 'of!wrt'
_, prom_key = self._deriv_keys(key)
self._values[f"{prom_key[0]}!{prom_key[1]}"] = value
super().__setitem__(prom_key, value)
elif key in abs2prom:
if key in auto_ivc_map:
# key is auto_ivc, so translate to a readable input name.
self._values[key] = value
in_key = auto_ivc_map[key]
super().__setitem__(in_key, self._values[key])
else:
# absolute name
self._values[key] = value
super().__setitem__(self._abs2prom[key], value)
elif key in prom2abs:
# promoted name, propagate to all connected absolute names
for abs_key in self._prom2abs[key]:
if abs_key in self._keys:
self._values[abs_key] = value
super().__setitem__(key, value)
else:
# Design variable by promoted input name.
self._values[key] = value
super().__setitem__(key, value)
[docs] def absolute_names(self):
"""
Yield absolute names for variables contained in this dictionary.
Similar to keys() but with absolute variable names instead of promoted names.
Yields
------
str
absolute names for variables contained in this dictionary.
"""
DERIV_KEY_SEP = self._DERIV_KEY_SEP
for key in self._keys:
if DERIV_KEY_SEP in key:
# return derivative keys as tuples instead of strings
of, wrt = key.split(DERIV_KEY_SEP)
if of in self._prom2abs:
of = self._prom2abs[of][0]
if wrt in self._prom2abs:
abswrts = self._prom2abs[wrt]
if len(abswrts) == 1:
wrt = abswrts[0]
# for now, if wrt is ambiguous, leave as promoted
yield (of, wrt)
else:
yield key