Source code for openmdao.recorders.case

"""
A Case class.
"""

import sys
import itertools

from fnmatch import fnmatchcase

import numpy as np

from openmdao.core.constants import _DEFAULT_OUT_STREAM
from openmdao.core.system import allowed_meta_names
from openmdao.recorders.sqlite_recorder import blob_to_array
from openmdao.utils.record_util import deserialize, get_source_system
from openmdao.utils.variable_table import write_var_table, NA
from openmdao.utils.general_utils import match_prom_or_abs
from openmdao.utils.units import unit_conversion, simplify_unit
from openmdao.recorders.sqlite_recorder import format_version as current_version


[docs]class Case(object): """ Case wraps the data from a single iteration of a recording to make it more easily accessible. Parameters ---------- source : str The unique id of the system/solver/driver/problem that did the recording. data : dict-like Dictionary of data for a case. prom2abs : {'input': dict, 'output': dict} Dictionary mapping promoted names of all variables to absolute names. abs2prom : {'input': dict, 'output': dict} Dictionary mapping absolute names of all variables to promoted names. abs2meta : dict Dictionary mapping absolute names of all variables to variable metadata. conns : dict Dictionary of all model connections. var_info : dict Dictionary with information about variables (scaling, indices, execution order). data_format : int A version number specifying the format of array data, if not numpy arrays. Attributes ---------- source : str The unique id of the system/solver/driver/problem that did the recording. name : str The unique identifier for this case. parent : str The iteration coordinate of the parent case for this iteration if any, else None. counter : int The unique sequential index of this case in the recording. timestamp : float Time of execution of the case. success : str Success flag for the case. msg : str Message associated with the case. outputs : PromAbsDict Map of outputs to values recorded. inputs : PromAbsDict or None Map of inputs to values recorded, None if not recorded. residuals : PromAbsDict or None Map of outputs to residuals recorded, None if not recorded. derivatives : PromAbsDict or None Map of (output, input) to derivatives recorded, None if not recorded. parent : str The full unique identifier for the parent this iteration. abs_err : float or None Absolute tolerance (None if not recorded). rel_err : float or None Relative tolerance (None if not recorded). _prom2abs : {'input': dict, 'output': dict} Dictionary mapping promoted names of all variables to absolute names. _abs2prom : {'input': dict, 'output': dict} Dictionary mapping absolute names of all variables to promoted names. _abs2meta : dict Dictionary mapping absolute names of all variables to variable metadata. _conns : dict Dictionary of all model connections. _var_info : dict Dictionary with information about variables (scaling, indices, execution order). _format_version : int A version number specifying the format of array data, if not numpy arrays. """
[docs] def __init__(self, source, data, prom2abs, abs2prom, abs2meta, conns, var_info, data_format=-1): """ Initialize. """ self.source = source self._format_version = data_format # save VOI dict reference for use by self._scale() self._var_info = var_info if 'iteration_coordinate' in data.keys(): self.name = data['iteration_coordinate'] parts = self.name.split('|') if len(parts) > 2: self.parent = '|'.join(parts[:-2]) else: self.parent = None elif 'case_name' in data.keys(): self.name = data['case_name'] # problem cases self.parent = None else: self.name = None self.parent = None self.counter = data['counter'] self.timestamp = data['timestamp'] self.success = data['success'] self.msg = data['msg'] # for a solver or problem case self.abs_err = data['abs_err'] if 'abs_err' in data.keys() else None self.rel_err = data['rel_err'] if 'rel_err' in data.keys() else None # rename solver keys if 'solver_inputs' in data.keys(): if not isinstance(data, dict): data = dict(zip(data.keys(), data)) data['inputs'] = data.pop('solver_inputs') data['outputs'] = data.pop('solver_output') data['residuals'] = data.pop('solver_residuals') # default properties to None self.inputs = None self.outputs = None self.residuals = None self.derivatives = None if 'inputs' in data.keys(): if data_format >= 3: inputs = deserialize(data['inputs'], abs2meta, prom2abs, conns) elif data_format in (1, 2): inputs = blob_to_array(data['inputs']) if type(inputs) is np.ndarray and not inputs.shape: inputs = None else: inputs = data['inputs'] if inputs is not None: self.inputs = PromAbsDict(inputs, prom2abs['input'], abs2prom['input']) if 'outputs' in data.keys(): if data_format >= 3: outputs = deserialize(data['outputs'], abs2meta, prom2abs, conns) elif self._format_version in (1, 2): outputs = blob_to_array(data['outputs']) if type(outputs) is np.ndarray and not outputs.shape: outputs = None else: outputs = data['outputs'] if outputs is not None: self.outputs = PromAbsDict(outputs, prom2abs['output'], abs2prom['output'], in_prom2abs=prom2abs['input']) if 'residuals' in data.keys(): if data_format >= 3: residuals = deserialize(data['residuals'], abs2meta, prom2abs, conns) elif data_format in (1, 2): residuals = blob_to_array(data['residuals']) if type(residuals) is np.ndarray and not residuals.shape: residuals = None else: residuals = data['residuals'] if residuals is not None: self.residuals = PromAbsDict(residuals, prom2abs['output'], abs2prom['output'], in_prom2abs=prom2abs['input']) if 'jacobian' in data.keys(): if data_format >= 2: jacobian = blob_to_array(data['jacobian']) if type(jacobian) is np.ndarray and not jacobian.shape: jacobian = None else: jacobian = data['jacobian'] if jacobian is not None: self.derivatives = PromAbsDict(jacobian, prom2abs['output'], abs2prom['output'], in_prom2abs=prom2abs['input'], var_info=var_info) # save var name & meta dict references for use by self._get_variables_of_type() self._prom2abs = prom2abs self._abs2prom = abs2prom self._abs2meta = abs2meta self._conns = conns
def __str__(self): """ Get string representation of the case. Returns ------- str String representation of the case. """ return ' '.join([self.source, self.name, str(self.outputs)])
[docs] def __getitem__(self, name): """ Get an output/input variable. Parameters ---------- name : str Promoted or relative variable name in the root system's namespace. Returns ------- float or ndarray or any python object the requested output/input variable. """ if self.outputs is not None: try: return self.outputs[name] except KeyError: pass if name in self._prom2abs['input'] and name not in self._abs2prom['input']: absin = self._prom2abs['input'][name][0] absout = self._conns[absin] try: return self.outputs[self._abs2prom['output'][absout]] except KeyError: pass if self.inputs is not None: try: return self.inputs[name] except KeyError: pass raise KeyError('Variable name "%s" not found.' % name)
[docs] def get_val(self, name, units=None, indices=None): """ Get an output/input variable. Function is used if you want to specify display units. Parameters ---------- name : str Promoted or relative variable name in the root system's namespace. units : str, optional Units to convert to before upon return. indices : int or list of ints or tuple of ints or int ndarray or Iterable or None, optional Indices or slice to return. Returns ------- float or ndarray The requested output/input variable. """ val = self[name] if indices is not None: val = val[indices] if units is not None: base_units = self._get_units(name) simp_units = simplify_unit(units) if base_units is None: msg = "Can't express variable '{}' with units of 'None' in units of '{}'." raise TypeError(msg.format(name, simp_units)) try: scale, offset = unit_conversion(base_units, simp_units) except TypeError: msg = "Can't express variable '{}' with units of '{}' in units of '{}'." raise TypeError(msg.format(name, base_units, simp_units)) val = (val + offset) * scale return val
def _get_units(self, name): """ Get the units for a variable name. Parameters ---------- name : str Promoted or relative variable name in the root system's namespace. Returns ------- str Unit string. """ meta = self._abs2meta if name in meta: return meta[name]['units'] prom2abs = self._prom2abs if name in prom2abs['output']: abs_name = prom2abs['output'][name][0] return meta[abs_name]['units'] elif name in prom2abs['input']: abs_name = prom2abs['input'][name][0] return meta[self._conns[abs_name]]['units'] raise KeyError('Variable name "{}" not found.'.format(name))
[docs] def get_design_vars(self, scaled=True, use_indices=True): """ Get the values of the design variables, as seen by the driver, for this case. Parameters ---------- scaled : bool If True, then return scaled values. use_indices : bool If True, apply indices. Returns ------- PromAbsDict Map of variables to their values. """ return self._get_variables_of_type('desvar', scaled, use_indices)
[docs] def get_objectives(self, scaled=True, use_indices=True): """ Get the values of the objectives, as seen by the driver, for this case. Parameters ---------- scaled : bool If True, then return scaled values. use_indices : bool If True, apply indices. Returns ------- PromAbsDict Map of variables to their values. """ return self._get_variables_of_type('objective', scaled, use_indices)
[docs] def get_constraints(self, scaled=True, use_indices=True): """ Get the values of the constraints, as seen by the driver, for this case. Parameters ---------- scaled : bool If True, then return scaled values. use_indices : bool If True, apply indices. Returns ------- PromAbsDict Map of variables to their values. """ return self._get_variables_of_type('constraint', scaled, use_indices)
[docs] def get_responses(self, scaled=True, use_indices=True): """ Get the values of the responses, as seen by the driver, for this case. Parameters ---------- scaled : bool If True, then return scaled values. use_indices : bool If True, apply indices. Returns ------- PromAbsDict Map of variables to their values. """ return self._get_variables_of_type('response', scaled, use_indices)
[docs] def get_io_metadata(self, iotypes=('input', 'output'), metadata_keys=None, includes=None, excludes=None, is_indep_var=None, is_design_var=None, tags=None): """ Retrieve metadata for a filtered list of variables. Parameters ---------- iotypes : str or iter of str Will contain either 'input', 'output', or both. Defaults to both. metadata_keys : iter of str or None Names of metadata entries to be retrieved or None, meaning retrieve all available 'allprocs' metadata. If 'val' or 'src_indices' are required, their keys must be provided explicitly since they are not found in the 'allprocs' metadata and must be retrieved from local metadata located in each process. includes : str, iter of str or None Collection of glob patterns for pathnames of variables to include. Default is None, which includes all variables. excludes : str, iter of str or None Collection of glob patterns for pathnames of variables to exclude. Default is None. is_indep_var : bool or None If None (the default), do no additional filtering of the inputs. If True, list only inputs connected to an output tagged `openmdao:indep_var`. If False, list only inputs _not_ connected to outputs tagged `openmdao:indep_var`. is_design_var : bool or None If None (the default), do no additional filtering of the inputs. If True, list only outputs and connected inputs that are driver design variables. If False, list only outputs and connected inputs that are _not_ driver design variables. tags : str or iter of strs User defined tags that can be used to filter what gets listed. Only inputs with the given tags will be listed. Default is None, which means there will be no filtering based on tags. Returns ------- dict A dict of metadata keyed on name, where the metadata is a dict containing entries based on the value of the metadata_keys arg. Every metadata dict will always contain two entries, 'prom_name' and 'discrete', to indicate a given variable's promoted name and whether or not it is discrete. """ if isinstance(iotypes, str): iotypes = (iotypes,) if isinstance(includes, str): includes = (includes,) if isinstance(excludes, str): excludes = (excludes,) if isinstance(tags, str): tags = {tags} if metadata_keys is not None: keyset = set(metadata_keys) diff = keyset - allowed_meta_names if diff: raise RuntimeError(f"Case: {sorted(diff)} are not valid metadata entry names.") abs2meta = self._abs2meta abs2prom = self._abs2prom result = {} if is_design_var is not None: des_vars = self.get_design_vars() for iotype in iotypes: data = getattr(self, f'{iotype}s') if data is None: # data not recorded for this i/o type continue for abs_name in data.absolute_names(): prom = abs2prom[iotype][abs_name] if not match_prom_or_abs(abs_name, prom, includes, excludes): continue meta = abs2meta[abs_name] if abs_name in abs2meta else None if meta is None: continue if metadata_keys is None: ret_meta = dict(meta) else: ret_meta = {} for key in keyset: try: ret_meta[key] = tuple(meta[key]) if 'shape' in key else meta[key] except KeyError: ret_meta[key] = NA # handle is_indep_var if is_indep_var is not None: if iotype == 'output': out_meta = meta else: out_meta = abs2meta[self._conns[abs_name]] src_tags = out_meta['tags'] if 'tags' in out_meta else {} if is_indep_var != ('openmdao:indep_var' in src_tags): continue # handle is_design_var if is_design_var is not None: if iotype == 'output': out_name = abs_name else: # input, get connected output out_name = abs2prom['output'][self._conns[abs_name]] if out_name.startswith('_auto_ivc.'): out_name = abs2prom['output'][out_name] if is_design_var != (out_name in des_vars): continue # handle tags if tags: meta_tags = ret_meta.get('tags', {}) if not meta_tags: continue match_tag = False for tag in tags: for meta_tag in meta_tags: if fnmatchcase(meta_tag, tag): match_tag = True break if not match_tag: continue ret_meta['io'] = iotype ret_meta['discrete'] = 'discrete' in abs2meta[abs_name] ret_meta['prom_name'] = prom if iotype == 'output': ret_meta['explicit'] = True if meta.get('explicit') else False result[abs_name] = ret_meta return result
[docs] def list_vars(self, val=True, prom_name=True, residuals=False, residuals_tol=None, units=False, shape=False, bounds=False, scaling=False, desc=False, print_arrays=False, tags=None, print_tags=False, includes=None, excludes=None, is_indep_var=None, is_design_var=None, list_autoivcs=False, out_stream=_DEFAULT_OUT_STREAM, print_min=False, print_max=False, return_format='list'): """ Write a list of inputs and outputs sorted by component in execution order. Parameters ---------- val : bool, optional When True, display output values. Default is True. prom_name : bool, optional When True, display the promoted name of the variable. Default is True. residuals : bool, optional When True, display residual values. Default is False. residuals_tol : float, optional If set, limits the output of list_outputs to only variables where the norm of the resids array is greater than the given 'residuals_tol'. Default is None. units : bool, optional When True, display units. Default is False. shape : bool, optional When True, display/return the shape of the value. Default is False. bounds : bool, optional When True, display/return bounds (lower and upper). Default is False. scaling : bool, optional When True, display/return scaling (ref, ref0, and res_ref). Default is False. desc : bool, optional When True, display/return description. Default is False. print_arrays : bool, optional When False, in the columnar display, just display norm of any ndarrays with size > 1. The norm is surrounded by vertical bars to indicate that it is a norm. When True, also display full values of the ndarray below the row. Format is affected by the values set with numpy.set_printoptions Default is False. tags : str or list of strs User defined tags that can be used to filter what gets listed. Only outputs with the given tags will be listed. Default is None, which means there will be no filtering based on tags. print_tags : bool When true, display tags in the columnar display. includes : None, str, or iter of str Collection of glob patterns for pathnames of variables to include. Default is None, which includes all output variables. excludes : None, str, or iter of str Collection of glob patterns for pathnames of variables to exclude. Default is None. is_indep_var : bool or None If None (the default), do no additional filtering of the inputs. If True, list only outputs tagged `openmdao:indep_var`. If False, list only outputs that are _not_ tagged `openmdao:indep_var`. is_design_var : bool or None If None (the default), do no additional filtering of the inputs. If True, list only inputs connected to outputs that are driver design variables. If False, list only inputs _not_ connected to outputs that are driver design variables. list_autoivcs : bool If True, include auto_ivc outputs in the listing. Defaults to False. out_stream : file-like Where to send human readable output. Default is sys.stdout. Set to None to suppress. print_min : bool When true, if the output value is an array, print its smallest value. print_max : bool When true, if the output value is an array, print its largest value. return_format : str Indicates the desired format of the return value. Can have value of 'list' or 'dict'. If 'list', the return value is a list of (name, metadata) tuples. if 'dict', the return value is a dictionary mapping {name: metadata}. Returns ------- list of (name, metadata) or dict of {name: metadata} List or dict of output names and other optional information about those outputs. """ if return_format not in ('list', 'dict'): badarg = f"'{return_format}'" if isinstance(return_format, str) else f"{return_format}" raise ValueError(f"Invalid value ({badarg}) for return_format, " "must be a string value of 'list' or 'dict'") keynames = ['val', 'units', 'shape', 'desc', 'tags'] keyflags = [val, units, shape, desc, tags or print_tags] keys = [name for i, name in enumerate(keynames) if keyflags[i]] if bounds: keys.extend(('lower', 'upper')) if scaling: keys.extend(('ref', 'ref0', 'res_ref')) outputs = self.get_io_metadata('output', keys, includes, excludes, is_indep_var, is_design_var, tags) # filter auto_ivcs if requested if outputs and not list_autoivcs: outputs = {n: m for n, m in outputs.items() if not n.startswith('_auto_ivc.')} # get output values & resids if outputs and (val or residuals or residuals_tol): to_remove = [] print_options = np.get_printoptions() np_precision = print_options['precision'] for name, meta in outputs.items(): if val: # we want value from the case, not from the metadata meta['val'] = self.outputs[name] if isinstance(meta['val'], np.ndarray): if print_min: meta['min'] = np.round(np.min(meta['val']), np_precision) if print_max: meta['max'] = np.round(np.max(meta['val']), np_precision) if residuals or residuals_tol: if self.residuals is None: meta['resids'] = 'Not Recorded' else: try: resids = self.residuals[name] if residuals_tol and np.linalg.norm(resids) < residuals_tol: to_remove.append(name) elif residuals: meta['resids'] = resids except KeyError: if residuals: meta['resids'] = 'Not Recorded' # remove any outputs that don't pass the residuals_tol filter for name in to_remove: del outputs[name] if self.inputs is not None: inputs = self.get_io_metadata('input', keys, includes, excludes, is_indep_var, is_design_var, tags) else: inputs = {} # get input values if inputs and val is not None: print_options = np.get_printoptions() np_precision = print_options['precision'] for name, meta in inputs.items(): # we want value from the case, not from the metadata meta['val'] = self.inputs[name] if isinstance(meta['val'], np.ndarray): if print_min: meta['min'] = np.round(np.min(meta['val']), np_precision) if print_max: meta['max'] = np.round(np.max(meta['val']), np_precision) # combine inputs and outputs create return value var_dict = inputs var_dict.update(outputs) # remove metadata we don't want to show/return to_remove = ['discrete', 'explicit'] if not prom_name: to_remove.append('prom_name') if not print_tags: to_remove.append('tags') for meta in var_dict.values(): for key in to_remove: try: del meta[key] except KeyError: pass if var_dict: if 'execution_order' in self._var_info: var_list = [] for var_name in self._var_info['execution_order']: if var_name in var_dict: var_list.append(var_name) else: # don't have execution order, just sort for determinism var_list = sorted(var_dict.keys()) write_var_table('', var_list, 'all', var_dict, True, print_arrays, out_stream) return var_dict if return_format == 'dict' else list(var_dict.items())
[docs] def list_inputs(self, val=True, prom_name=True, units=False, shape=False, global_shape=False, desc=False, hierarchical=True, print_arrays=False, tags=None, print_tags=False, includes=None, excludes=None, is_indep_var=None, is_design_var=None, out_stream=_DEFAULT_OUT_STREAM, print_min=False, print_max=False, return_format='list'): """ Return and optionally log a list of input names and other optional information. Parameters ---------- val : bool, optional When True, display/return input values. Default is True. prom_name : bool, optional When True, display/return the promoted name of the variable. Default is True. units : bool, optional When True, display/return units. Default is False. shape : bool, optional When True, display/return the shape of the value. Default is False. global_shape : bool, optional When True, display/return the global shape of the value. Default is False. desc : bool, optional When True, display/return description. Default is False. hierarchical : bool, optional When True, human readable output shows variables in hierarchical format. print_arrays : bool, optional When False, in the columnar display, just display norm of any ndarrays with size > 1. The norm is surrounded by vertical bars to indicate that it is a norm. When True, also display full values of the ndarray below the row. Format is affected by the values set with numpy.set_printoptions Default is False. tags : str or list of strs User defined tags that can be used to filter what gets listed. Only inputs with the given tags will be listed. Default is None, which means there will be no filtering based on tags. print_tags : bool When true, display tags in the columnar display. includes : str, iter of str, or None Glob patterns for pathnames to include in the check. Default is None, which includes all. excludes : str, iter of str, or None Glob patterns for pathnames to exclude from the check. Default is None, which excludes nothing. is_indep_var : bool or None If None (the default), do no additional filtering of the inputs. If True, list only inputs connected to an output tagged `openmdao:indep_var`. If False, list only inputs _not_ connected to outputs tagged `openmdao:indep_var`. is_design_var : bool or None If None (the default), do no additional filtering of the inputs. If True, list only inputs connected to outputs that are driver design variables. If False, list only inputs _not_ connected to outputs that are driver design variables. out_stream : file-like object Where to send human readable output. Default is sys.stdout. Set to None to suppress. print_min : bool, optional When true, if the input value is an array, print its smallest value. print_max : bool, optional When true, if the input value is an array, print its largest value. return_format : str Indicates the desired format of the return value. Can have value of 'list' or 'dict'. If 'list', the return value is a list of (name, metadata) tuples. if 'dict', the return value is a dictionary mapping {name: metadata}. Returns ------- list of (name, metadata) or dict of {name: metadata} List or dict of input names and other optional information about those inputs. """ if return_format not in ('list', 'dict'): badarg = f"'{return_format}'" if isinstance(return_format, str) else f"{return_format}" raise ValueError(f"Invalid value ({badarg}) for return_format, " "must be a string value of 'list' or 'dict'") if not self.inputs: return {} if return_format == 'dict' else [] keynames = ['val', 'units', 'shape', 'global_shape', 'desc', 'tags'] keyvals = [val, units, shape, global_shape, desc, tags or print_tags] keys = [n for i, n in enumerate(keynames) if keyvals[i]] inputs = self.get_io_metadata('input', keys, includes, excludes, is_indep_var, is_design_var, tags) if inputs and val: print_options = np.get_printoptions() np_precision = print_options['precision'] for name, meta in inputs.items(): meta['val'] = var_val = self.inputs[name] if isinstance(var_val, np.ndarray): if print_min: meta['min'] = np.round(np.min(var_val), np_precision) if print_max: meta['max'] = np.round(np.max(var_val), np_precision) if out_stream: if self.inputs: self._write_table('input', inputs, hierarchical, print_arrays, out_stream) else: ostream = sys.stdout if out_stream is _DEFAULT_OUT_STREAM else out_stream ostream.write('WARNING: Inputs not recorded. Make sure your recording ' + 'settings have record_inputs set to True\n') # remove metadata we don't want to show/return to_remove = ['discrete'] if not prom_name: to_remove.append('prom_name') if not print_tags: to_remove.append('tags') for meta in inputs.values(): for key in to_remove: try: del meta[key] except KeyError: pass return inputs if return_format == 'dict' else list(inputs.items())
[docs] def list_outputs(self, explicit=True, implicit=True, val=True, prom_name=True, residuals=False, residuals_tol=None, units=False, shape=False, global_shape=False, bounds=False, scaling=False, desc=False, hierarchical=True, print_arrays=False, tags=None, print_tags=False, includes=None, excludes=None, is_indep_var=None, is_design_var=None, list_autoivcs=False, out_stream=_DEFAULT_OUT_STREAM, print_min=False, print_max=False, return_format='list'): """ Return and optionally log a list of output names and other optional information. Parameters ---------- explicit : bool, optional Include outputs from explicit components. Default is True. implicit : bool, optional Include outputs from implicit components. Default is True. val : bool, optional When True, display/return output values. Default is True. prom_name : bool, optional When True, display/return the promoted name of the variable. Default is False. residuals : bool, optional When True, display/return residual values. Default is False. residuals_tol : float, optional If set, limits the output of list_outputs to only variables where the norm of the resids array is greater than the given 'residuals_tol'. Default is None. units : bool, optional When True, display/return units. Default is False. shape : bool, optional When True, display/return the shape of the value. Default is False. global_shape : bool, optional When True, display/return the global shape of the value. Default is False. bounds : bool, optional When True, display/return bounds (lower and upper). Default is False. scaling : bool, optional When True, display/return scaling (ref, ref0, and res_ref). Default is False. desc : bool, optional When True, display/return description. Default is False. hierarchical : bool, optional When True, human readable output shows variables in hierarchical format. print_arrays : bool, optional When False, in the columnar display, just display norm of any ndarrays with size > 1. The norm is surrounded by vertical bars to indicate that it is a norm. When True, also display full values of the ndarray below the row. Format is affected by the values set with numpy.set_printoptions Default is False. tags : str or list of strs User defined tags that can be used to filter what gets listed. Only outputs with the given tags will be listed. Default is None, which means there will be no filtering based on tags. print_tags : bool When true, display tags in the columnar display. includes : str, iter of str, or None Glob patterns for pathnames to include in the check. Default is None, which includes all. excludes : str, iter of str, or None Glob patterns for pathnames to exclude from the check. Default is None, which excludes nothing. is_indep_var : bool or None If None (the default), do no additional filtering of the inputs. If True, list only inputs connected to an output tagged `openmdao:indep_var`. If False, list only inputs _not_ connected to outputs tagged `openmdao:indep_var`. is_design_var : bool or None If None (the default), do no additional filtering of the inputs. If True, list only inputs connected to outputs that are driver design variables. If False, list only inputs _not_ connected to outputs that are driver design variables. list_autoivcs : bool If True, include auto_ivc outputs in the listing. Defaults to False. out_stream : file-like Where to send human readable output. Default is sys.stdout. Set to None to suppress. print_min : bool, optional When true, if the output value is an array, print its smallest value. print_max : bool, optional When true, if the output value is an array, print its largest value. return_format : str Indicates the desired format of the return value. Can have value of 'list' or 'dict'. If 'list', the return value is a list of (name, metadata) tuples. if 'dict', the return value is a dictionary mapping {name: metadata}. Returns ------- list of (name, metadata) or dict of {name: metadata} List or dict of output names and other optional information about those outputs. """ if return_format not in ('list', 'dict'): badarg = f"'{return_format}'" if isinstance(return_format, str) else f"{return_format}" raise ValueError(f"Invalid value ({badarg}) for return_format, " "must be a string value of 'list' or 'dict'") if not self.outputs: return {} if return_format == 'dict' else [] keynames = ['val', 'units', 'shape', 'global_shape', 'desc', 'tags'] keyvals = [val, units, shape, global_shape, desc, tags or print_tags] keys = [n for i, n in enumerate(keynames) if keyvals[i]] if bounds: keys.extend(('lower', 'upper')) if scaling: keys.extend(('ref', 'ref0', 'res_ref')) outputs = self.get_io_metadata('output', keys, includes, excludes, is_indep_var, is_design_var, tags) # filter auto_ivcs if requested if outputs and not list_autoivcs: outputs = {n: m for n, m in outputs.items() if not n.startswith('_auto_ivc.')} # get output values & resids if outputs and (val or residuals or residuals_tol): to_remove = [] print_options = np.get_printoptions() np_precision = print_options['precision'] for name, meta in outputs.items(): if val: # we want value from the case, not from the metadata meta['val'] = self.outputs[name] if isinstance(meta['val'], np.ndarray): if print_min: meta['min'] = np.round(np.min(meta['val']), np_precision) if print_max: meta['max'] = np.round(np.max(meta['val']), np_precision) if residuals or residuals_tol: if self.residuals is None: meta['resids'] = 'Not Recorded' else: try: resids = self.residuals[name] if residuals_tol and np.linalg.norm(resids) < residuals_tol: to_remove.append(name) elif residuals: meta['resids'] = resids except KeyError: if residuals: meta['resids'] = 'Not Recorded' # remove any outputs that don't pass the residuals_tol filter for name in to_remove: del outputs[name] expl_outputs = {n: m for n, m in outputs.items() if m['explicit']} impl_outputs = {n: m for n, m in outputs.items() if not m['explicit']} # remove metadata we don't want to show/return to_remove = ['discrete', 'explicit'] if not prom_name: to_remove.append('prom_name') if not print_tags: to_remove.append('tags') for meta in itertools.chain(outputs.values(), expl_outputs.values(), impl_outputs.values()): for key in to_remove: try: del meta[key] except KeyError: pass if out_stream: if not self.outputs: ostream = sys.stdout if out_stream is _DEFAULT_OUT_STREAM else out_stream ostream.write('WARNING: Outputs not recorded. Make sure your recording ' + 'settings have record_outputs set to True\n') if explicit: self._write_table('explicit', expl_outputs, hierarchical, print_arrays, out_stream) if implicit: self._write_table('implicit', impl_outputs, hierarchical, print_arrays, out_stream) if explicit and implicit: pass elif explicit: outputs = expl_outputs elif implicit: outputs = impl_outputs else: raise RuntimeError('You have excluded both Explicit and Implicit components.') return outputs if return_format == 'dict' else list(outputs.items())
def _write_table(self, var_type, var_data, hierarchical, print_arrays, out_stream): """ Write table of variable names, values, residuals, and metadata to out_stream. Parameters ---------- var_type : 'input', 'explicit' or 'implicit' Indicates type of variables, input or explicit/implicit output. var_data : dict or list Dict of {name: metadata} or list of (name, metadata). hierarchical : bool When True, human readable output shows variables in hierarchical format. print_arrays : bool When False, in the columnar display, just display norm of any ndarrays with size > 1. The norm is surrounded by vertical bars to indicate that it is a norm. When True, also display full values of the ndarray below the row. Format is affected by the values set with numpy.set_printoptions Default is False. out_stream : file-like object Where to send human readable output. Set to None to suppress. """ if out_stream is None: return # Make a dict of variables. Makes it easier to work with in this method if isinstance(var_data, dict): var_dict = var_data else: var_dict = {name: meta for name, meta in var_data} # determine pathname of the system if self.source in ('root', 'driver', 'problem', 'root.nonlinear_solver'): pathname = '' elif '|' in self.source: pathname = get_source_system(self.source) else: pathname = self.source.replace('root.', '') if pathname.endswith('.nonlinear_solver'): pathname = pathname[:-17] # len('.nonlinear_solver') == 17 # vars should be in execution order if 'execution_order' in self._var_info: var_order = self._var_info['execution_order'] var_list = [var_name for var_name in var_order if var_name in var_dict] else: # don't have execution order, just sort for determinism var_list = sorted(var_dict.keys()) write_var_table(pathname, var_list, var_type, var_dict, hierarchical=hierarchical, print_arrays=print_arrays, out_stream=out_stream) def _get_variables_of_type(self, var_type, scaled=False, use_indices=False): """ Get the variables of a given type and their values. Parameters ---------- var_type : str String indicating which value for 'type' should be accepted for a variable to be included in the returned map. Allowed values are: ['desvar', 'objective', 'constraint', 'response']. scaled : bool If True, then return scaled values. use_indices : bool If True, apply indices. Returns ------- PromAbsDict Map of variables to their values. """ if self.outputs is None: return PromAbsDict({}, self._prom2abs, self._abs2prom) abs2meta = self._abs2meta prom2abs_in = self._prom2abs['input'] ret_vars = {} for name, meta in self._var_info.items(): # FIXME: _var_info contains dvs, responses, and 'execution_order'. It # should be reorganized to prevent dvs and responses from being at the # same level as execution_order. While unlikely, it is possible that # a dv/response could have the name 'execution_order'. Mainly though, # separating them will prevent needing the following kludge. if name == 'execution_order': continue src = meta['source'] if var_type in abs2meta[src]['type']: try: val = self.outputs[src].copy() except KeyError: # not recorded continue if use_indices and meta['indices'] is not None: val = val[meta['indices']] if scaled: if meta['total_adder'] is not None: val += meta['total_adder'] if meta['total_scaler'] is not None: val *= meta['total_scaler'] ret_vars[name] = val return PromAbsDict(ret_vars, self._prom2abs['output'], self._abs2prom['output'], in_prom2abs=prom2abs_in, var_info=self._var_info)
[docs]class PromAbsDict(dict): """ A dictionary that enables accessing values via absolute or promoted variable names. Parameters ---------- values : array or dict Numpy structured array or dictionary of values. prom2abs : dict Dictionary mapping promoted names to absolute names. abs2prom : dict Dictionary mapping absolute names in the output vector to promoted names. data_format : int A version number specifying the OpenMDAO SQL case database version. in_prom2abs : dict Dictionary mapping promoted names in the input vector to absolute names. var_info : dict Dictionary of variable metadata. Needed when there are constraint aliases. Attributes ---------- _values : array or dict Array or dict of values accessible via absolute variable name. _keys : array Absolute variable names that map to the values in the _values array. _prom2abs : dict Dictionary mapping promoted names in the output vector to absolute names. _abs2prom : dict Dictionary mapping absolute names to promoted names. _var_info : dict Dictionary of variable metadata. Needed when there are constraint aliases. _DERIV_KEY_SEP : str Separator character for derivative keys. """
[docs] def __init__(self, values, prom2abs, abs2prom, data_format=current_version, in_prom2abs=None, var_info=None): """ Initialize. """ super().__init__() self._prom2abs = prom2abs self._abs2prom = abs2prom self._var_info = var_info if data_format <= 8: DERIV_KEY_SEP = self._DERIV_KEY_SEP = ',' else: DERIV_KEY_SEP = self._DERIV_KEY_SEP = '!' if isinstance(values, dict): # dict of values, keyed on either absolute or promoted names self._values = {} for key, val in values.items(): if key in abs2prom: # key is absolute name self._values[key] = val super().__setitem__(abs2prom[key], val) elif key in prom2abs: # key is promoted name for abs_key in prom2abs[key]: self._values[abs_key] = val super().__setitem__(key, val) elif isinstance(key, tuple) or DERIV_KEY_SEP in key: # derivative keys can be either (of, wrt) or 'of!wrt' abs_keys, prom_key = self._deriv_keys(key) for abs_key in abs_keys: self._values[abs_key] = val super().__setitem__(prom_key, val) else: self._values[key] = val super().__setitem__(key, val) self._keys = self._values.keys() else: # numpy structured array, which will always use absolute names self._values = values[0] self._keys = values.dtype.fields for key, val in zip(self._keys, self._values): if key in abs2prom: if in_prom2abs is None: # this is an abs input super().__setitem__(key, val) else: super().__setitem__(abs2prom[key], val) elif DERIV_KEY_SEP in key: # derivative keys will be a string in the form of 'of!wrt' abs_keys, prom_key = self._deriv_keys(key) super().__setitem__(prom_key, val) else: super().__setitem__(key, val)
def _deriv_keys(self, key): """ Get the absolute and promoted name versions of the provided derivative key. Parameters ---------- key : tuple or string derivative key as either (of, wrt) or 'of!wrt'. Returns ------- list of tuples: list of (of, wrt) mapping the provided key to absolute names. tuple : (of, wrt) mapping the provided key to promoted names. """ prom2abs = self._prom2abs abs2prom = self._abs2prom DERIV_KEY_SEP = self._DERIV_KEY_SEP # derivative could be tuple or string, using absolute or promoted names of, wrt = key if isinstance(key, tuple) else key.split(DERIV_KEY_SEP) if of in abs2prom: # if promoted, will map to all connected absolute names abs_of = [of] prom_of = abs2prom[of] elif of in prom2abs: abs_of = prom2abs[of] prom_of = of else: # Support for constraint aliases. abs_of = [self._var_info[of]['source']] # The "of" part of the key name should be the alias. prom_of = of if wrt in prom2abs: abs_wrt = [prom2abs[wrt]][0] else: abs_wrt = [wrt] abs_keys = [f'{o}{DERIV_KEY_SEP}{w}' for o, w in itertools.product(abs_of, abs_wrt)] if wrt in abs2prom: prom_wrt = abs2prom[wrt] else: prom_wrt = wrt prom_key = (prom_of, prom_wrt) return abs_keys, prom_key
[docs] def __getitem__(self, key): """ Use the variable name to get the corresponding value. Parameters ---------- key : str Absolute or promoted variable name. Returns ------- array : An array entry value that corresponds to the given variable name. """ if key in self._keys: # absolute name return self._values[key] elif key in self: return super().__getitem__(key) elif key in self._abs2prom: prom = self._abs2prom[key] if prom in self._keys: return self._values[prom] elif isinstance(key, tuple) or self._DERIV_KEY_SEP in key: # derivative keys can be either (of, wrt) or 'of!wrt' _, prom_key = self._deriv_keys(key) return super().__getitem__(prom_key) raise KeyError('Variable name "%s" not found.' % key)
[docs] def __setitem__(self, key, value): """ Set the value for the given key, which may use absolute or promoted names. Parameters ---------- key : str Absolute or promoted variable name. value : any value for variable """ abs2prom = self._abs2prom prom2abs = self._prom2abs if isinstance(key, tuple): _, prom_key = self._deriv_keys(key) self._values[f"{prom_key[0]}!{prom_key[1]}"] = value super().__setitem__(prom_key, value) elif self._DERIV_KEY_SEP in key: # derivative keys can be either (of, wrt) or 'of!wrt' _, prom_key = self._deriv_keys(key) self._values[f"{prom_key[0]}!{prom_key[1]}"] = value super().__setitem__(prom_key, value) elif key in abs2prom: # absolute name self._values[key] = value super().__setitem__(self._abs2prom[key], value) elif key in prom2abs: # promoted name, propagate to all connected absolute names for abs_key in self._prom2abs[key]: if abs_key in self._keys: self._values[abs_key] = value super().__setitem__(key, value) else: # Design variable by promoted input name. self._values[key] = value super().__setitem__(key, value)
[docs] def absolute_names(self): """ Yield absolute names for variables contained in this dictionary. Similar to keys() but with absolute variable names instead of promoted names. Yields ------ str absolute names for variables contained in this dictionary. """ DERIV_KEY_SEP = self._DERIV_KEY_SEP for key in self._keys: if DERIV_KEY_SEP in key: # return derivative keys as tuples instead of strings of, wrt = key.split(DERIV_KEY_SEP) if of in self._prom2abs: of = self._prom2abs[of][0] if wrt in self._prom2abs: abswrts = self._prom2abs[wrt] if len(abswrts) == 1: wrt = abswrts[0] # for now, if wrt is ambiguous, leave as promoted yield (of, wrt) else: yield key