"""Define the base Matrix class."""
import numpy as np
from scipy.sparse import coo_matrix, csr_matrix, csc_matrix
from openmdao.core.constants import INT_DTYPE
# scipy sparse types allowed to be subjacs
sparse_types = (csr_matrix, csc_matrix, coo_matrix)
[docs]class Matrix(object):
"""
Base matrix class.
This class is used for global Jacobians.
Parameters
----------
comm : MPI.Comm or <FakeComm>
Communicator of the top-level system that owns the <Jacobian>.
is_internal : bool
If True, this is the int_mtx of an AssembledJacobian.
Attributes
----------
_comm : MPI.Comm or <FakeComm>
Communicator of the top-level system that owns the <Jacobian>.
_matrix : object
implementation-specific representation of the actual matrix.
_submats : dict
dictionary of sub-jacobian data keyed by (out_name, in_name).
_metadata : dict
implementation-specific data for the sub-jacobians.
"""
[docs] def __init__(self, comm, is_internal):
"""
Initialize all attributes.
"""
self._comm = comm
self._matrix = None
self._submats = {}
self._metadata = {}
def _add_submat(self, key, info, irow, icol, src_indices, shape, factor=None):
"""
Declare a sub-jacobian.
Parameters
----------
key : (str, str)
Tuple of the form (output_var_name, input_var_name).
info : dict
sub-jacobian metadata.
irow : int
the starting row index (offset) for this sub-jacobian.
icol : int
the starting col index (offset) for this sub-jacobian.
src_indices : ndarray
indices from the source variable that an input variable
connects to.
shape : tuple
Shape of the specified submatrix.
factor : float or None
Unit conversion factor.
"""
self._submats[key] = (info, (irow, icol), src_indices, shape, factor)
def _build(self, num_rows, num_cols, system=None):
"""
Allocate the matrix.
Parameters
----------
num_rows : int
number of rows in the matrix.
num_cols : int
number of cols in the matrix.
system : <System>
owning system.
"""
pass
def _update_submat(self, key, jac):
"""
Update the values of a sub-jacobian.
Parameters
----------
key : (str, str)
the global output and input variable names.
jac : ndarray or scipy.sparse or tuple
the sub-jacobian, the same format with which it was declared.
"""
pass
def _prod(self, vec, mode, mask=None):
"""
Perform a matrix vector product.
Parameters
----------
vec : ndarray[:]
incoming vector to multiply.
mode : str
'fwd' or 'rev'.
mask : ndarray of type bool, or None
Array used to mask out part of the input vector.
Returns
-------
ndarray[:]
vector resulting from the product.
"""
pass
def _pre_update(self):
"""
Do anything that needs to be done at the beginning of AssembledJacobian._update.
"""
pass
def _post_update(self):
"""
Do anything that needs to be done at the end of AssembledJacobian._update.
"""
pass
[docs] def set_complex_step_mode(self, active):
"""
Turn on or off complex stepping mode.
When turned on, the value in each subjac is cast as complex, and when turned
off, they are returned to real values.
Parameters
----------
active : bool
Complex mode flag; set to True prior to commencing complex step.
"""
pass
def _compute_index_map(jrows, jcols, irow, icol, src_indices):
"""
Return row/column indices to map sub-jacobian to global jac.
Parameters
----------
jrows : index array
Array of row indices.
jcols : index array
Array of column indices.
irow : int
Row index for start of sub-jacobian.
icol : int
Column index for start of sub-jacobian.
src_indices : index array
Index array of which values to pull from a source into an input
variable.
Returns
-------
tuple of (ndarray, ndarray, ndarray)
Row indices, column indices, and indices of columns matching
src_indices.
"""
icols = []
idxs = []
for i, idx in enumerate(src_indices.shaped_array()):
# pull out columns that match each index
idxarr = np.nonzero(jcols == i)[0]
idxs.append(idxarr)
icols.append(np.full(idxarr.shape, idx, dtype=INT_DTYPE))
idxs = np.hstack(idxs)
icols = np.hstack(icols) + icol
irows = jrows[idxs] + irow
return (irows, icols, idxs)