Source code for openmdao.drivers.doe_driver

"""
Design-of-Experiments Driver.
"""

import traceback
import inspect

import numpy as np

from openmdao.core.driver import Driver, RecordingDebugging
from openmdao.core.analysis_error import AnalysisError
from openmdao.drivers.doe_generators import DOEGenerator, ListGenerator

from openmdao.utils.mpi import MPI


[docs]class DOEDriver(Driver): """ Design-of-Experiments Driver. Parameters ---------- generator : DOEGenerator, list or None The case generator or a list of DOE cases. **kwargs : dict of keyword arguments Keyword arguments that will be mapped into the Driver options. Attributes ---------- _name : str The name used to identify this driver in recorded cases. _problem_comm : MPI.Comm or None The MPI communicator for the Problem. _color : int or None In MPI, the cached color is used to determine which cases to run on this proc. _indep_list : list List of design variables, used to compute derivatives. _quantities : list Contains the objectives plus nonlinear constraints, used to compute derivatives. """
[docs] def __init__(self, generator=None, **kwargs): """ Construct A DOEDriver. """ # if given a list, create a ListGenerator if isinstance(generator, list): generator = ListGenerator(generator) elif generator and not isinstance(generator, DOEGenerator): if inspect.isclass(generator): raise TypeError("DOEDriver requires an instance of DOEGenerator, " "but a class object was found: %s" % generator.__name__) else: raise TypeError("DOEDriver requires an instance of DOEGenerator, " "but an instance of %s was found." % type(generator).__name__) super().__init__(**kwargs) # What we support self.supports['integer_design_vars'] = True # What we don't support self.supports['distributed_design_vars'] = False self.supports['optimization'] = False self.supports._read_only = True if generator is not None: self.options['generator'] = generator self._name = '' self._problem_comm = None self._color = None self._indep_list = [] self._quantities = [] self._total_jac_format = 'dict'
def _declare_options(self): """ Declare options before kwargs are processed in the init method. """ self.options.declare('generator', types=(DOEGenerator), default=DOEGenerator(), desc='The case generator. If default, no cases are generated.') self.options.declare('run_parallel', types=bool, default=False, desc='Set to True to execute cases in parallel.') self.options.declare('procs_per_model', types=int, default=1, lower=1, desc='Number of processors to give each model under MPI.') def _setup_comm(self, comm): """ Perform any driver-specific setup of communicators for the model. Parameters ---------- comm : MPI.Comm or <FakeComm> or None The communicator for the Problem. Returns ------- MPI.Comm or <FakeComm> or None The communicator for the Problem model. """ self._problem_comm = comm if not MPI: return comm else: procs_per_model = self.options['procs_per_model'] full_size = comm.size size = full_size // procs_per_model if full_size != size * procs_per_model: raise RuntimeError("The total number of processors is not evenly divisible by the " "specified number of processors per model.\n Provide a " "number of processors that is a multiple of %d, or " "specify a number of processors per model that divides " "into %d." % (procs_per_model, full_size)) color = self._color = comm.rank % size return comm.Split(color) def _set_name(self): """ Set the name of this DOE driver and its case generator. Returns ------- str The name of this DOE driver and its case generator. """ generator = self.options['generator'] gen_type = type(generator).__name__.replace('Generator', '') if gen_type == 'DOEGenerator': self._name = 'DOEDriver' # Empty generator else: self._name = 'DOEDriver_' + gen_type return self._name def _get_name(self): """ Get the name of this DOE driver and its case generator. Returns ------- str The name of this DOE driver and its case generator. """ return self._name
[docs] def run(self): """ Generate cases and run the model for each set of generated input values. Returns ------- bool Failure flag; True if failed to converge, False is successful. """ self.result.reset() self.iter_count = 0 self._quantities = [] # set driver name with current generator self._set_name() # Add all design variables dv_meta = self._designvars self._indep_list = list(dv_meta) # Add all objectives objs = self.get_objective_values() for name in objs: self._quantities.append(name) # Add all constraints for name, _ in self._cons.items(): self._quantities.append(name) if MPI and self.options['run_parallel']: case_gen = self._parallel_generator else: case_gen = self.options['generator'] for case in case_gen(self._designvars, self._problem().model): self._run_case(case) self.iter_count += 1 return False
def _run_case(self, case): """ Run case, save exception info and mark the metadata if the case fails. Parameters ---------- case : list list of name, value tuples for the design variables. """ metadata = {} for dv_name, dv_val in case: try: msg = None if isinstance(dv_val, np.ndarray): self.set_design_var(dv_name, dv_val.flatten()) else: self.set_design_var(dv_name, dv_val) except ValueError as err: msg = "Error assigning %s = %s: " % (dv_name, dv_val) + str(err) finally: if msg: raise ValueError(msg) with RecordingDebugging(self._get_name(), self.iter_count, self): try: self._run_solve_nonlinear() metadata['success'] = 1 metadata['msg'] = '' except AnalysisError: metadata['success'] = 0 metadata['msg'] = traceback.format_exc() except Exception: metadata['success'] = 0 metadata['msg'] = traceback.format_exc() print(metadata['msg']) # save reference to metadata for use in record_iteration self._metadata = metadata if self.recording_options['record_derivatives']: self._compute_totals(of=self._quantities, wrt=self._indep_list, return_format=self._total_jac_format, driver_scaling=False) def _parallel_generator(self, design_vars, model=None): """ Generate case for this processor when running under MPI. Parameters ---------- design_vars : dict Dictionary of design variables for which to generate values. model : Group The model containing the design variables (used by some generators). Yields ------ list list of name, value tuples for the design variables. """ size = self._problem_comm.size // self.options['procs_per_model'] color = self._color generator = self.options['generator'] for i, case in enumerate(generator(design_vars, model)): if i % size == color: yield case def _setup_recording(self): """ Set up case recording. """ if MPI: run_parallel = self.options['run_parallel'] procs_per_model = self.options['procs_per_model'] for recorder in self._rec_mgr: if run_parallel: # write cases only on procs up to the number of parallel models # (i.e. on the root procs for the cases) if procs_per_model == 1: recorder.record_on_process = True else: size = self._problem_comm.size // procs_per_model if self._problem_comm.rank < size: recorder.record_on_process = True elif self._problem_comm.rank == 0: # if not running cases in parallel, then just record on proc 0 recorder.record_on_process = True super()._setup_recording() def _get_recorder_metadata(self, case_name): """ Return metadata from the latest iteration for use in the recorder. Parameters ---------- case_name : str Name of current case. Returns ------- dict Metadata dictionary for the recorder. """ self._metadata['name'] = case_name return self._metadata