Source code for openmdao.components.vector_magnitude_comp

"""Definition of the Vector Magnitude Component."""


import numpy as np

from openmdao.core.explicitcomponent import ExplicitComponent


[docs]class VectorMagnitudeComp(ExplicitComponent): """ Computes a vectorized magnitude. math:: a_mag = np.sqrt(np.dot(a, a)) where a is of shape (vec_size, n) Parameters ---------- **kwargs : dict of keyword arguments Keyword arguments that will be mapped into the Component options. Attributes ---------- _magnitudes : list Cache the data provided during `add_magnitude` so everything can be saved until setup is called. """
[docs] def __init__(self, **kwargs): """ Initialize the Vector Magnitude component. """ super().__init__(**kwargs) self._magnitudes = [] opt = self.options self.add_magnitude(mag_name=opt['mag_name'], in_name=opt['in_name'], units=opt['units'], vec_size=opt['vec_size'], length=opt['length']) self._no_check_partials = True
[docs] def initialize(self): """ Declare options. """ self.options.declare('vec_size', types=int, default=1, desc='The number of points at which the vector magnitude is computed') self.options.declare('length', types=int, default=3, desc='The length of the input vector at each point') self.options.declare('in_name', types=str, default='a', desc='The variable name for input vector.') self.options.declare('units', types=str, default=None, allow_none=True, desc='The units of the input vector.') self.options.declare('mag_name', types=str, default='a_mag', desc='The variable name for output vector magnitude.')
[docs] def add_magnitude(self, mag_name, in_name, units=None, vec_size=1, length=3): """ Add a new output magnitude to the vector magnitude component. Parameters ---------- mag_name : str The name of the output vector magnitude. in_name : str The name of the input vector. units : str or None The units of the input vector. vec_size : int The number of points at which the dot vector product should be computed simultaneously. The shape of the output is (vec_size,). length : int The length of the vectors a and b. Their shapes are (vec_size, length). """ self._magnitudes.append({ 'in_name': in_name, 'mag_name': mag_name, 'units': units, 'vec_size': vec_size, 'length': length }) # add inputs and outputs for all products if self._static_mode: var_rel2meta = self._static_var_rel2meta var_rel_names = self._static_var_rel_names else: var_rel2meta = self._var_rel2meta var_rel_names = self._var_rel_names if mag_name not in var_rel2meta: self.add_output(name=mag_name, shape=(vec_size,), units=units) elif mag_name in var_rel_names['input']: raise NameError(f"{self.msginfo}: '{mag_name}' specified as an output, " "but it has already been defined as an input.") else: raise NameError(f"{self.msginfo}: Multiple definition of output '{mag_name}'.") if in_name not in var_rel2meta: self.add_input(name=in_name, shape=(vec_size, length), units=units) elif in_name in var_rel_names['output']: raise NameError(f"{self.msginfo}: '{in_name}' specified as an input, " "but it has already been defined as an output.") else: # declaring a duplicate magnitude with a different output name? okay... meta = var_rel2meta[in_name] if units != meta['units']: raise ValueError(f"{self.msginfo}: Conflicting units '{units}' specified for " f"input '{in_name}', which has already been defined with units " f"'{meta['units']}'.") if vec_size != meta['shape'][0]: raise ValueError(f"{self.msginfo}: Conflicting vec_size={vec_size} specified " f"for input '{in_name}', which has already been defined with " f"vec_size={meta['shape'][0]}.") if length != meta['shape'][1]: raise ValueError(f"{self.msginfo}: Conflicting length={length} specified " f"for input '{in_name}', which has already been defined with " f"length={meta['shape'][0]}.") row_idxs = np.repeat(np.arange(vec_size), length) col_idxs = np.arange(vec_size * length) self.declare_partials(of=mag_name, wrt=in_name, rows=row_idxs, cols=col_idxs)
[docs] def compute(self, inputs, outputs): """ Compute the vector magnitude of input. Parameters ---------- inputs : Vector Unscaled, dimensional input variables read via inputs[key]. outputs : Vector Unscaled, dimensional output variables read via outputs[key]. """ for magnitude in self._magnitudes: a = inputs[magnitude['in_name']] outputs[magnitude['mag_name']] = np.sqrt(np.einsum('ni,ni->n', a, a))
[docs] def compute_partials(self, inputs, partials): """ Compute the sparse partials for the vector magnitude w.r.t. the inputs. Parameters ---------- inputs : Vector Unscaled, dimensional input variables read via inputs[key]. partials : Jacobian Sub-jac components written to partials[output_name, input_name].. """ for magnitude in self._magnitudes: a = inputs[magnitude['in_name']] # Use the following for sparse partials partials[magnitude['mag_name'], magnitude['in_name']] = \ a.ravel() / np.repeat(np.sqrt(np.einsum('ni,ni->n', a, a)), magnitude['length'])