Source code for openmdao.components.input_resids_comp

"""InputResidsComp provides a simple implicit component with minimal boilerplate."""

import numpy as np

from openmdao.core.implicitcomponent import ImplicitComponent


[docs]class InputResidsComp(ImplicitComponent): """ Class definition for the InputResidsComp. Uses all inputs as residuals while allowing individual outputs that are not necessarily associated with a specific residual. Parameters ---------- **kwargs : dict Dictionary of optional arguments. Attributes ---------- _refs : dict Residual ref values that are cached during calls to the overloaded add_input method. """
[docs] def __init__(self, **kwargs): """ Initialize the InputResidsComp. Parameters ---------- **kwargs : dict Keyword arguments passed to the __init__ method of ImplicitComponent """ self._refs = {} super().__init__(**kwargs)
[docs] def add_input(self, name, val=1.0, shape=None, units=None, desc='', tags=None, shape_by_conn=False, copy_shape=None, compute_shape=None, distributed=None, ref=None): """ Add an input to be used as a residual. Parameters ---------- name : str Name of the variable in this component's namespace. val : float or list or tuple or ndarray or Iterable The initial value of the variable being added in user-defined units. Default is 1.0. shape : int or tuple or list or None Shape of this variable, only required if val is not an array. Default is None. units : str or None Units in which this input variable will be provided to the component during execution. Default is None, which means it is unitless. desc : str Description of the variable. tags : str or list of strs User defined tags that can be used to filter what gets listed when calling list_inputs and list_outputs. shape_by_conn : bool If True, shape this input to match its connected output. copy_shape : str or None If a str, that str is the name of a variable. Shape this input to match that of the named variable. compute_shape : function A function taking a dict arg containing names and shapes of this component's outputs and returning the shape of this input. distributed : bool If True, this variable is a distributed variable, so it can have different sizes/values across MPI processes. ref : float or ndarray or None Scaling parameter. The value in the user-defined units of this residual when the scaled value is 1. Default is 1. """ self._refs[name] = ref super().add_input(name, val=val, shape=shape, units=units, desc=desc, tags=tags, shape_by_conn=shape_by_conn, copy_shape=copy_shape, compute_shape=compute_shape, distributed=distributed)
[docs] def setup_residuals(self): """ Delay calls for add_residual for this component. This method is used since input/residual sizes may not be known until final setup. """ for name in self._var_rel_names['input']: meta = self._var_rel2meta[name] resid_name = f'resid_{name}' self.add_residual(resid_name, shape=meta['shape'], units=meta['units'], desc=meta['desc'], ref=self._refs[name])
[docs] def setup_partials(self): """ Delay calls to declare_partials for the component. This method is used because input/residual sizes may not be known until final setup. """ for name in self._var_rel_names['input']: resid_name = 'resid_' + name size = self._var_rel2meta[name]['size'] ar = np.arange(size, dtype=int) self.declare_partials(of=resid_name, wrt=name, rows=ar, cols=ar, val=1.0)
[docs] def apply_nonlinear(self, inputs, outputs, residuals): """ Compute residuals given inputs and outputs. The model is assumed to be in an unscaled state. Parameters ---------- inputs : Vector Unscaled, dimensional input variables read via inputs[key]. outputs : Vector Unscaled, dimensional output variables read via outputs[key]. residuals : Vector Unscaled, dimensional residuals written to via residuals[key]. """ residuals.set_val(inputs.asarray())