Source code for openmdao.components.input_resids_comp
"""InputResidsComp provides a simple implicit component with minimal boilerplate."""
import numpy as np
from openmdao.core.implicitcomponent import ImplicitComponent
[docs]class InputResidsComp(ImplicitComponent):
"""
Class definition for the InputResidsComp.
Uses all inputs as residuals while allowing individual outputs that are not necessarily
associated with a specific residual.
Parameters
----------
**kwargs : dict
Dictionary of optional arguments.
Attributes
----------
_refs : dict
Residual ref values that are cached during calls to the overloaded add_input method.
"""
[docs] def __init__(self, **kwargs):
"""
Initialize the InputResidsComp.
Parameters
----------
**kwargs : dict
Keyword arguments passed to the __init__ method of ImplicitComponent
"""
self._refs = {}
super().__init__(**kwargs)
[docs] def add_input(self, name, val=1.0, shape=None, units=None, desc='', tags=None,
shape_by_conn=False, copy_shape=None, compute_shape=None, distributed=None,
ref=None):
"""
Add an input to be used as a residual.
Parameters
----------
name : str
Name of the variable in this component's namespace.
val : float or list or tuple or ndarray or Iterable
The initial value of the variable being added in user-defined units.
Default is 1.0.
shape : int or tuple or list or None
Shape of this variable, only required if val is not an array. Default is None.
units : str or None
Units in which this input variable will be provided to the component
during execution. Default is None, which means it is unitless.
desc : str
Description of the variable.
tags : str or list of strs
User defined tags that can be used to filter what gets listed when calling
list_inputs and list_outputs.
shape_by_conn : bool
If True, shape this input to match its connected output.
copy_shape : str or None
If a str, that str is the name of a variable. Shape this input to match that of
the named variable.
compute_shape : function
A function taking a dict arg containing names and shapes of this component's outputs
and returning the shape of this input.
distributed : bool
If True, this variable is a distributed variable, so it can have different sizes/values
across MPI processes.
ref : float or ndarray or None
Scaling parameter. The value in the user-defined units of this residual
when the scaled value is 1. Default is 1.
"""
self._refs[name] = ref
super().add_input(name, val=val, shape=shape, units=units, desc=desc, tags=tags,
shape_by_conn=shape_by_conn, copy_shape=copy_shape,
compute_shape=compute_shape, distributed=distributed)
[docs] def setup_residuals(self):
"""
Delay calls for add_residual for this component.
This method is used since input/residual sizes may not
be known until final setup.
"""
for name in self._var_rel_names['input']:
meta = self._var_rel2meta[name]
resid_name = f'resid_{name}'
self.add_residual(resid_name, shape=meta['shape'], units=meta['units'],
desc=meta['desc'], ref=self._refs[name])
[docs] def setup_partials(self):
"""
Delay calls to declare_partials for the component.
This method is used because input/residual sizes
may not be known until final setup.
"""
for name in self._var_rel_names['input']:
resid_name = 'resid_' + name
size = self._var_rel2meta[name]['size']
ar = np.arange(size, dtype=int)
self.declare_partials(of=resid_name, wrt=name, rows=ar, cols=ar, val=1.0)
[docs] def apply_nonlinear(self, inputs, outputs, residuals):
"""
Compute residuals given inputs and outputs.
The model is assumed to be in an unscaled state.
Parameters
----------
inputs : Vector
Unscaled, dimensional input variables read via inputs[key].
outputs : Vector
Unscaled, dimensional output variables read via outputs[key].
residuals : Vector
Unscaled, dimensional residuals written to via residuals[key].
"""
residuals.set_val(inputs.asarray())