Source code for openmdao.components.eq_constraint_comp

"""Define the EQConstraintComp class."""


import numpy as np

from openmdao.core.explicitcomponent import ExplicitComponent
from openmdao.utils import cs_safe
from openmdao.utils.array_utils import shape_to_len


[docs]class EQConstraintComp(ExplicitComponent): """ A component that computes the difference between two inputs to test for equality. Parameters ---------- name : str The name of the output variable to be created. eq_units : str or None Units for the left-hand-side and right-hand-side of the difference equation. lhs_name : str or None Optional name for the LHS variable associated with the difference equation. If None, the default will be used: 'lhs:{name}'. rhs_name : str or None Optional name for the RHS variable associated with the difference equation. If None, the default will be used: 'rhs:{name}'. rhs_val : int, float, or np.array Default value for the RHS of the given output. Must be compatible with the shape (optionally) given by the val or shape option in kwargs. use_mult : bool Specifies whether the LHS multiplier is to be used. If True, then an additional input `mult_name` is created, with the default value given by `mult_val`, that multiplies lhs. Default is False. mult_name : str or None Optional name for the LHS multiplier variable associated with the output variable. If None, the default will be used: 'mult:{name}'. mult_val : int, float, or np.array Default value for the LHS multiplier of the given output. Must be compatible with the shape (optionally) given by the val or shape option in kwargs. normalize : bool Specifies whether or not the resulting output should be normalized by the RHS. When the RHS value is between [-2, 2], the normalization value is a quadratic function that is close to one but still provides a C1 continuous function. When this option is True, the user-provided ref/ref0 scaler/adder options below are typically unnecessary. add_constraint : bool Specifies whether to add an equality constraint. ref : float or ndarray, optional Value of response variable that scales to 1.0 in the driver. This option is only meaningful when add_constraint=True. ref0 : float or ndarray, optional Value of response variable that scales to 0.0 in the driver. This option is only meaningful when add_constraint=True. adder : float or ndarray, optional Value to add to the model value to get the scaled value for the driver. adder is first in precedence. This option is only meaningful when add_constraint=True. scaler : float or ndarray, optional Value to multiply the model value to get the scaled value for the driver. scaler is second in precedence. This option is only meaningful when add_constraint=True. **kwargs : dict Additional arguments to be passed for the creation of the output variable. (see `add_output` method). Attributes ---------- _output_vars : dict Cache the data provided during `add_eq_output` so everything can be saved until setup is called. """
[docs] def __init__(self, name=None, eq_units=None, lhs_name=None, rhs_name=None, rhs_val=0.0, use_mult=False, mult_name=None, mult_val=1.0, normalize=True, add_constraint=False, ref=None, ref0=None, adder=None, scaler=None, **kwargs): r""" Initialize an EQConstraintComp, optionally add an output constraint to the model. The EQConstraintComp allows for the creation of one or more output variables and computes the values for those variables based on the following equation: .. math:: name_{output} = \frac{name_{mult} \times name_{lhs} - name_{rhs} }{f_{norm}(name_{rhs})} Where :math:`name_{lhs}` represents the left-hand-side of the equality, :math:`name_{rhs}` represents the right-hand-side, and :math:`name_{mult}` is an optional multiplier on the left hand side. If use_mult is True then the default value of the multiplier is 1. The optional normalization function :math:`f_{norm}` is computed as: .. math:: f_{norm}(name_{rhs}) = \begin{cases} \left| name_{rhs} \right|, & \text{if normalize and } \left| name_{rhs} \right| \geq 2 \\ 0.25 name_{rhs}^2 + 1, & \text{if normalize and } \left| name_{rhs} \right| < 2 \\ 1, & \text{if not normalize} \end{cases} New output variables are created by calling `add_eq_output`. """ super().__init__() self._output_vars = {} if name is not None: self.add_eq_output(name, eq_units, lhs_name, rhs_name, rhs_val, use_mult, mult_name, mult_val, normalize, add_constraint, ref, ref0, adder, scaler, **kwargs) self._no_check_partials = True
[docs] def compute(self, inputs, outputs): """ Calculate the output for each equality constraint. Parameters ---------- inputs : Vector Unscaled, dimensional input variables read via inputs[key]. outputs : Vector Unscaled, dimensional output variables read via outputs[key]. """ for name, options in self._output_vars.items(): lhs = inputs[options['lhs_name']] rhs = inputs[options['rhs_name']] # set dtype to rhs.dtype to prevent # "Casting complex values to real discards the imaginary part" warning. _scale_factor = np.ones((rhs.shape), dtype=rhs.dtype) # Compute scaling factors # scale factor that normalizes by the rhs, except near 0 if options['normalize']: # Indices where the rhs is near zero or not near zero idxs_nz = np.where(cs_safe.abs(rhs) < 2) idxs_nnz = np.where(cs_safe.abs(rhs) >= 2) _scale_factor[idxs_nnz] = 1.0 / cs_safe.abs(rhs[idxs_nnz]) _scale_factor[idxs_nz] = 1.0 / (.25 * rhs[idxs_nz] ** 2 + 1) if options['use_mult']: outputs[name] = (inputs[options['mult_name']] * lhs - rhs) * _scale_factor else: outputs[name] = (lhs - rhs) * _scale_factor
[docs] def compute_partials(self, inputs, partials): """ Compute sub-jacobian parts. The model is assumed to be in an unscaled state. Parameters ---------- inputs : Vector Unscaled, dimensional input variables read via inputs[key]. partials : Jacobian Sub-jac components written to partials[output_name, input_name]. """ for name, options in self._output_vars.items(): lhs_name = options['lhs_name'] rhs_name = options['rhs_name'] lhs = inputs[lhs_name] rhs = inputs[rhs_name] _scale_factor = np.ones((rhs.shape)) _dscale_drhs = np.zeros((rhs.shape)) if options['normalize']: # Indices where the rhs is near zero or not near zero idxs_nz = np.where(cs_safe.abs(rhs) < 2) idxs_nnz = np.where(cs_safe.abs(rhs) >= 2) # scale factor that normalizes by the rhs, except near 0 _scale_factor[idxs_nnz] = 1.0 / cs_safe.abs(rhs[idxs_nnz]) _scale_factor[idxs_nz] = 1.0 / (.25 * rhs[idxs_nz] ** 2 + 1) _dscale_drhs[idxs_nnz] = -np.sign(rhs[idxs_nnz]) / rhs[idxs_nnz]**2 _dscale_drhs[idxs_nz] = -.5 * rhs[idxs_nz] / (.25 * rhs[idxs_nz] ** 2 + 1) ** 2 if options['use_mult']: mult_name = options['mult_name'] mult = inputs[mult_name] # Partials of output wrt mult deriv = lhs * _scale_factor partials[name, mult_name] = deriv.flatten() else: mult = 1.0 # Partials of output wrt rhs deriv = (mult * lhs - rhs) * _dscale_drhs - _scale_factor partials[name, rhs_name] = deriv.flatten() # Partials of output wrt lhs deriv = mult * _scale_factor partials[name, lhs_name] = deriv.flatten()
[docs] def add_eq_output(self, name, eq_units=None, lhs_name=None, rhs_name=None, rhs_val=0.0, use_mult=False, mult_name=None, mult_val=1.0, normalize=True, add_constraint=False, ref=None, ref0=None, adder=None, scaler=None, linear=False, indices=None, cache_linear_solution=False, flat_indices=False, alias=None, **kwargs): """ Add a new output variable computed via the difference equation. This will create new inputs `lhs:name`, `rhs:name`, and `mult:name` that will define the left and right sides of the difference equation, and a multiplier for the left-hand-side. Parameters ---------- name : str The name of the output variable to be created. eq_units : str or None Units for the left-hand-side and right-hand-side of the difference equation. lhs_name : str or None Optional name for the LHS variable associated with the difference equation. If None, the default will be used: 'lhs:{name}'. rhs_name : str or None Optional name for the RHS variable associated with the difference equation. If None, the default will be used: 'rhs:{name}'. rhs_val : int, float, or np.array Default value for the RHS. Must be compatible with the shape (optionally) given by the val or shape option in kwargs. use_mult : bool Specifies whether the LHS multiplier is to be used. If True, then an additional input `mult_name` is created, with the default value given by `mult_val`, that multiplies lhs. Default is False. mult_name : str or None Optional name for the LHS multiplier variable associated with the output variable. If None, the default will be used: 'mult:{name}'. mult_val : int, float, or np.array Default value for the LHS multiplier. Must be compatible with the shape (optionally) given by the val or shape option in kwargs. normalize : bool Specifies whether or not the resulting output should be normalized by a quadratic function of the RHS. When this option is True, the user-provided ref/ref0 scaler/adder options below are typically unnecessary. add_constraint : bool Specifies whether to add an equality constraint. ref : float or ndarray, optional Value of response variable that scales to 1.0 in the driver. This option is only meaningful when add_constraint=True. ref0 : float or ndarray, optional Value of response variable that scales to 0.0 in the driver. This option is only meaningful when add_constraint=True. adder : float or ndarray, optional Value to add to the model value to get the scaled value for the driver. adder is first in precedence. This option is only meaningful when add_constraint=True. scaler : float or ndarray, optional Value to multiply the model value to get the scaled value for the driver. scaler is second in precedence. This option is only meaningful when add_constraint=True. linear : bool Set to True if constraint is linear. Default is False. indices : sequence of int, optional If variable is an array, these indicate which entries are of interest for this particular response. These may be positive or negative integers. cache_linear_solution : bool If True, store the linear solution vectors for this variable so they can be used to start the next linear solution with an initial guess equal to the solution from the previous linear solve. flat_indices : bool If True, interpret specified indices as being indices into a flat source array. alias : str Alias for this response. Necessary when adding multiple constraints on different indices or slices of a single variable. **kwargs : dict Additional arguments to be passed for the creation of the output variable. (see `add_output` method). """ self._output_vars[name] = options = {'kwargs': kwargs, 'eq_units': eq_units, 'lhs_name': lhs_name, 'rhs_name': rhs_name, 'rhs_val': rhs_val, 'use_mult': use_mult, 'mult_name': mult_name, 'mult_val': mult_val, 'normalize': normalize, 'add_constraint': add_constraint, 'ref': ref, 'ref0': ref0, 'adder': adder, 'scaler': scaler} meta = self.add_output(name, **options['kwargs']) shape = meta['shape'] for s in ('lhs', 'rhs', 'mult'): if options[f'{s}_name'] is None: options[f'{s}_name'] = f'{s}:{name}' self.add_input(options['lhs_name'], val=np.ones(shape), units=options['eq_units']) self.add_input(options['rhs_name'], val=options['rhs_val'] * np.ones(shape), units=options['eq_units']) if options['use_mult']: self.add_input(options['mult_name'], val=options['mult_val'] * np.ones(shape), units=None) ar = np.arange(shape_to_len(shape)) self.declare_partials(of=name, wrt=options['lhs_name'], rows=ar, cols=ar, val=1.0) self.declare_partials(of=name, wrt=options['rhs_name'], rows=ar, cols=ar, val=1.0) if options['use_mult']: self.declare_partials(of=name, wrt=options['mult_name'], rows=ar, cols=ar, val=1.0) if options['add_constraint']: self.add_constraint(name, equals=0., ref0=options['ref0'], ref=options['ref'], adder=options['adder'], scaler=options['scaler'], linear=linear, indices=indices, flat_indices=flat_indices, cache_linear_solution=cache_linear_solution, alias=alias)