"""Definition of the Cross Product Component."""
import numpy as np
from openmdao.core.explicitcomponent import ExplicitComponent
[docs]
class CrossProductComp(ExplicitComponent):
    """
    Compute a vectorized cross product.
    math::
        c = np.cross(a, b)
    where a is of shape (vec_size, 3)
          b is of shape (vec_size, 3)
          c is of shape (vec_size, 3)
    if vec_size > 1 and
    where a is of shape (3,)
          b is of shape (3,)
          c is of shape (3,)
    otherwise.
    Parameters
    ----------
    **kwargs : dict of keyword arguments
        Keyword arguments that will be mapped into the Component options.
    Attributes
    ----------
    _products : list
        Cache the data provided during `add_product`
        so everything can be saved until setup is called.
    """
[docs]
    def __init__(self, **kwargs):
        """
        Initialize the Cross Product component.
        """
        super().__init__(**kwargs)
        self._products = []
        opt = self.options
        self.add_product(c_name=opt['c_name'], a_name=opt['a_name'], b_name=opt['b_name'],
                         c_units=opt['c_units'], a_units=opt['a_units'], b_units=opt['b_units'],
                         vec_size=opt['vec_size'])
        self._no_check_partials = True 
[docs]
    def initialize(self):
        """
        Declare options.
        """
        self.options.declare('vec_size', types=int, default=1,
                             desc='The number of points at which the cross product is computed')
        self.options.declare('a_name', types=str, default='a',
                             desc='The variable name for vector a.')
        self.options.declare('b_name', types=str, default='b',
                             desc='The variable name for vector b.')
        self.options.declare('c_name', types=str, default='c',
                             desc='The variable name for vector c.')
        self.options.declare('a_units', types=str, default=None, allow_none=True,
                             desc='The units for vector a.')
        self.options.declare('b_units', types=str, default=None, allow_none=True,
                             desc='The units for vector b.')
        self.options.declare('c_units', types=str, default=None, allow_none=True,
                             desc='The units for vector c.')
        self._k = np.array([[0, 0, 0, -1, 0, 1],
                            [0, 1, 0, 0, -1, 0],
                            [-1, 0, 1, 0, 0, 0]], dtype=float)
        self._minus_k = -self._k 
[docs]
    def add_product(self, c_name, a_name='a', b_name='b',
                    c_units=None, a_units=None, b_units=None,
                    vec_size=1):
        """
        Add a new output product to the cross product component.
        Parameters
        ----------
        c_name : str
            The name of the vector product output.
        a_name : str
            The name of the first vector input.
        b_name : str
            The name of the second vector input.
        c_units : str or None
            The units of the output.
        a_units : str or None
            The units of input a.
        b_units : str or None
            The units of input b.
        vec_size : int
            The number of points at which the dot vector product
            should be computed simultaneously.  The shape of
            the output is (vec_size,).
        """
        self._products.append({
            'a_name': a_name,
            'b_name': b_name,
            'c_name': c_name,
            'a_units': a_units,
            'b_units': b_units,
            'c_units': c_units,
            'vec_size': vec_size,
        })
        # add inputs and outputs for all products
        if self._static_mode:
            var_rel2meta = self._static_var_rel2meta
            var_rel_names = self._static_var_rel_names
        else:
            var_rel2meta = self._var_rel2meta
            var_rel_names = self._var_rel_names
        shape = (vec_size, 3) if vec_size > 1 else (3,)
        if c_name not in var_rel2meta:
            self.add_output(name=c_name, val=np.ones(shape=shape), units=c_units)
        elif c_name in var_rel_names['input']:
            raise NameError(f"{self.msginfo}: '{c_name}' specified as an output, "
                            "but it has already been defined as an input.")
        else:
            raise NameError(f"{self.msginfo}: Multiple definition of output '{c_name}'.")
        if a_name not in var_rel2meta:
            self.add_input(name=a_name, shape=shape, units=a_units)
        elif a_name in var_rel_names['output']:
            raise NameError(f"{self.msginfo}: '{a_name}' specified as an input, "
                            "but it has already been defined as an output.")
        else:
            meta = var_rel2meta[a_name]
            if a_units != meta['units']:
                raise ValueError(f"{self.msginfo}: Conflicting units '{a_units}' specified "
                                 f"for input '{a_name}', which has already been defined "
                                 f"with units '{meta['units']}'.")
            meta_shape = meta['shape']
            if shape != meta_shape:
                raise ValueError(f"{self.msginfo}: Conflicting vec_size={vec_size} specified "
                                 f"for input '{a_name}', which has already been defined with "
                                 f"vec_size={meta_shape[0] if len(meta_shape) > 1 else 1}.")
        if b_name not in var_rel2meta:
            self.add_input(name=b_name, shape=shape, units=b_units)
        elif b_name in var_rel_names['output']:
            raise NameError(f"{self.msginfo}: '{b_name}' specified as an input, "
                            "but it has already been defined as an output.")
        else:
            meta = var_rel2meta[b_name]
            if b_units != meta['units']:
                raise ValueError(f"{self.msginfo}: Conflicting units '{b_units}' specified "
                                 f"for input '{b_name}', which has already been defined "
                                 f"with units '{meta['units']}'.")
            meta_shape = meta['shape']
            if shape != meta_shape:
                raise ValueError(f"{self.msginfo}: Conflicting vec_size={vec_size} specified "
                                 f"for input '{b_name}', which has already been defined with "
                                 f"vec_size={meta_shape[0] if len(meta_shape) > 1 else 1}.")
        row_idxs = np.repeat(np.arange(vec_size * 3, dtype=int), 2)
        col_idxs = np.empty((0,), dtype=int)
        M = np.array([1, 2, 0, 2, 0, 1], dtype=int)
        for i in range(vec_size):
            col_idxs = np.concatenate((col_idxs, M + i * 3))
        self.declare_partials(of=c_name, wrt=a_name, rows=row_idxs, cols=col_idxs)
        self.declare_partials(of=c_name, wrt=b_name, rows=row_idxs, cols=col_idxs) 
[docs]
    def compute(self, inputs, outputs):
        """
        Compute the cross product of inputs `a` and `b` using np.cross.
        Parameters
        ----------
        inputs : Vector
            Unscaled, dimensional input variables read via inputs[key].
        outputs : Vector
            Unscaled, dimensional output variables read via outputs[key].
        """
        for product in self._products:
            a = inputs[product['a_name']]
            b = inputs[product['b_name']]
            outputs[product['c_name']] = np.cross(a, b) 
[docs]
    def compute_partials(self, inputs, partials):
        """
        Compute the sparse partials for the cross product w.r.t. the inputs.
        Parameters
        ----------
        inputs : Vector
            Unscaled, dimensional input variables read via inputs[key].
        partials : Jacobian
            Sub-jac components written to partials[output_name, input_name].
        """
        for product in self._products:
            a = inputs[product['a_name']]
            b = inputs[product['b_name']]
            # Use the following for sparse partials
            partials[product['c_name'], product['a_name']] = \
                
np.einsum('...j,ji->...i', b, self._minus_k).ravel()
            partials[product['c_name'], product['b_name']] = \
                
np.einsum('...j,ji->...i', a, self._k).ravel()