"""Finite difference derivative approximations."""
from collections import namedtuple
import numpy as np
from openmdao.approximation_schemes.approximation_scheme import ApproximationScheme, _is_group
DEFAULT_ORDER = {
'forward': 1,
'backward': 1,
'central': 2,
}
def _generate_fd_coeff(form, order, system):
"""
Create an FDForm namedtuple containing the deltas, coefficients, and current coefficient.
Parameters
----------
form : str
Requested form of FD (e.g. 'forward', 'central', 'backward').
order : int
The order of accuracy of the requested FD scheme.
system : System
Containing system.
Returns
-------
FDForm
namedtuple containing the 'deltas', 'coeffs', and 'current_coeff'. These deltas and
coefficients need to be scaled by the step size.
"""
FDForm = namedtuple('FDForm', ['deltas', 'coeffs', 'current_coeff'])
FD_COEFFS = {
('forward', 1): FDForm(deltas=np.array([1.0]),
coeffs=np.array([1.0]),
current_coeff=-1.0),
('backward', 1): FDForm(deltas=np.array([-1.0]),
coeffs=np.array([-1.0]),
current_coeff=1.0),
('central', 2): FDForm(deltas=np.array([1.0, -1.0]),
coeffs=np.array([0.5, -0.5]),
current_coeff=0.),
}
try:
fd_form = FD_COEFFS[form, order]
except KeyError:
# TODO: Automatically generate requested form and store in dict.
raise ValueError('{}: Finite Difference form="{}" and order={} are not '
'supported'.format(system.msginfo, form, order))
return fd_form
[docs]class FiniteDifference(ApproximationScheme):
r"""
Approximation scheme using finite differences to estimate derivatives.
For example, using the 'forward' form with a step size of 'h' will approximate the derivative in
the following way:
.. math::
f'(x) = \frac{f(x+h) - f(x)}{h} + O(h).
Attributes
----------
_starting_outs : ndarray
A copy of the starting outputs array used to restore the outputs to original values.
_starting_ins : ndarray
A copy of the starting inputs array used to restore the inputs to original values.
_results_tmp : ndarray
An array the same size as the system outputs. Used to store the results temporarily.
"""
DEFAULT_OPTIONS = {
'step': 1e-6,
'form': 'forward',
'order': None,
'step_calc': 'abs',
'directional': False,
'minimum_step': 1e-12,
}
[docs] def __init__(self):
"""
Initialize the ApproximationScheme.
"""
super().__init__()
self._starting_ins = self._starting_outs = self._results_tmp = None
[docs] def add_approximation(self, abs_key, system, kwargs, vector=None):
"""
Use this approximation scheme to approximate the derivative d(of)/d(wrt).
Parameters
----------
abs_key : tuple(str,str)
Absolute name pairing of (of, wrt) for the derivative.
system : System
Containing System.
kwargs : dict
Additional keyword arguments, to be interpreted by sub-classes.
vector : ndarray or None
Direction for difference when using directional derivatives.
"""
options = self.DEFAULT_OPTIONS.copy()
options.update(kwargs)
if options['order'] is None:
# User-submitted options for method=='fd' are all checked here.
form = options['form']
if form in DEFAULT_ORDER:
options['order'] = DEFAULT_ORDER[options['form']]
else:
raise ValueError("{}: '{}' is not a valid form of finite difference; must be "
"one of {}".format(system.msginfo, form,
list(DEFAULT_ORDER.keys())))
step_calc = options['step_calc']
step_calcs = ['abs', 'rel', 'rel_legacy', 'rel_avg', 'rel_element']
if step_calc not in step_calcs:
raise ValueError(f"{system.msginfo}: '{step_calc}' is not a valid setting for "
f"step_calc; must be one of {step_calcs}.")
elif options['directional'] and step_calc == 'rel_element':
raise ValueError(f"{system.msginfo}: Option 'directional' is not supported when "
"'step_calc' is set to 'rel_element.'")
options['vector'] = vector
wrt = abs_key[1]
if wrt in self._wrt_meta:
self._wrt_meta[wrt].update(options)
else:
self._wrt_meta[wrt] = options
self._reset() # force later regen of approx_groups
def _get_approx_data(self, system, wrt, meta):
"""
Given approximation metadata, compute necessary deltas and coefficients.
Parameters
----------
system : System
System whose derivatives are being approximated.
wrt : str
Name of wrt variable.
meta : dict
Metadata dict.
Returns
-------
tuple
Tuple of the form (deltas, coeffs, current_coeff)
"""
form = meta['form']
order = meta['order']
step = meta['step']
step_calc = meta['step_calc']
minimum_step = meta['minimum_step']
# FD forms are written as a collection of changes to inputs (deltas) and the associated
# coefficients (coeffs). Since we do not need to (re)evaluate the current step, its
# coefficient is stored seperately (current_coeff). For example,
# f'(x) = (f(x+h) - f(x))/h + O(h) = 1/h * f(x+h) + (-1/h) * f(x) + O(h)
# would be stored as deltas = [h], coeffs = [1/h], and current_coeff = -1/h.
# A central second order accurate approximation for the first derivative would be stored
# as deltas = [-2, -1, 1, 2] * h, coeffs = [1/12, -2/3, 2/3 , -1/12] * 1/h,
# current_coeff = 0.
fd_form = _generate_fd_coeff(form, order, system)
if step_calc != 'abs':
var_local = True
if system._outputs._contains_abs(wrt):
wrt_val = system._outputs._abs_get_val(wrt)
elif system._inputs._contains_abs(wrt):
wrt_val = system._inputs._abs_get_val(wrt)
else:
var_local = False
if var_local:
if step_calc == 'rel_legacy':
step *= np.linalg.norm(wrt_val)
if step < minimum_step:
step = minimum_step
elif step_calc == 'rel_avg' or step_calc == 'rel':
step *= np.sum(np.abs(wrt_val)) / len(wrt_val)
if step < minimum_step:
step = minimum_step
else: # 'rel_element'
step = np.abs(wrt_val) * step
idx_zero = np.where(step < minimum_step)
if idx_zero:
step[idx_zero] = minimum_step
if step_calc == 'rel_element':
step_divide = 1.0 / step
deltas = np.outer(fd_form.deltas, step)
coeffs = np.outer(fd_form.coeffs, step_divide)
current_coeff = fd_form.current_coeff * step_divide
else:
deltas = fd_form.deltas * step
coeffs = fd_form.coeffs / step
current_coeff = fd_form.current_coeff / step
return deltas, coeffs, current_coeff
[docs] def compute_approx_col_iter(self, system, under_cs=False):
"""
Execute the system to compute the approximate sub-Jacobians.
Parameters
----------
system : System
System on which the execution is run.
under_cs : bool
True if we're currently under complex step at a higher level.
Yields
------
int
column index
ndarray
solution array corresponding to the jacobian column at the given column index
"""
if not self._wrt_meta:
return
self._starting_outs = system._outputs.asarray(copy=True)
self._starting_resids = system._residuals.asarray(copy=True)
self._starting_ins = system._inputs.asarray(copy=True)
if _is_group(system): # totals/semitotals
self._results_tmp = self._starting_outs.copy()
else:
self._results_tmp = self._starting_resids.copy()
# Turn on finite difference.
system._set_finite_difference_mode(True)
try:
yield from self._compute_approx_col_iter(system, under_cs=under_cs)
finally:
# Turn off finite difference.
system._set_finite_difference_mode(False)
# reclaim some memory
self._starting_ins = None
self._starting_outs = None
self._starting_resids = None
self._results_tmp = None
def _get_multiplier(self, data):
"""
Return a multiplier to be applied to the jacobian.
Always returns 1.0 for finite difference.
Parameters
----------
data : tuple
Not used.
Returns
-------
float
1.0
"""
return 1.0
def _transform_result(self, array):
"""
Return the given array.
Parameters
----------
array : ndarray
Result array after doing a finite difference.
Returns
-------
array
The givan array, unchanged.
"""
return array.real
def _run_point(self, system, idx_info, data, results_array, total, idx_range=range(1)):
"""
Alter the specified inputs by the given deltas, run the system, and return the results.
Parameters
----------
system : System
The system having its derivs approximated.
idx_info : tuple of (Vector, ndarray of int)
Tuple of wrt indices and corresponding data vector to perturb.
data : tuple of float
Tuple of the form (deltas, coeffs, current_coeff)
results_array : ndarray
Where the results will be stored.
total : bool
If True total derivatives are being approximated, else partials.
idx_range : range
Range of vector indices for this wrt variable.
Returns
-------
ndarray
Copy of the outputs or residuals array after running the perturbed system.
"""
deltas, coeffs, current_coeff = data
rel_element = False
if isinstance(current_coeff, np.ndarray) and current_coeff.size > 0:
# rel_element - each element has its own relative step.
rel_element = True
if current_coeff[0]:
current_vec = system._outputs if total else system._residuals
# copy data from outputs (if doing total derivs) or residuals (if doing partials)
results_array[:] = current_vec.asarray()
for vec, idxs in idx_info:
if vec is not None and idxs is not None:
results_array *= current_coeff[idxs - idx_range[0]]
# We don't allow mixed fd forms, so first one is all we need.
break
else:
results_array[:] = 0.
elif not isinstance(current_coeff, np.ndarray) and current_coeff:
current_vec = system._outputs if total else system._residuals
# copy data from outputs (if doing total derivs) or residuals (if doing partials)
results_array[:] = current_vec.asarray()
results_array *= current_coeff
else:
results_array[:] = 0.
# Run the Finite Difference
for delta, coeff in zip(deltas, coeffs):
results = self._run_sub_point(system, idx_info, delta, total, idx_range=idx_range,
rel_element=rel_element)
if rel_element:
for vec, idxs in idx_info:
if vec is not None and idxs is not None:
results *= coeff[idxs - idx_range[0]]
break
else:
results *= coeff
results_array += results
return results_array
def _run_sub_point(self, system, idx_info, delta, total, idx_range, rel_element=False):
"""
Alter the specified inputs by the given delta, run the system, and return the results.
Parameters
----------
system : System
The system having its derivs approximated.
idx_info : tuple of (Vector, ndarray of int)
Tuple of wrt indices and corresponding data vector to perturb.
delta : float
Perturbation amount.
total : bool
If True total derivatives are being approximated, else partials.
idx_range : range
Range of vector indices for this wrt variable.
rel_element : bool
If True, then each element has a different delta.
Returns
-------
ndarray
Copy of the outputs or residuals array after running the perturbed system.
"""
for vec, idxs in idx_info:
if vec is not None and idxs is not None:
# Support rel_element stepsizing
if rel_element:
local_delta = delta[idxs - idx_range[0]]
else:
local_delta = delta
vec.iadd(local_delta, idxs)
if total:
system.run_solve_nonlinear()
self._results_tmp[:] = system._outputs.asarray()
else:
system.run_apply_nonlinear()
self._results_tmp[:] = system._residuals.asarray()
system._residuals.set_val(self._starting_resids)
# save results and restore starting inputs/outputs
system._inputs.set_val(self._starting_ins)
system._outputs.set_val(self._starting_outs)
return self._results_tmp
[docs] def apply_directional(self, data, direction):
"""
Apply stepsize to direction and embed into approximation data.
Parameters
----------
data : tuple
Tuple contains step size, and other info.
direction : ndarray
Vector containing derivative direction.
Returns
-------
ndarray
New tuple with new step direction.
"""
deltas, coeffs, current_coeff = data
return (np.outer(np.atleast_1d(deltas), direction), coeffs, current_coeff)