Source code for dymos.trajectory.trajectory

import warnings
from collections import OrderedDict
from collections.abc import Sequence
import itertools
import sys

from openmdao.utils.om_warnings import warn_deprecation
from openmdao.utils.graph_utils import get_sccs_topo
from openmdao.utils.units import unit_conversion

import numpy as np
import networkx as nx

import openmdao.api as om
from openmdao.utils.mpi import MPI

from ..utils.constants import INF_BOUND

from .options import LinkageOptionsDictionary
from .phase_linkage_comp import PhaseLinkageComp
from ..phase.analytic_phase import AnalyticPhase
from ..phase.options import TrajParameterOptionsDictionary
from ..transcriptions.common import ParameterComp
from ..utils.misc import create_subprob, get_rate_units, om_version, \
    _unspecified, _none_or_unspecified
from ..utils.introspection import get_promoted_vars, get_source_metadata, _get_common_metadata


class Trajectory(om.Group):
    """
    Class definition for a Trajectory group.

    A Trajectory object serves as a container for one or more Phases, as well as the linkage
    conditions between phases.

    Parameters
    ----------
    **kwargs : dict
        Dictionary of optional arguments.

    Attributes
    ----------
    parameter_options : dict
        A dictionary of parameter names and their associated TrajectoryParameterOptionsDictionary
    phases : om.Group or om.ParallelGroup
        The Group which contains phases for this Trajectory.
    sim_prob : Problem or None
        The OpenMDAO problem used for trajectory simulation.
        This is None unless the simulate method has been called.

    _linkages : OrderedDict
        A dictionary containing phase linkage information for the Trajectory.
    _phases : dict
        A dictionary of phase names as keys with the Phase objects being their associated values.
    _phase_graph : nx.DiGraph
        A graph of linked phases.
    """
    def __init__(self, **kwargs):
        super(Trajectory, self).__init__(**kwargs)

        self._linkages = {}
        self._phases = {}
        self._phase_graph = nx.DiGraph()
        self._has_connected_phases = False
        self.sim_prob = None

        self.phases = om.ParallelGroup() if self.options['parallel_phases'] else om.Group()

    def initialize(self):
        """
        Declare any options for Trajectory.
        """
        self.options.declare('sim_mode', types=bool, default=False,
                             desc='Used internally by Dymos when invoking simulate on a trajectory')
        self.options.declare('parallel_phases',
                             default=True, types=bool,
                             desc='If True, the top-level container of all phases will be a ParallelGroup,'
                                  'otherwise it will be a standard OpenMDAO Group.')
        self.options.declare('auto_solvers', types=bool, default=True,
                             desc='If True, attempt to automatically assign solvers if necessary.')
        self.options.declare('parameter_options', types=dict, default={},
                             desc='Options for each parameter in this Trajectory')

    @property
    def parameter_options(self):
        return self.options['parameter_options']

[docs] def add_phase(self, name, phase, **kwargs): """ Add a phase to the trajectory. Phases will be added to the Trajectory's `phases` subgroup. Parameters ---------- name : str The name of the phase being added. phase : dymos Phase object The Phase object to be added. **kwargs : dict Additional arguments when adding the phase to the trajectory. Returns ------- PhaseBase The Phase object added to the trajectory. """ self._phases[name] = self.phases.add_subsystem(name, phase, **kwargs) return phase
def set_parameter_options(self, name, units=_unspecified, val=_unspecified, desc=_unspecified, opt=False, targets=_unspecified, lower=_unspecified, upper=_unspecified, scaler=_unspecified, adder=_unspecified, ref0=_unspecified, ref=_unspecified, shape=_unspecified, dynamic=_unspecified, static_target=_unspecified, static_targets=_unspecified): """ Set the options of an existing a parameter in the trajectory. Parameters ---------- name : str Name of the parameter. units : str or None or _unspecified Units in which the parameter is defined. If _unspecified, use the units declared for the parameter in the ODE. val : float or ndarray Default value of the parameter at all nodes. desc : str A description of the parameter. opt : bool If True the value(s) of this parameter will be design variables in the optimization problem. The default is False. targets : dict or None If None, then the parameter will be connected to the controllable parameter in the ODE of each phase. For each phase where no such controllable parameter exists, a warning will be issued. If targets is given as a dict, the dict should provide the relevant phase names as keys, each associated with the respective controllable parameter as a value. lower : float or ndarray The lower bound of the parameter value. upper : float or ndarray The upper bound of the parameter value. scaler : float or ndarray The scaler of the parameter value for the optimizer. adder : float or ndarray The adder of the parameter value for the optimizer. ref0 : float or ndarray The zero-reference value of the parameter for the optimizer. ref : float or ndarray The unit-reference value of the parameter for the optimizer. shape : Sequence of int The shape of the parameter. dynamic : bool True if the targets in the ODE may be dynamic (if the inputs are sized to the number of nodes) else False. This argument is deprecated in favor of static_target. static_target : bool or _unspecified True if the targets in the ODE are not shaped with num_nodes as the first dimension (meaning they cannot have a unique value at each node). Otherwise False. static_targets : bool or Sequence or _unspecified True if ALL targets in the ODE are not shaped with num_nodes as the first dimension (meaning they cannot have a unique value at each node). If False, ALL targets are expected to be shaped with the first dimension as the number of nodes. If given as a Sequence, it provides those targets not shaped with num_nodes. If left _unspecified, static targets will be determined automatically. """ if name not in self.parameter_options: self.parameter_options[name] = TrajParameterOptionsDictionary() if units is not _unspecified: self.parameter_options[name]['units'] = units if opt is not _unspecified: self.parameter_options[name]['opt'] = opt if val is not _unspecified: self.parameter_options[name]['val'] = val if desc is not _unspecified: self.parameter_options[name]['desc'] = desc if lower is not _unspecified: self.parameter_options[name]['lower'] = lower if upper is not _unspecified: self.parameter_options[name]['upper'] = upper if scaler is not _unspecified: self.parameter_options[name]['scaler'] = scaler if adder is not _unspecified: self.parameter_options[name]['adder'] = adder if ref0 is not _unspecified: self.parameter_options[name]['ref0'] = ref0 if ref is not _unspecified: self.parameter_options[name]['ref'] = ref if targets is not _unspecified: if isinstance(targets, str): self.parameter_options[name]['targets'] = (targets,) else: self.parameter_options[name]['targets'] = targets if shape is not _unspecified: self.parameter_options[name]['shape'] = shape if dynamic is not _unspecified: # Deprecated self.parameter_options[name]['static_targets'] = not dynamic if static_target is not _unspecified: # Deprecated self.parameter_options[name]['static_targets'] = static_target if static_targets is not _unspecified: self.parameter_options[name]['static_targets'] = static_target if dynamic is not _unspecified and static_target is not _unspecified: raise ValueError("Both the deprecated 'dynamic' option and option 'static_target' were\n" f"specified for parameter '{name}'. Going forward, please use only\n" "option static_targets. Options 'dynamic' and 'static_target'\n" "will be removed in Dymos 2.0.0.") if dynamic is not _unspecified and static_targets is not _unspecified: raise ValueError("Both the deprecated 'dynamic' option and option 'static_targets' were " f"specified for parameter '{name}'. " f"Going forward, please use only option static_targets. Option " f"'dynamic' will be removed in Dymos 2.0.0.")
[docs] def add_parameter(self, name, units=_unspecified, val=_unspecified, desc=_unspecified, opt=False, targets=_unspecified, lower=_unspecified, upper=_unspecified, scaler=_unspecified, adder=_unspecified, ref0=_unspecified, ref=_unspecified, shape=_unspecified, dynamic=_unspecified, static_target=_unspecified, static_targets=_unspecified): """ Add a parameter (static control) to the trajectory. Parameters ---------- name : str Name of the parameter. units : str or None or _unspecified Units in which the parameter is defined. If _unspecified, use the units declared for the parameter in the ODE. val : float or ndarray Default value of the parameter at all nodes. desc : str A description of the parameter. opt : bool If True the value(s) of this parameter will be design variables in the optimization problem. The default is False. targets : dict or None If None, then the parameter will be connected to the controllable parameter in the ODE of each phase. For each phase where no such controllable parameter exists, a warning will be issued. If targets is given as a dict, the dict should provide the relevant phase names as keys, each associated with the respective controllable parameter as a value. lower : float or ndarray The lower bound of the parameter value. upper : float or ndarray The upper bound of the parameter value. scaler : float or ndarray The scaler of the parameter value for the optimizer. adder : float or ndarray The adder of the parameter value for the optimizer. ref0 : float or ndarray The zero-reference value of the parameter for the optimizer. ref : float or ndarray The unit-reference value of the parameter for the optimizer. shape : Sequence of int The shape of the parameter. dynamic : bool True if the targets in the ODE may be dynamic (if the inputs are sized to the number of nodes) else False. This argument is deprecated in favor of static_target. static_target : bool or _unspecified True if the targets in the ODE are not shaped with num_nodes as the first dimension (meaning they cannot have a unique value at each node). Otherwise False. static_targets : bool or Sequence or _unspecified True if ALL targets in the ODE are not shaped with num_nodes as the first dimension (meaning they cannot have a unique value at each node). If False, ALL targets are expected to be shaped with the first dimension as the number of nodes. If given as a Sequence, it provides those targets not shaped with num_nodes. If left _unspecified, static targets will be determined automatically. """ if name not in self.parameter_options: self.parameter_options[name] = TrajParameterOptionsDictionary() self.parameter_options[name]['name'] = name else: raise ValueError(f'Attempted to add parameter "{name}" to trajectory but trajectory already has a parameter' ' of that name.') self.set_parameter_options(name, units=units, val=val, desc=desc, opt=opt, targets=targets, lower=lower, upper=upper, scaler=scaler, adder=adder, ref0=ref0, ref=ref, shape=shape, dynamic=dynamic, static_target=static_target)
[docs] def set_parameter_val(self, name, val=None, units=None): """ Set the parameter values. Parameters ---------- name : str Name of the variable. This should be a parameter variable. val : ndarray or Sequence or None Array of state values. units : str, optional The units of the state values specified. If None, use the units associated with the target. If provided, must be compatible with the target units. """ if units is None: units = self.parameter_options[name]['units'] self.set_val(f'parameters:{name}', val=val, units=units)
def _setup_parameters(self): """ Adds an IndepVarComp if necessary and issues appropriate connections based on transcription. """ if self.parameter_options: param_comp = ParameterComp() self.add_subsystem('param_comp', subsys=param_comp, promotes_inputs=['*'], promotes_outputs=['*']) for name, options in self.parameter_options.items(): tgts = options['targets'] if tgts is None: # The user is implicitly connecting to input parameters in all phases. # No need to create input parameters in each phase. continue for phase_name, phs in self._phases.items(): if phase_name not in tgts or isinstance(tgts[phase_name], str): # If user omitted this phase from targets, we will try to connect # to an existing input parameter in the phase. # If the target for this phase is a string, assume the user specified the # name of an input parameter in the phase for this parameter. # Skip addition of input parameter to this phase. continue elif tgts[phase_name] is None: # Targets for this phase are explicitly None. # Skip addition of input parameter to this phase. continue elif isinstance(tgts[phase_name], Sequence): # User specified ODE targets for this parameter in this phase. # We need to add an input parameter to this phase. # The default target in the phase is name unless otherwise specified. kwargs = {'static_targets': options['static_targets'], 'units': options['units'], 'val': options['val'], 'shape': options['shape'], 'ref0': options['ref0'], 'ref': options['ref'], 'adder': options['adder'], 'scaler': options['scaler'], # The phase-level parameter is never optimized # if governed by the trajectory-level parameter. 'opt': False, 'lower': options['lower'], 'upper': options['upper'], 'targets': tgts[phase_name]} if not self.options['sim_mode']: phs.add_parameter(name, **kwargs) def _setup_linkages(self): has_linkage_constraints = False err_template = '{traj}: Phase `{phase1}` links variable `{var1}` to phase ' \ '`{phase2}` state variable `{var2}` by connection, but phase `{phase2}` ' \ 'is an AnalyticPhase and does not support linking initial state ' \ 'values with option `connected=True`.' for pair, var_dict in self._linkages.items(): for name in pair: if name not in self._phases: raise ValueError(f'Invalid linkage. Phase \'{name}\' does not exist in ' f'trajectory \'{self.pathname}\'.') phase2 = self._phases[pair[1]] for var_pair, options in var_dict.items(): var1, var2 = var_pair if options['connected']: if var2 == 'time': phase2.set_time_options(input_initial=True, fix_initial=False) elif var2 == '*': phase2.set_time_options(input_initial=True, fix_initial=False) for state_name in phase2.state_options: if isinstance(phase2, AnalyticPhase): raise RuntimeError(err_template.format(traj=self.pathname, phase1=pair[0], phase2=pair[1], var1=var1, var2=var2)) else: phase2.set_state_options(state_name, input_initial=True, fix_initial=_unspecified) elif var2 in phase2.state_options: if isinstance(phase2, AnalyticPhase): raise RuntimeError(err_template.format(traj=self.pathname, phase1=pair[0], phase2=pair[1], var1=var1, var2=var2)) else: phase2.set_state_options(var2, input_initial=True, fix_initial=False) elif var2 in phase2.parameter_options: phase2.set_parameter_options(var2, opt=False) else: has_linkage_constraints = True if has_linkage_constraints: self.add_subsystem('linkages', PhaseLinkageComp()) def setup(self): """ Setup the Trajectory Group. """ super(Trajectory, self).setup() if self.parameter_options: self._setup_parameters() # This will override the existing phases attribute with the same thing. self.add_subsystem('phases', subsys=self.phases) if self._linkages and not self.options['sim_mode']: self._setup_linkages() def _configure_parameters(self): """ Configure connections from input or design parameters to the appropriate targets in each phase. """ parameter_options = self.parameter_options promoted_inputs = [] params_by_phase = {phase_name: phs.parameter_options for phase_name, phs in self._phases.items()} for name, options in parameter_options.items(): promoted_inputs.append(f'parameters:{name}') targets = options['targets'] # First check that the user gave valid phase names, if providing # parameter targets as a dict. if isinstance(targets, dict): target_phases = set(targets.keys()) avail_phases = set(self._phases.keys()) non_existing_phases = target_phases - avail_phases if non_existing_phases: raise ValueError(f'The following phases were specified as\n' f'targets for trajectory parameter {name}\n' f'but are not valid phase names: {non_existing_phases}') # For each phase, use introspection to get the units and shape. # If units do not match across all phases, require user to set them. # If shapes do not match across all phases, this is an error. targets_per_phase = {} for phase_name, phs in self._phases.items(): target_param = None if targets is None or phase_name not in targets: # Attempt to connect to an input parameter of the same name in the phase, if # it exists. if name in phs.parameter_options: target_param = name else: continue elif targets[phase_name] is None: # Connections to this phase are explicitly omitted continue elif isinstance(targets[phase_name], str): if targets[phase_name] in phs.parameter_options: # Connect to an input parameter with a different name in this phase target_param = targets[phase_name] else: msg = f'Invalid target for trajectory `{self.pathname}` parameter `{name}` in phase ' \ f"`{phase_name}`.\nTarget for phase `{phase_name}` is '{targets[phase_name]}' but " \ f"the phase has no such parameter." raise ValueError(msg) elif isinstance(targets[phase_name], Sequence): if name in phs.parameter_options: # User gave a list of ODE targets which were passed to the creation of a # new input parameter in setup, just connect to that new input parameter target_param = name else: msg = f'Invalid target for trajectory `{self.pathname}` parameter `{name}` in phase ' \ f"`{phase_name}`.\nThe phase did not add the parameter as expected. Please file an " \ f"issue with the Dymos development team at https://github.com/OpenMDAO/dymos" raise RuntimeError(msg) else: raise ValueError(f'Unhandled target(s) ({targets[phase_name]}) for parameter {name} in ' f'phase {phase_name}. If connecting to ODE inputs in the phase, ' f'format the targets as a sequence of strings.') if target_param is not None: targets_per_phase[phase_name] = target_param if not targets_per_phase: # Find the reason if targets is None: reason = f'Option `targets=None` but no phase in the trajectory has a parameter named `{name}`.' elif all([t is None for t in targets.values()]) and targets.keys() == self._phases.keys(): reason = 'Option `targets` is a dictionary keyed by phase name but target for each phase is None.' else: reason = '' raise ValueError(f'No target was found for trajectory parameter `{name}` in any phase.\n{reason}') # If metadata is unspecified, use introspection to find # it based on common values among the targets. targets = {phase_name: phs_params[targets_per_phase[phase_name]] for phase_name, phs_params in params_by_phase.items() if phase_name in targets_per_phase and targets_per_phase[phase_name] in phs_params} if options['units'] is _unspecified: options['units'] = _get_common_metadata(targets, metadata_key='units') if options['shape'] in _none_or_unspecified: options['shape'] = _get_common_metadata(targets, metadata_key='shape') param_comp = self._get_subsystem('param_comp') param_comp.add_parameter(name, val=options['val'], shape=options['shape'], units=options['units']) if options['opt']: lb = -INF_BOUND if options['lower'] is None else options['lower'] ub = INF_BOUND if options['upper'] is None else options['upper'] self.add_design_var(name=f'parameters:{name}', lower=lb, upper=ub, scaler=options['scaler'], adder=options['adder'], ref0=options['ref0'], ref=options['ref']) tgts = [f'{phase_name}.parameters:{param_name}' for phase_name, param_name in targets_per_phase.items()] self.connect(f'parameter_vals:{name}', tgts) return promoted_inputs def _configure_phase_options_dicts(self): """ Called during configure if we are under MPI. Loops over all phases and populates the phase options dictionaries in self._phases. Because each phase performs introspection, on MPI the trajectory may not know certain metadata for phase variables that is necessary for things like linkage calculations. Note the phase objects exist in two places. Traj._phases stores the phases for the purposes of setup and configure. These instances are the ones being updated by this method. The `phases` attribute is the actual OpenMDAO subsytem used in the trajectory model. Each phase populates phase_options_dicts, which contains options for each dymos variable type. Once populated, we gather this data from each proc and then populate self._phases variable options dictionaries with the updated information. """ phase_options_dicts = {phase_name: {} for phase_name in self._phases.keys()} for phs in self.phases._subsystems_myproc: phase_options_dicts[phs.name]['time_options'] = phs.time_options phase_options_dicts[phs.name]['state_options'] = phs.state_options phase_options_dicts[phs.name]['control_options'] = phs.control_options phase_options_dicts[phs.name]['parameter_options'] = phs.parameter_options all_ranks = self.comm.allgather(phase_options_dicts) for phase_name, phs in self._phases.items(): for rank_i, data in enumerate(all_ranks): if phase_name in data and len(data[phase_name]) > 0: phs.time_options.update(data[phase_name]['time_options']) phs.state_options.update(data[phase_name]['state_options']) phs.control_options.update(data[phase_name]['control_options']) phs.parameter_options.update(data[phase_name]['parameter_options']) def _update_linkage_options_configure(self, linkage_options): """ Called during configure to return the source paths, units, and shapes of variables in linkages. Parameters ---------- phases : Sequence of (str, str) The names of the phases involved in the linkage. vars : Sequence of (str, str) The paths of the variables involved in the linkage. options : dict The linkage options set during `add_linkage_constraint`. Returns ------- """ phase_name_a = linkage_options['phase_a'] phase_name_b = linkage_options['phase_b'] var_a = linkage_options['var_a'] var_b = linkage_options['var_b'] info_str = f'{self.pathname}: ' if self.pathname else '' phase_a = self._get_subsystem(f'phases.{phase_name_a}') phase_b = self._get_subsystem(f'phases.{phase_name_b}') phases = {'a': phase_a, 'b': phase_b} classes = {'a': phase_a.classify_var(var_a), 'b': phase_b.classify_var(var_b)} sources = {'a': None, 'b': None} vars = {'a': var_a, 'b': var_b} units = {'a': _unspecified, 'b': _unspecified} shapes = {'a': _unspecified, 'b': _unspecified} use_prefix = {'a': phase_a.timeseries_options['use_prefix'], 'b': phase_b.timeseries_options['use_prefix']} for i in ('a', 'b'): if classes[i] == 't': time_name = phases[i].time_options['name'] sources[i] = f'timeseries.{time_name}' shapes[i] = (1,) units[i] = phases[i].time_options['units'] elif classes[i] == 't_phase': time_name = phases[i].time_options['name'] sources[i] = f'timeseries.{time_name}_phase' units[i] = phases[i].time_options['units'] shapes[i] = (1,) elif classes[i] == 'state': prefix = 'states:' if use_prefix[i] else '' sources[i] = f'timeseries.{prefix}{vars[i]}' units[i] = phases[i].state_options[vars[i]]['units'] shapes[i] = phases[i].state_options[vars[i]]['shape'] elif classes[i] in {'indep_control', 'input_control'}: prefix = 'controls:' if use_prefix[i] else '' sources[i] = f'timeseries.{prefix}{vars[i]}' units[i] = phases[i].control_options[vars[i]]['units'] shapes[i] = phases[i].control_options[vars[i]]['shape'] elif classes[i] in {'control_rate', 'control_rate2'}: prefix = 'control_rates:' if use_prefix[i] else '' sources[i] = f'timeseries.{prefix}{vars[i]}' control_name = vars[i][:-5] if classes[i] == 'control_rate' else vars[i][:-6] units[i] = phases[i].control_options[control_name]['units'] deriv = 1 if classes[i].endswith('rate') else 2 units[i] = get_rate_units(units[i], phases[i].time_options['units'], deriv=deriv) shapes[i] = phases[i].control_options[control_name]['shape'] elif classes[i] in {'indep_polynomial_control', 'input_polynomial_control'}: prefix = 'controls:' if use_prefix[i] else '' sources[i] = f'timeseries.{prefix}{vars[i]}' units[i] = phases[i].control_options[vars[i]]['units'] shapes[i] = phases[i].control_options[vars[i]]['shape'] elif classes[i] in {'polynomial_control_rate', 'polynomial_control_rate2'}: prefix = 'control_rates:' if use_prefix[i] else '' sources[i] = f'timeseries.{prefix}{vars[i]}' control_name = vars[i][:-5] if classes[i] == 'polynomial_control_rate' else vars[i][:-6] control_units = phases[i].control_options[control_name]['units'] time_units = phases[i].time_options['units'] deriv = 1 if classes[i].endswith('rate') else 2 units[i] = get_rate_units(control_units, time_units, deriv=deriv) shapes[i] = phases[i].control_options[control_name]['shape'] elif classes[i] == 'parameter': sources[i] = f'parameter_vals:{vars[i]}' units[i] = phases[i].parameter_options[vars[i]]['units'] shapes[i] = phases[i].parameter_options[vars[i]]['shape'] else: rhs_source = phases[i].options['transcription']._rhs_source sources[i] = f'{rhs_source}.{vars[i]}' try: meta = get_source_metadata(phases[i]._get_subsystem(rhs_source), vars[i], user_units=units[i], user_shape=_unspecified) shapes[i] = meta['shape'] units[i] = meta['units'] except ValueError: raise RuntimeError(f'{info_str}Error in linking {var_a} from {phase_name_a} to {var_b} in ' f'{phase_name_b}. Unable to find variable \'{vars[i]}\' in phase ' f'\'{phases[i].pathname}\' or its ODE.') linkage_options._src_a = sources['a'] linkage_options._src_b = sources['b'] linkage_options['shape'] = shapes['b'] if linkage_options['units_a'] is _unspecified: linkage_options['units_a'] = units['a'] if linkage_options['units_b'] is _unspecified: linkage_options['units_b'] = units['b'] if units['a'] is not None and units['b'] is not None: conversion_scaler, conversion_offset = unit_conversion(units['a'], units['b']) else: conversion_scaler, conversion_offset = (1.0, 0.0) if not linkage_options['connected'] \ and linkage_options['units'] is _unspecified \ and (abs(conversion_scaler - 1.0) > 1.0E-15 or abs(conversion_offset) > 1.0E-15): raise ValueError(f'{info_str}Linkage units were not specified but the units of {phase_name_a}.{var_a} ' f'({units["a"]}) and {phase_name_b}.{var_b} ({units["b"]}) are not equivalent. ' f'Units for this linkage constraint must be specified explicitly.') else: linkage_options['units'] = units['a'] def _expand_star_linkage_configure(self): """ Finds the variable pair ('*', '*') and expands it out to time and all states if found. Returns ------- dict The updated dictionary of linkages with '*' expanded to match time and all states at a phase boundary. """ for phase_pair, var_dict in self._linkages.items(): phase_name_a, phase_name_b = phase_pair phase_b = self._get_subsystem(f'phases.{phase_name_b}') var_pair = ('*', '*') if var_pair in var_dict: options = var_dict[var_pair] self.add_linkage_constraint(phase_name_a, phase_name_b, var_a='time', var_b='time', loc_a=options['loc_a'], loc_b=options['loc_b'], mult_a=options['mult_a'], mult_b=options['mult_b'], connected=options['connected']) for state_name in phase_b.state_options: self.add_linkage_constraint(phase_name_a, phase_name_b, var_a=state_name, var_b=state_name, loc_a=options['loc_a'], loc_b=options['loc_b'], mult_a=options['mult_a'], mult_b=options['mult_b'], connected=options['connected']) self._linkages[phase_pair].pop(var_pair) def _is_valid_linkage(self, phase_name_a, phase_name_b, loc_a, loc_b, var_a, var_b, fixed_a, fixed_b): """ Validates linkage constraints. Ensures that the posed linkage constraint can be satisfied by checking that the optimizer has the freedom to change the linked variable value on either side of the linkage. This check errs on the side of permitting linkages if their validity cannot be confirmed. Parameters ---------- phase_name_a : str The phase name on the first side of the linkage. phase_name_b : str The phase name on the second side of the linkage. loc_a : str The "location" of the first side of the linkage, either "initial" or "final". loc_b : str The "location" of the second side of the linkage, either "initial" or "final". var_a : str The variable name of the first side of the linkage. var_b : str The variable name of the second side of the linkage. fixed_a : bool True if variable a is fixed at the linkage location. fixed_b : bool True if variable b is fixed at the linkage location Returns ------- bool True if the linkage constraint is valid. str A message explaining why the linkage is not valid. Empty for valid linkages. """ phase_a = self._get_subsystem(f'phases.{phase_name_a}') phase_b = self._get_subsystem(f'phases.{phase_name_b}') var_cls_a = phase_a.classify_var(var_a) var_cls_b = phase_b.classify_var(var_b) if var_cls_a == 'time': var_a_fixed = phase_a.is_time_fixed(loc_a) elif var_cls_a == 'state': var_a_fixed = phase_a.is_state_fixed(var_a, loc_a) else: var_a_fixed = False if var_cls_b == 'time': var_b_fixed = phase_b.is_time_fixed(loc_b) elif var_cls_b == 'state': var_b_fixed = phase_b.is_state_fixed(var_b, loc_b) else: var_b_fixed = False if var_a_fixed and var_b_fixed: return False, f'Cannot link {loc_a} value of "{var_a}" in {phase_name_a} to {loc_b} ' \ f'value of "{var_b}" in {phase_name_b}. Values on both sides of the linkage ' \ 'are fixed.' else: return True, '' def _configure_linkages(self): connected_linkage_inputs = [] def _print_on_rank(rank=0, *args, **kwargs): if self.comm.rank == rank: print(*args, **kwargs) prefixes = {'t': '', 't_phase': '', 'state': 'states:', 'parameter': 'parameters:', 'input_control': 'controls:', 'indep_control': 'controls:', 'control_rate': 'control_rates:', 'control_rate2': 'control_rates:', 'input_polynomial_control': 'controls:', 'indep_polynomial_control': 'controls:', 'polynomial_control_rate': 'control_rates:', 'polynomial_control_rate2': 'control_rates:', 'ode': '' } def _get_prefixed_var(var, phase): if phase.timeseries_options['use_prefix']: return f'{prefixes[phase.classify_var(var)]}{var}' else: return var # First, if the user requested all states and time be continuous ('*', '*'), then # expand it out. self._expand_star_linkage_configure() _print_on_rank(f'--- Linkage Report [{self.pathname}] ---') indent = ' ' linkage_comp = self._get_subsystem('linkages') self._phase_graph = phase_graph = nx.DiGraph() for phase_pair, var_dict in self._linkages.items(): phase_name_a, phase_name_b = phase_pair _print_on_rank(f'{indent}--- {phase_name_a} - {phase_name_b} ---') phase_a = self._get_subsystem(f'phases.{phase_name_a}') phase_b = self._get_subsystem(f'phases.{phase_name_b}') # Pull out the maximum variable name length of all variables to make the print nicer. var_len_a = [len(_get_prefixed_var(var, phase_a)) for var, _ in var_dict] var_len_b = [len(_get_prefixed_var(var, phase_b)) for _, var in var_dict] padding_a = max(var_len_a) + 2 padding_b = max(var_len_b) + 2 for var_pair, options in var_dict.items(): var_a, var_b = var_pair loc_a = options['loc_a'] loc_b = options['loc_b'] class_a = phase_a.classify_var(var_a) class_b = phase_b.classify_var(var_b) self._update_linkage_options_configure(options) src_a = options._src_a src_b = options._src_b fixed_a = phase_a._is_fixed(var_a, class_a, loc_a) fixed_b = phase_b._is_fixed(var_b, class_b, loc_b) if class_a == 't' and class_b == 't': phase_graph.add_node(phase_a.name, fix_initial=None, t_initial=None, duration_bounds=None, initial_bounds=None) phase_graph.add_node(phase_b.name, fix_initial=None, t_initial=None, duration_bounds=None, initial_bounds=None) phase_graph.add_edge(phase_a.name, phase_b.name) prefixed_a = _get_prefixed_var(var_a, phase_a) prefixed_b = _get_prefixed_var(var_b, phase_b) str_fixed_a = '*' if fixed_a else '' str_fixed_b = '*' if fixed_b else '' if options['connected']: if class_b == 't': self.connect(f'{phase_name_a}.{src_a}', f'{phase_name_b}.t_initial', src_indices=[-1], flat_src_indices=True) elif class_b == 'state': tgt_b = f'initial_states:{var_b}' self.connect(f'{phase_name_a}.{src_a}', f'{phase_name_b}.{tgt_b}', src_indices=om.slicer[-1, ...]) elif class_b == 'parameter': tgt_b = f'parameters:{var_b}' self.connect(f'{phase_name_a}.{src_a}', f'{phase_name_b}.{tgt_b}', src_indices=om.slicer[-1, ...]) else: msg = f'Could not create connection linkage from phase `{phase_name_a}` ' \ f'variable `{var_a}` to phase `{phase_name_b}` variable `{var_b}`. ' \ f'For direct connections, the target variable must be `time`, a ' \ f'state, or a parameter in the phase.\nEither remove the linkage or specify ' \ f'`connected=False` to enforce it via an optimization constraint.' raise om.OpenMDAOWarning(msg) _print_on_rank(f'{indent * 2}{prefixed_a:<{padding_a}s} [{loc_a}{str_fixed_a}] -> ' f'{prefixed_b:<{padding_b}s} [{loc_b}{str_fixed_b}]') self._has_connected_phases = True else: if fixed_a and fixed_b: msg = f'Cannot link {loc_a} value of "{var_a}" in {phase_name_a} to {loc_b} ' \ f'value of "{var_b}" in {phase_name_b}. Values on both sides of the linkage are fixed ' \ 'and the linkage is enforced via constraint. Either link the variables via connection ' \ 'or make the variables design variables on at least one side of the connection.' raise ValueError(f'Invalid linkage in Trajectory {self.pathname}: {msg}') linkage_comp.add_linkage_configure(options) if options._input_a not in connected_linkage_inputs: self.connect(f'{phase_name_a}.{src_a}', f'linkages.{options._input_a}', src_indices=om.slicer[[0, -1], ...]) connected_linkage_inputs.append(options._input_a) if options._input_b not in connected_linkage_inputs: self.connect(f'{phase_name_b}.{src_b}', f'linkages.{options._input_b}', src_indices=om.slicer[[0, -1], ...]) connected_linkage_inputs.append(options._input_b) _print_on_rank(f'{indent * 2}{prefixed_a:<{padding_a}s} [{loc_a}{str_fixed_a}] == ' f'{prefixed_b:<{padding_b}s} [{loc_b}{str_fixed_b}]') _print_on_rank('\n* : Value is fixed or is an input.\n') def _check_phase_graph(self): # determine if we have any fixed t_initial that are outside of allowed bounds def get_final_tbounds(phase_name, node_data, old_tmin=-INF_BOUND, old_tmax=INF_BOUND): t_initial = node_data['t_initial'] fixed_t_initial = node_data['fix_initial'] duration_min, duration_max = node_data['duration_bounds'] initial_min, initial_max = node_data['initial_bounds'] duration_min = -INF_BOUND if duration_min is None else duration_min duration_max = INF_BOUND if duration_max is None else duration_max old_tmin = -INF_BOUND if old_tmin is None else old_tmin old_tmax = INF_BOUND if old_tmax is None else old_tmax errs = [] new_min_t = -INF_BOUND new_max_t = INF_BOUND if fixed_t_initial: # if t_initial is fixed, first check if it's within the incoming bounds if not old_tmin <= t_initial <= old_tmax: errs.append(f"Fixed t_initial of {t_initial} is outside of allowed bounds " f"{(old_tmin, old_tmax)} for phase '{phase_name}'.") if duration_min > -INF_BOUND: new_min_t = t_initial + duration_min if duration_max < INF_BOUND: new_max_t = t_initial + duration_max else: initial_min = -INF_BOUND if initial_min is None else initial_min initial_max = INF_BOUND if initial_max is None else initial_max # check for overlap of incoming bounds on t and initial_bounds if not (old_tmin <= initial_min <= old_tmax or old_tmin <= initial_max <= old_tmax or initial_min <= old_tmin <= initial_max or initial_min <= old_tmax <= initial_max): errs.append(f"t_initial bounds of ({initial_min}, {initial_max}) do not overlap" f" with allowed bounds {(old_tmin, old_tmax)} for phase " f"'{phase_name}'.") if duration_min > -INF_BOUND: tmin = max(old_tmin, initial_min) if tmin > -INF_BOUND: new_min_t = tmin + duration_min else: new_min_t = tmin if duration_max < INF_BOUND: tmax = min(old_tmax, initial_max) if tmax < INF_BOUND: new_max_t = tmax + duration_max else: new_max_t = tmax return new_min_t, new_max_t, errs phase_graph = self._phase_graph # since we have a graph, do a quick check that we have no cycles sccs = get_sccs_topo(phase_graph) cycles = sorted([s for s in sccs if len(s) > 1], key=lambda x: len(x)) if cycles: raise RuntimeError(f"{self.msginfo}: The following cycles were found in the phase " f"linkage graph: {[sorted(c) for c in cycles]}.") node_data = phase_graph.nodes(data=True) # only keep the part of the graph where 't' connects phases G = phase_graph.subgraph([n for n, meta in node_data if 't_initial' in meta]) # Update G nodes with final values for time properties. # We wait until now because users can set some values after setup. for name, data in G.nodes(data=True): phase = self._get_subsystem(f'phases.{name}') data['fix_initial'] = phase.time_options['fix_initial'] data['duration_bounds'] = phase.time_options['duration_bounds'] data['initial_bounds'] = phase.time_options['initial_bounds'] data['t_initial'] = phase.time_options['initial_val'] # find starting node(s) in the graph start_nodes = [n for n, degree in G.in_degree() if degree == 0] all_errs = [] skip = set() for start_name in start_nodes: stack = [(start_name, -INF_BOUND, INF_BOUND)] while stack: src, oldlb, oldub = stack.pop() lb, ub, errs = get_final_tbounds(src, node_data[src], old_tmin=oldlb, old_tmax=oldub) if errs: all_errs.append((src, errs)) # skip nodes downstream of the failing node. skip.update(list(nx.dfs_preorder_nodes(G, source=src))) for tgt in G[src]: if tgt not in skip: stack.append((tgt, lb, ub)) if all_errs: errs = [] for _, s in sorted(all_errs, key=lambda x: x[0]): errs.extend(s) err_lines = '\n'.join(errs) if len(errs) > 1 else errs[0] raise RuntimeError(f"{self.msginfo}: {err_lines}") def _configure_solvers(self): """ Automatically configure solvers for the Trajectory. If operating under MPI and phases are connected, then the default nonlinear solver will be a NonlinearBlockJac, while the default linear solver will be PETScKrylov. These solvers can be changed through the 'default_nonlinear_solver' and 'default_linear_solver' options. """ if not self.options['auto_solvers']: return warn = False if self._has_connected_phases and isinstance(self.phases, om.ParallelGroup) and self.comm.size > 1: msg = (f'{self.msginfo}\n' f' Non-default solvers are required\n' f' connected phases in parallel: True\n') if isinstance(self.phases.nonlinear_solver, om.NonlinearRunOnce): warn = True msg += (f' Setting \n' f' {self.pathname}.phases.nonlinear_solver = om.NonlinearBlockJac(iprint=0)\n' f' Explicitly set {self.pathname}.phases.nonlinear_solver to override.\n') self.phases.nonlinear_solver = om.NonlinearBlockJac(iprint=0) if isinstance(self.phases.linear_solver, om.LinearRunOnce): warn = True msg += (f' Setting\n' f' {self.pathname}.phases.linear_solver = om.PETScKrylov(iprint=0)\n' f' Explicitly set {self.pathname}.phases.linear_solver to override.\n') self.phases.linear_solver = om.PETScKrylov(iprint=0) if warn: om.issue_warning(msg) def configure(self): """ Configure the Trajectory Group. This method is used to handle connections to the phases in the Trajectory, since setup has already been called on all children of the Trajectory, we can query them for variables at this point. """ if MPI: self._configure_phase_options_dicts() if self.parameter_options: self._configure_parameters() if self._linkages and not self.options['sim_mode']: self._configure_linkages() self._configure_solvers() self._constraint_report(outstream=sys.stdout) # promote everything else out of phases self.promotes('phases', inputs=['*'], outputs=['*'])
[docs] def add_linkage_constraint(self, phase_a, phase_b, var_a, var_b, loc_a='final', loc_b='initial', sign_a=_unspecified, sign_b=_unspecified, mult_a=_unspecified, mult_b=_unspecified, units=_unspecified, lower=None, upper=None, equals=None, scaler=None, adder=None, ref0=None, ref=None, linear=False, connected=False): """ Explicitly add a single phase linkage constraint. Phase linkage constraints are enforced by constraining the following equation: mult_a * var_a + mult_b * var_b The resulting value of this equation is constrained. This can satisfy 'coupling' or 'linkage' conditions across phase boundaries: enforcing continuity, common initial conditions, or common final conditions. With default values, this equation can be used to enforce variable continuity at phase boundaries. For instance, constraining some variable `x` (either a state, control, parameter, or output of the ODE) to have the same value at the final point of phase 'foo' and the initial point of phase 'bar' is accomplished by: ``` add_linkage_constraint('foo', 'bar', 'x', 'x') ``` We may sometimes want two phases to have the same value of some variable at the start of each phase: ``` add_linkage_constraint('foo', 'bar', 'x', 'x', loc_a='initial', loc_b='initial') ``` (Here the specification of loc_b is unnecessary but helps in the clarity of whats going on.) Or perhaps a phase has cyclic behavior. We may not know the exact value of some variable `x` at the start and end of the phase `foo`, but it must be the same value at each point. ``` add_linkage_constraint('foo', 'foo', 'x', 'x') ``` If `lower`, `upper`, and `equals` are all `None`, then dymos will use `equals=0` by default. If the continuity condition is limited by some bounds instead, lower and upper can be used. For instance, perhaps the velocity ('vel') is allowed to have an impulsive change within a certain magnitude between two phases: ``` add_linkage_constraint('foo', 'bar', 'vel', 'vel', lower=-100, upper=100, units='m/s') ``` Parameters ---------- phase_a : str The first phase in the linkage constraint. phase_b : str The second phase in the linkage constraint. var_a : str The linked variable from the first phase in the linkage constraint. var_b : str The linked variable from the second phase in the linkage constraint. loc_a : str The location of the variable in the first phase of the linkage constraint (one of 'initial' or 'final'). loc_b : str The location of the variable in the second phase of the linkage constraint (one of 'initial' or 'final'). sign_a : float The multiplier applied to the variable from the first phase in the linkage constraint. This argument is deprecated in favor of mult_a. sign_b : float The multiplier applied to the variable from the second phase in the linkage constraint. This argument is deprecated in favor of mult_b. mult_a : float The multiplier applied to the variable from the first phase in the linkage constraint. mult_b : float The multiplier applied to the variable from the second phase in the linkage constraint. units : str or None or _unspecified Units of the linkage. If _unspecified, dymos will use the units from the variable in the first phase of the linkage. Units of the two specified variables must be compatible. lower : float or array or None The lower bound applied as a constraint on the linkage equation. upper : float or array or None The upper bound applied as a constraint on the linkage equation. equals : float or array or None Specifies a targeted value for an equality constraint on the linkage equation. scaler : float or array or None The scaler of the linkage constraint. adder : float or array or None The adder of the linkage constraint. ref0 : float or array or None The zero-reference value of the linkage constraint. ref : float or array or None The unit-reference value of the linkage constraint. linear : bool If True, treat this variable as a linear constraint, otherwise False. Linear constraints should only be applied if the variable on each end of the linkage is a design variable or a linear function of one. connected : bool If True, this constraint is enforced by direct connection rather than a constraint for the optimizer. This is only valid for states and time. """ if sign_a is not _unspecified: if mult_a is not _unspecified: raise ValueError( "Both the deprecated 'sign_a' option and option 'mult_a' were specified." "Going forward, please use only option mult_a.") warn_deprecation("'sign_a' has been deprecated. Use 'mult_a' instead.") mult_a = sign_a else: # sign_a is _unspecified if mult_a is _unspecified: mult_a = 1.0 if sign_b is not _unspecified: if mult_b is not _unspecified: raise ValueError( "Both the deprecated 'sign_b' option and option 'mult_b' were specified." "Going forward, please use only option mult_b.") warn_deprecation("'sign_b' has been deprecated. Use 'mult_b' instead.") mult_b = sign_b else: # sign_a is _unspecified if mult_b is _unspecified: mult_b = -1.0 if connected: invalid_options = [] for arg in ['lower', 'upper', 'equals', 'scaler', 'adder', 'ref0', 'ref', 'units']: if locals()[arg] is not None and locals()[arg] is not _unspecified: invalid_options.append(arg) if locals()['linear']: invalid_options.append('linear') if invalid_options: msg = f'Invalid option in linkage between {phase_a}:{var_a} and {phase_b}:{var_b} ' \ f'in trajectory {self.pathname}. The following options for ' \ f'add_linkage_constraint were specified but not valid when ' \ f'option \'connected\' is True: ' + ' '.join(invalid_options) om.issue_warning(msg, category=om.UnusedOptionWarning) if (phase_a, phase_b) not in self._linkages: self._linkages[phase_a, phase_b] = OrderedDict() self._linkages[phase_a, phase_b][var_a, var_b] = d = LinkageOptionsDictionary() d['phase_a'] = phase_a d['phase_b'] = phase_b d['var_a'] = var_a d['var_b'] = var_b d['loc_a'] = loc_a d['loc_b'] = loc_b d['mult_a'] = mult_a d['mult_b'] = mult_b d['units'] = units d['lower'] = lower d['upper'] = upper d['equals'] = equals d['scaler'] = scaler d['adder'] = adder d['ref0'] = ref0 d['ref'] = ref d['linear'] = linear d['connected'] = connected
def _constraint_report(self, outstream=sys.stdout): if self.options['sim_mode']: return if self.comm.rank == 0: printer = print else: def printer(*args, **kwargs): pass float_fmt = '6.4e' printer(f'\n--- Constraint Report [{self.pathname}] ---') indent = ' ' def _print_constraints(phase, outstream): tx = phase.options['transcription'] ode_outputs = get_promoted_vars(tx._get_ode(phase), 'output') ds = {'initial': phase._initial_boundary_constraints, 'final': phase._final_boundary_constraints, 'path': phase._path_constraints} if not ( phase._initial_boundary_constraints or phase._final_boundary_constraints or phase._path_constraints): printer(f'{2 * indent}None', file=outstream) for loc, d in ds.items(): str_loc = f'[{loc}]' for options in d: if options['is_expr']: name = options['constraint_name'] else: name = options['name'] _, _, units, _ = tx._get_objective_src(name, loc, phase, ode_outputs=ode_outputs) equals = options['equals'] lower = options['lower'] upper = options['upper'] if options['units']: str_units = options['units'] elif units is not None: str_units = units else: str_units = 'None' if equals is not None and np.prod(np.asarray(equals).shape) != 1: str_equals = f'array<{"x".join([str(i) for i in np.asarray(equals).shape])}>' elif equals is not None: str_equals = f'{equals:{float_fmt}}' if lower is not None and np.prod(np.asarray(lower).shape) != 1: str_lower = f'array<{"x".join([str(i) for i in np.asarray(lower).shape])}> <=' elif lower is not None: str_lower = f'{lower:{float_fmt}} <=' else: str_lower = 12 * '' if upper is not None and np.prod(np.asarray(upper).shape) != 1: str_upper = f'<= array<{"x".join([str(i) for i in np.asarray(upper).shape])}> ' elif upper is not None: str_upper = f'<= {upper:{float_fmt}} ' else: str_upper = '' if equals is not None: printer(f'{2 * indent}{str_loc:<10s}{str_equals} == {name} [{str_units}]', file=outstream) else: printer( f'{2 * indent}{str_loc:<10s}{str_lower} {name} {str_upper} [{str_units}]', file=outstream) for phase_name, phs in self._phases.items(): printer(f'{indent}--- {phase_name} ---', file=outstream) if phs._is_local: _print_constraints(phs, outstream) printer('', file=outstream)
[docs] def simulate(self, times_per_seg=_unspecified, method=_unspecified, atol=_unspecified, rtol=_unspecified, first_step=_unspecified, max_step=_unspecified, record_file=None, case_prefix=None, reset_iter_counts=True, reports=False, interpolant='cubic'): """ Simulate the Trajectory using scipy.integrate.solve_ivp. Parameters ---------- times_per_seg : int or None Number of equally spaced times per segment at which output is requested. If None, output will be provided at all Nodes. method : str The scipy.integrate.solve_ivp integration method. atol : float Absolute convergence tolerance for scipy.integrate.solve_ivp. rtol : float Relative convergence tolerance for scipy.integrate.solve_ivp. first_step : float Initial step size for the integration. max_step : float Maximum step size for the integration. record_file : str or None If a string, the file to which the result of the simulation will be saved. If None, no record of the simulation will be saved. case_prefix : str or None Prefix to prepend to coordinates when recording. reset_iter_counts : bool If True and model has been run previously, reset all iteration counters. reports : bool or None or str or Sequence Reports setting for the subproblems run under simualate. interpolant : str The interpolation method to be used for the controls in the simulation phase. Returns ------- problem An OpenMDAO Problem in which the simulation is implemented. This Problem interface can be interrogated to obtain timeseries outputs in the same manner as other Phases to obtain results at the requested times. """ sim_traj = Trajectory(sim_mode=True) for name, phs in self._phases.items(): if phs.simulate_options is None: continue sim_phs = phs.get_simulation_phase(times_per_seg=times_per_seg, method=method, atol=atol, rtol=rtol, first_step=first_step, max_step=max_step, reports=reports, interpolant=interpolant) sim_traj.add_phase(name, sim_phs) if not sim_traj._phases: raise RuntimeError(f'Trajectory `{self.pathname}` has no phases that support simulation.') sim_traj.parameter_options.update(self.parameter_options) self.sim_prob = sim_prob = create_subprob(base_name=f'{self.name}_simulation', comm=self.comm, reports=reports) traj_name = self.name if self.name else 'sim_traj' sim_prob.model.add_subsystem(traj_name, sim_traj) if record_file is not None: rec = om.SqliteRecorder(record_file) sim_prob.add_recorder(rec) # record_outputs is needed to capture the timeseries outputs sim_prob.recording_options['record_outputs'] = True with warnings.catch_warnings(): # Some timeseries options are duplicated (expression options may be provide duplicate shape) # These filters suppress these warnings during simulation when they are not the # fault of the user. warnings.filterwarnings(action='ignore', category=om.UnusedOptionWarning) warnings.filterwarnings(action='ignore', category=om.SetupWarning) if om_version()[0] <= (3, 34, 2): sim_prob.setup(check=False) else: sim_prob.setup(check=False, parent=self) sim_prob.final_setup() # Assign trajectory parameter values for name in self.parameter_options: sim_traj.set_val(f'parameters:{name}', self.get_val(f'parameters:{name}')) for sim_phase_name, sim_phase in sim_traj._phases.items(): if sim_phase._is_local: sim_phase.set_vals_from_phase(from_phase=self._phases[sim_phase_name]) if sim_traj.comm.rank == 0: print(f'\nSimulating trajectory {self.pathname}') sim_prob.run_model(case_prefix=case_prefix, reset_iter_counts=reset_iter_counts) if sim_traj.comm.rank == 0: print(f'Done simulating trajectory {self.pathname}') if record_file: _case_prefix = '' if case_prefix is None else f'{case_prefix}_' sim_prob.record(f'{_case_prefix}final') sim_prob.cleanup() return sim_prob