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Numerical optimization can help inform the design of aircraft propulsive electric motors,
but only if the motor’s performance is predicted with sufficient accuracy. To address prediction
accuracy, this paper presents a multi-disciplinary analysis model that accounts for losses in
the machine as a function of frequency, flux density, and temperature. Additionally, we model
demagnetization in the permanent magnets to further capture the effect of temperature on motor
performance. We analytically compute derivatives through our multi-disciplinary analysis
using coupled adjoints to ensure that we can use efficient gradient-based optimization methods.
We then demonstrate the developed optimization framework on a realistic aerospace-grade
electric motor optimization, demonstrating an increase in efficiency over the baseline design,
while satisfying the motor’s thermal and output power constraints.

I. Introduction
The aviation industry must reduce its environmental impact. Direct CO2 emissions from the aircraft sector account

for approximately 2.0-2.5 % of yearly global CO2 emissions [1, 2], representing around 7 % of the world’s oil-product
consumption [3]. In addition, it is estimated that non-CO2 aircraft emissions such as NOx and H2O, which can induce
the formation of contrails and contrail-cirrus clouds, may account for just as much of a warming effect on the planet as
aircraft CO2 emissions [4, 5]. Further, NOx and other aerosol emissions are known to cause local air-quality hazards
that may contribute to premature deaths in communities near airports [6].

As battery technology has and continues to develop, electric and hybrid-electric propulsion systems are considered
compelling options among the possible paths to reduced emissions, particularly for commuter and short-haul routes [3,
7, 8]. For example, Brelje and Martins [9] suggest that electric propulsion can help civil aircraft meet the aggressive
N+3 performance goals put forth by NASA, which are characterized by stringent emissions, noise, and fuel burn
requirements [10].

While there are many challenges associated with the electrification of aircraft, we focus on the analysis and
optimization of their electric motors. The analysis of electric motors suitable for aircraft applications demands a
multi-disciplinary analysis (MDA) that considers the electromagnetic and thermal coupling in the motor. This coupled
analysis is essential, as the motor’s performance depends heavily on its temperature. This coupling is particularly
important during takeoff, where high power requirements produce significant heating in the motor’s windings and
core. For example, a trajectory optimization study by Falck et al. [11] predicted that thermal constraints on the electric
motors in NASA’s X-57 aircraft would limit its rate of climb. If these thermal constraints are violated, the motor will
experience adverse performance as the permanent magnets suffer demagnetization, and may even fail catastrophically if
the winding insulation breaks down and causes short circuits. Further, the authors of [11] noted that if the motors were
optimized alongside the trajectory, they could use lower-power motors than originally specified, resulting in lighter
motors that did not hit their thermal constraints, and thus would not limit the overall trajectory.

The field of multi-disciplinary electric motor analysis is quite mature; there are numerous commercial software tools
available to engineers, such as Ansys’s MotorCAD [12] and Maxwell [13] and Altair’s Flux [14] and FluxMotor [15], that
offer multi-disciplinary analysis capabilities at mid- and high-fidelity. In addition to the commercial tools available, there
are ongoing research efforts to better model the multi-disciplinary coupling between the electromagnetic and thermal
behavior of a motor. Several methods have been developed to model the effects of permanent magnet demagnetization
so that the behavior may be accurately computed during analysis and optimization, including piecewise linear [16–18]
and transcendental [18–22] fits of experimental data. The modeling of the temperature dependence of electromagnetic
losses has received similar attention. It is well understood that the electrical conductivity of commonly used conductors
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is adversely affected by increasing temperature, which in turn affects both the direct-current (DC) and alternating-current
(AC) losses [23]. On the other hand, the influence of temperature on core losses in the motor’s steel due to eddy-current
and hysteresis effects are frequently not considered [24–30]. Xue et al. [31] recently introduced a temperature-dependent
core loss model that separates the eddy-current and hysteresis terms and uses nonlinear coefficient functions on each to
accurately capture core losses over a spectrum of temperatures, frequencies, and magnetic flux densities [32].

Several studies have built on the methods developed to consider the temperature dependence of electromagnetic
analysis, and have considered fully-coupled electro-thermal motor analysis, using a combination of commercial
and research codes [27, 33–36]. Further, there have been various optimization studies conducted using gradient-
free algorithms to optimize motors subject to thermal constraints [37–44]. Unfortunately, the poor algorithmic
scaling of gradient-free optimization algorithms limits the number of design variables that may be considered in
the optimization [45], limiting the potential improvement that can be realized from the optimization. In addition,
closed-source motor analyses that do not provide derivative information may preclude the inclusion of the motor model
in a larger system-level optimization study. For problems with many (> 10) design variables, gradient-based optimization
algorithms supplied with analytically computed gradients are required for the optimization to remain efficient [46, 47].

This paper details the development of a fully-coupled electro-thermal motor analysis and gradient-based optimization
framework. This framework builds upon our previous work [48] and considers temperature-dependent magnetization
and loss models, and analytically computes derivatives through the coupled nonlinear model using coupled adjoints.
While there has been considerable work using coupled adjoints for aero-structural optimization [49–52], aero-propulsive
optimization [53–55], and conjugate heat transfer optimization [56, 57], to the best of our knowledge there has not
been any work that has used coupled adjoints for electro-thermal optimization. Thus, the main contribution of
this work is the application of coupled adjoints to compute derivatives through the coupled electro-thermal motor
analysis. By computing derivatives through our coupled multi-disciplinary motor analysis, we enable the use of efficient
gradient-based optimization algorithms for coupled electro-thermal motor problems.

The remainder of this paper is organized as follows. Section II describes the parameterization of the motor, along
with the electromagnetic and thermal analyses. In particular, we describe the models for temperature-dependent losses
and permanent magnet demagnetization. Section III describes our fully-coupled electro-thermal multi-disciplinary
analysis, and covers how we efficiently compute derivatives through it. Section IV presents optimization results,
considering both feedforward and feedback electro-thermal coupling. Finally, Section V concludes the paper with a
summary and discussion.

II. Methods
This section describes the physical models used in the motor modeling framework and the assumptions that motivate

the models. We first discuss the parameterization of the motor geometry, then the electromagnetic analysis, and finally
the thermal analysis.

A. Motor Parameterization
Among the several electric motor architectures suitable for aerospace applications, we consider the three-phase

radial-flux inrunner permanent magnet synchronous motor (PMSM) in this work. We characterize the continuous
geometry of the PMSM with the parameters listed in Table 1 and illustrated in Fig. 1. Note that the stack length is an
“out-of-the-page” parameter measuring the axial depth of the motor and is thus not shown in Fig. 1.

In addition to the geometric parameters listed in Table 1, we characterize the PMSM by an additional set of
continuous parameters listed in Table 2, which we briefly describe here. In a PMSM, each phase of the motor has a
round wire with radius 𝑟s. The wire is wrapped around a stator tooth 𝑛t times, and has an alternating-current (AC) with
root-mean-squared (RMS) value 𝑖 flowing through it. Finally, the rotor’s rotations per minute (RPM) are directly related
to the frequency of the motor’s AC current 𝑓e as 𝑆 = 60

𝑛p
𝑓e, where 𝑛p is the number of magnetic poles on the rotor.

On top of the continuous parameters already discussed, the design of a PMSM requires the selection of several
discrete parameters, which are also listed in Table 2. The number of magnetic poles on the rotor and the number of
winding slots in the stator are two discrete design choices that significantly impact the motor’s behavior. Additionally,
the material choices for each component can dramatically influence the optimal PMSM design. As we are using
gradient-based optimization for our motor optimization framework, we cannot directly optimize over these discrete
parameters. This is not a tremendous issue, however, since electric-motor design theory provides guidance for such
discrete parameter selection [58].
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Fig. 1 Diagram showing how geometric design pa-
rameters define the geometry for the PMSM of interest.

Table 1 Continuous motor geometric design parame-
ters and their physical descriptions.

Parameter Description

𝑙s Stack length
𝑑s Slot depth
𝑡m Magnet thickness
𝑟ri Rotor inner radius
𝑟ro Rotor outer radius
𝑟si Stator inner radius
𝑟so Stator outer radius
𝑤t Tooth width
𝑡tt Tooth tip thickness

Table 2 Remaining motor design parameters and their physical descriptions.

Parameter Description Classification

𝑟s Strand radius Continuous
𝑖 RMS current Continuous
𝑆 Rotor RPM Continuous
𝑛t Number of winding turns Discrete
𝑛p Number of magnetic poles Discrete
𝑛s Number of stator slots Discrete
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B. Computational Geometry Model
We use the Engineering Sketch Pad (ESP) [59] parametric CAD system to represent the PMSM geometry in the

model, with the design parameters listed in Table 1. We use the EGADS Tessellator [60] through the CAPS [61]
interface to generate the finite-element meshes needed by the electromagnetic and thermal analyses. Finally, we use
EGADS’ tesselation APIs [60] to explicitly map changes in the geometric design parameters identified in Table 1 to
changes in mesh node coordinates of the a priori generated finite-element meshes as the design parameters are updated
throughout the optimization process. We use 𝒙ℎ to denote the mesh node coordinates.

C. Electromagnetic Analysis
This section describes the electromagnetic field model used for the analysis, and it details the electromagnetic

outputs we compute. We further highlight the effect of temperature dependence on both the electromagnetic field
solution and the outputs we compute.

1. Electromagnetic Field Model
We model the electromagnetic field in the motor with the magnetostatic simplification of Maxwell’s equations, given

in differential form as
∇ × 𝑯 = 𝑱src, ∀ 𝒙 ∈ ΩE, (1)
∇ · 𝑩 = 0, ∀ 𝒙 ∈ ΩE, (2)

where 𝑯 ∈ Rd is the magnetic field intensity, 𝑱src ∈ Rd is the current density from applied sources, 𝑩 ∈ Rd is
the magnetic flux density, and d is the spatial dimension. The set ΩE denotes the computational domain of the
electromagnetic analysis, taken here to be a two-dimensional cross-section of the motor. Equations (1) and (2) are
known as Ampère’s circuital law and Gauss’s law for magnetism, respectively. Equations (1) and (2) need boundary
conditions to define a well-posed boundary value problem; these will be discussed shortly.

The magnetic field intensity, 𝑯, and the magnetic flux density, 𝑩, are related through the following constitutive
equation:

𝑯 = a (𝑩) (𝑩 − 𝑴 (𝑇)) , (3)
where a (𝑩) is the reluctivity, and 𝑴 (𝑇) is the temperature-dependent magnetic source created by permanent magnets.
In general, the reluctivity is a material-dependant nonlinear function of the magnetic flux density. We discuss the details
of the reluctivity model we use in Appendix A. We follow the approach described by Chen et al. [62] and model the
magnetic source as the linear function of temperature

𝑴 (𝑇) = 𝑴0
(
1 − 𝛼𝑴

(
𝑇 − 𝑇𝑴 ,0

) )
, (4)

where 𝑴0, 𝛼𝑴 and 𝑇𝑴 ,0 are material-specific parameters provided in manufacturer datasheets. We take 𝑴0 = 1.39 T,
𝛼𝑴 = −1.2 × 10−3 1

K and 𝑇𝑴 ,0 = 293.15 K for the Nd2Fe14B magnets considered in this work [63].
We use the magnetic vector potential, 𝑨 ∈ Rd, defined to satisfy

𝑩 = ∇ × 𝑨, (5)

such that Eq. (2) is satisfied by construction. Equation (5) does not uniquely define 𝑨, as the gradient of any scalar
function may be added to 𝑨 without changing 𝑩. We remedy this by imposing the Coulomb gauge ∇ · 𝑨 = 0 on 𝑨.

Using this gauge condition, the magnetic vector potential from Eq. (5), the constitutive relation defined in Eq. (3),
and by restricting the 𝑩 field to be two-dimensional, Eq. (1) can be re-written as the following nonlinear scalar diffusion
equation for the z-component of 𝑨:

−∇ · (a (𝑩) ∇𝐴z) − [∇ × (a𝑴 (𝑇))]z − 𝐽srcz = 0, ∀ 𝒙 ∈ ΩE. (6)

Here, 𝐽srcz is a piecewise-continuous source, which is non-zero only in the part of the domain containing the motor’s
windings and represents the applied current density. To ensure a well-posed boundary value problem, we implement
Dirichlet boundary conditions on Eq. (6), imposing that 𝐴z = 0 along the entire boundary of ΩE. This is equivalent to
enforcing that 𝑩 · �̂� = 0 along the boundary, i.e. that there is no flux fringing.

We use the Modular Finite Element Methods (MFEM) [64, 65] library to discretize Eq. (6) with the finite-element
method. This results in the following algebraic form:

𝑹𝐴 = 𝑹𝐴(𝑨ℎ, 𝒙ℎ,𝑻ℎ, 𝑱) = 0, (7)
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where 𝑨ℎ is the vector of finite-element degrees of freedom, 𝒙ℎ is the vector of mesh node coordinates, and 𝑻ℎ is the
vector of temperature values at each finite-element degree of freedom. 𝑱 ∈ R𝑝 holds the z-axis-aligned current density
𝐽srcz for each of the 𝑝 phases in the motor. We solve Eq. (7) multiple times at different rotor positions to capture the
behavior of the motor at different points in time. This will be discussed in more detail shortly.

We solve Eq. (7) for 𝑨ℎ using Newton’s method with a backtracking line search that ensures that ∥𝑹𝐴∥ decreases
at each iteration (see, for example, [47, Chapter 4.3.3]). Each Newton update is computed using the preconditioned
conjugate gradient (PCG) method, preconditioned with the “BoomerAMG” algebraic multigrid (AMG) preconditioner
from the hypre library [66, 67]. We use relative and absolute tolerances of 10−6 as the convergence criteria for the
Newton iterations, and we use a relative and absolute linear solver tolerance of 10−12 when solving the Newton updates.
We use default settings for the BoomerAMG preconditioner in hypre version 2.25.0.

2. Electromagnetic Outputs Including Losses
Once the solution to Eq. (7) has been computed we can calculate the motor’s performance outputs, as well as the

loss terms that account for reductions in efficiency and increases in temperature. We consider losses caused by direct
current (DC) and alternating current (AC) known as copper losses. We also model losses caused by hysteresis and eddy
currents in the motor’s magnetic steel (in the stator and the rotor) known as core losses. We consider the effects of
temperature on each loss term we model.

To calculate the DC losses, we first compute the length of a conductor winding 𝑙w in one of the motor’s 𝑝 phases as

𝑙w = 2𝑛t
𝑛s
𝑝

(
𝑙s + 𝜋

(
𝑤t
2

+
𝜋
(
2𝑟si + 𝑑s + 𝑡tt

)
4𝑛s

))
+
𝜋
(
2𝑟si + 𝑑s + 𝑡tt

)
2

, (8)

where 𝑛s is the number of stator slots, 𝑤t is the width of a stator tooth, 𝑟si is the stator inner radius, 𝑑s is the slot depth,
and 𝑡tt is the tooth tip thickness. The first term in Eq. (8) accounts for the wire being wrapped around each tooth 𝑛t
times, while the second term accounts for the end windings.

We next calculate the DC resistance 𝑅DC of the windings as

𝑅DC =
𝜌 (𝑇) 𝑙w
𝜋𝑟2

s
, (9)

where 𝜌 (𝑇) is the temperature-dependent electrical resistivity of the copper windings, and 𝑟s is the radius of the
conductor winding. We use a linear model for the electrical resistivity, namely

𝜌 (𝑇) = 𝜌0
(
1 + 𝛼𝜌

(
𝑇 − 𝑇𝜌,0

) )
, (10)

where 𝜌0, 𝛼𝜌, and 𝑇𝜌,0 are material-dependent parameters. We take 𝜌0 = 1.678 × 10−8 Ωm, 𝛼𝜌 = 3.9 × 10−3 1
K and

𝑇𝜌,0 = 293.15 K for the copper windings considered in this work. Finally, with the DC resistance calculated, we
calculate the DC power loss as

𝑃DC = 𝑖2𝑅DC, (11)

where 𝑖 is the root-mean-squared value of the current in the conductor.
The remaining loss terms that we model are the result of time-dependent phenomena. As we have chosen a static

approximation to Maxwell’s equations, we cannot directly account for these terms in our analysis, and we need to rely
on a combination of analytical and empirical methods to model these losses.

We use a hybrid approach to model the AC losses, based on the method presented by Fatemi et al. [68]. This
approach combines accurate magnetic flux density values from the finite-element solution with an analytical formula
for the AC loss in a single strand of wire to efficiently estimate the total AC losses. The AC losses in a single round
conductor induced by an externally-oscillating magnetic field can be estimated with the analytical formula [69]

𝑝AC = 𝑙
𝜋𝑟4

s
(
𝜔𝐵pk

)2
𝜌 (𝑇) 8

, (12)

where 𝑙 is the length of the strand exposed to the alternating magnetic field, 𝑟s is the strand radius, 𝜌 (𝑇) is the
temperature-dependent electrical resistivity, 𝜔 is the frequency of oscillation, and 𝐵pk is the peak (in time) value of the
magnitude of the oscillating magnetic flux density. When we use Eq. (12) to estimate the AC losses of a motor, we take 𝑙
to be the motor’s stack length, and 𝜔 to be the angular electrical frequency, related to the motor’s RPM 𝑆 as 𝜔 = 𝜋

30𝑛p𝑆.
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To estimate the value of 𝐵pk, we solve Eq. (7) at multiple rotor positions, effectively solving for the magnetic flux density
field at different “times”. Using all of these field solutions, at each finite element degree of freedom, we estimate the
peak (in time) magnetic flux density using the discrete induced exponential smooth max function described by Kennedy
and Hicken [70] to obtain the peak magnetic flux density field 𝑩ℎ

pk. Finally, with this peak magnetic flux density field,
we take a homogenized approach and integrate Eq. (12) over the slot area, scaling by the number of strands in the slot,
to estimate the total AC losses in the motor, illustrated as

𝑃AC =
1

𝑛t𝑛s

∫
ΩW

𝑝AC dΩW, (13)

where ΩW ⊆ ΩE is the domain of the motor containing the windings.
We consider the temperature-dependent two-term loss model described by Xue et al. [31] to estimate the motor’s

core losses, defined at a point as

𝑝C = 𝑘h
(
𝑇, 𝑓 , 𝐵pk

)
𝑓 𝐵2

pk + 𝑘e
(
𝑇, 𝑓 , 𝐵pk

)
𝑓 2𝐵2

pk, (14)

where 𝑇 is the temperature, 𝑓 is the electrical excitation frequency, and 𝐵pk is the magnitude of the peak magnetic flux
density. The first term in Eq. (14) represents the core losses caused by hysteresis effects, while the second represents the
losses from eddy current effects. The coefficients 𝑘h and 𝑘e are defined through the composition of simple functions
and curve-fit data and are described in detail in Appendix B. We use the same procedure described for the AC loss
calculation to calculate the 𝐵pk field in the stator and rotor needed for the core loss calculation. We integrate Eq. (14)
over the stator and rotor to estimate the total core loss across the motor as

𝑃C =

∫
ΩS

𝑝C dΩS, (15)

where ΩS ⊆ ΩE is the domain of the motor including the stator and rotor.
We compute the torque, 𝜏, generated by the motor using Coulomb’s virtual work method [71, 72] for each of the

finite-element field solutions that were used to compute the 𝐵pk field. Using these torque values computed at different
rotor positions, we compute the average torque produced in the motor, 𝜏avg, and use that to compute the output power
produced by the motor as

𝑃out = 𝜏avg𝑆
𝜋

30
. (16)

Finally, we compute the motor efficiency, [, as
[ =

𝑃out
𝑃in

, (17)

the fraction of usable power sent to the shaft, 𝑃out, divided by the total power provided to the machine 𝑃in =

𝑃out + 𝑃DC + 𝑃AC + 𝑃C.

D. Thermal Analysis
We model the motor’s thermal behavior with the steady-state heat equation, with the divergence of Fourier’s law

governing thermal diffusion and with source terms added to account for the electromagnetic loss terms. This results in
the following linear diffusion equation for the temperature field 𝑇 :

−∇ · (K∇𝑇) − 𝑞EM = 0, ∀ 𝒙 ∈ ΩT. (18)

Here, K is the thermal conductivity tensor, and 𝑞EM represents the combined heat sources due to the DC, AC, and
core losses. The set ΩT denotes the computational domain of the thermal analysis, taken here to be a two-dimensional
cross-section of the motor.

We apply convection boundary conditions to the outside of the motor to account for the cooling provided by air
flowing over the outside of the motor’s nacelle. This boundary condition is defined such that

K∇𝑇 · �̂� = h (𝑇 − 𝑇f) (19)

along the exterior boundary of ΩT, where h is the convection heat transfer coefficient, and 𝑇f is the temperature of the
fluid flowing outside the boundary. Additionally, we prescribe the Neumann boundary condition

K∇𝑇 · �̂� = 𝑞r (20)
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along the interior of the rotor to represent the heat transfer from the rotor into the shaft. Specific values used for h, 𝑇f,
and 𝑞r will be specified for each case studied in Section IV.B.

We again use the MFEM library to discretize Eqs. (18), (19), and (20) with the finite element method. This results
in the following algebraic form (linear in 𝑻ℎ):

𝑹𝑇 = 𝑹𝑇 (𝑻ℎ, 𝒙ℎ, 𝒒ℎEM, h, 𝑇f, 𝑞r) = 0, (21)

where 𝑻ℎ is the vector of temperature values at each finite-element degree of freedom, 𝒙ℎ is the vector of mesh node
coordinates, and 𝒒ℎEM is the vector containing the values of the electromagnetic heat source at each finite-element
degree of freedom. We solve Eq. (21) for 𝑻ℎ using the PCG algorithm, again preconditioned with the BoomerAMG
preconditioner from the hypre library. We use relative and absolute linear solver tolerances of 10−12, and we use the
default settings for the BoomerAMG preconditioner in hypre version 2.25.0.

With the solution to Eq. (21) obtained, we can compute outputs based on the temperature field. We estimate the
maximum steady-state temperature values in each component using the induced exponential smooth max function
presented by Kennedy and Hicken [70]. This allows us to place constraints on the temperature field on a component-
by-component basis, ensuring that each component (e.g. windings, magnets) does not exceed its maximum allowable
temperature, thus avoiding the need to be overly conservative with a single maximum temperature for the entire motor.

III. Coupled Motor Modeling Framework
This section details how we have combined the models presented in Section II into a multi-disciplinary electric

motor analysis and optimization framework that considers the coupled electromagnetic and thermal physics of an electric
motor. Specifically, we illustrate the coupling between the models used for the forward analysis, and then detail how we
efficiently compute derivatives through the coupled model.

We have developed the multi-disciplinary electric motor optimization framework using OpenMDAO [73] by
composing several different analysis “components” into a larger analysis. This is represented abstractly by the extended
design structure matrix (XDSM) [74] in Fig. 2. In the XDSM, blue ovals represent optimizers; green blocks represent
explicit analyses; red blocks represent implicit analyses; orange ovals represent nonlinear solvers; grey parallelograms
denote component inputs/outputs that come from/go to other analyses; and white parallelograms denote inputs/outputs
provided by/to the user. For the XDSM shown in Fig. 2, the motor’s electro-thermal analysis is represented by a generic
implicit block, as we consider both feedforward- and feedback-coupled analysis. Such analyses are illustrated by Figs. 3
and 4. Note that in Figs. 3 and 4 the stacks of components associated with the electromagnetic analysis indicate the
potentially many solves of Eq. (7) at different rotor positions.

In the feedforward analysis, the electromagnetic analysis does not depend on the computed temperature field, only
on an input reference temperature field 𝑻ℎ

0 . This means that we can sequentially compute each of the analyses shown in
the red and green blocks in Fig. 3 without needing any iteration. On the other hand, for the feedback analysis, since both
the electromagnetic analysis and the electromagnetic loss calculations depend on the computed temperature field, an
implicit system must be converged with a nonlinear solver. We use nonlinear Gauss-Seidel iterations to converge the
nonlinear system, with absolute and relative convergence tolerances of 10−6. During the Gauss-Seidel iterations, the
electromagnetic and thermal subproblems are solved using their respective solvers; refer to Sections II.C and II.D for the
details.

A. Coupled Derivative Computation
We analytically compute derivatives of our model, where possible, to improve the computational efficiency of the

optimization. We compute derivatives through the coupled electro-thermal motor analysis using coupled adjoints. To
illustrate how we compute the coupled adjoints, we first define the total state vector as the combination of all of the
states in the coupled analysis. Considering one solution of Eq. (7) to simplify notation, this is given as

𝒖 =


𝑨ℎ

𝑩ℎ
pk

𝒒ℎEM
𝑻ℎ


. (22)
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Optimizer design variables design variables

Geometry & Mesh 𝒙ℎ

[∗

𝑃∗
out

𝑇∗
max

[

𝑃out

𝑇max

Electrothermal Analysis

Fig. 2 The XDSM for the multi-disciplinary motor optimization shows the data flow considering a generic
implicit electro-thermal analysis.

𝑻ℎ
0 𝑻ℎ

0

Newton 𝑨ℎ

𝑹𝐴 Electromagnetics 𝑨ℎ

Peak Flux 𝑩ℎ
pk

Heat Source 𝒒ℎEM

Newton 𝑻ℎ

𝑹𝑇 Thermal

Fig. 3 XDSM for the feedforward coupled electro-thermal analysis, where the electromagnetic analysis depends
only on an input reference temperature field 𝑻ℎ

0 , not the temperature field computed by the thermal analysis.
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Gauss–Seidel 𝑻ℎ 𝑻ℎ

Newton 𝑨ℎ

𝑹𝐴 Electromagnetics 𝑨ℎ

Peak Flux 𝑩ℎ
pk

Heat Source 𝒒ℎEM

Newton 𝑻ℎ

𝑻ℎ 𝑹𝑇 Thermal

Fig. 4 XDSM for the feedback coupled electro-thermal analysis, where the electromagnetic analysis depends on
the temperature field computed by the thermal analysis, and the implicit system must be converged by a solver.

Next, we define the residual of the coupled model as the combination of all the individual residuals,

𝑹(𝒖) =


𝑹𝐴

�̂�ℎ
pk − 𝑩ℎ

pk
�̂�ℎEM − 𝒒ℎEM

𝑹𝑇


, (23)

where we have made an implicit transformation of the explicit functions that compute 𝑩ℎ
pk and 𝒒ℎEM. Note that we have

dropped explicit functional dependencies in the residuals, 𝑹𝐴 and 𝑹𝑇 , to simplify notation. Considering a generic
motor output 𝑓 for illustration, the coupled adjoint system is given as

𝜕𝑹𝐴

𝜕𝑨ℎ 0 0 𝜕𝑹𝐴

𝜕𝑻 ℎ

−
𝜕𝑩ℎ

pk
𝜕𝑨ℎ −I 0 0

0 − 𝜕𝒒ℎ
EM

𝜕𝑩ℎ
pk

−I − 𝜕𝒒ℎ
EM

𝜕𝑻 ℎ

0 0 𝜕𝑹𝑇

𝜕𝒒ℎ
EM

𝜕𝑹𝑇

𝜕𝑻 ℎ



T 
𝝍𝐴

𝝍𝐵pk

𝝍𝑞EM

𝝍𝑇


= −



𝜕 𝑓

𝜕𝑨ℎ

T

𝜕 𝑓

𝜕𝑩ℎ
pk

T

𝜕 𝑓

𝜕𝒒ℎ
EM

T

𝜕 𝑓

𝜕𝑻 ℎ

T


. (24)

Each partial derivative term in Eq. (24) is analytically computed using a combination of hand-coded and operator-
overloading-based algorithmic differentiation [75].

We solve the linear system in Eq. (24) using the Generalized Minimal RESidual (GMRES) method [76], pre-
conditioned with two iterations of linear block Gauss-Seidel (LBGS). The block Gauss-Seidel preconditioner allows
us to re-use the single-discipline specific adjoint solvers that have been developed for each discipline. We solve for
each of the single-discipline adjoints during the LBGS iteration using PCG, preconditioned with the same AMG
preconditioners used in each discipline’s forward problem. We use relative and absolute linear solver tolerances of
10−12 when computing the single-discipline adjoint solutions. We use relative and absolute linear solver tolerances of
10−6 for the coupled GMRES adjoint solution.∗ In the case of the feedforward analysis, the terms above the diagonal in

∗The authors note that careful attention must be paid to the relative scaling of the terms in Eq. (23) in order to ensure that the iterative solution of
Eq. (24) converges tightly.
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Fig. 5 The error in the finite-difference directional-derivative approximations converge with decreasing step
size at the expected rate before becoming inaccurate due to subtractive cancellation. The first-order forward
difference is shown in solid black, while the second-order central difference is shown in dot-dashed blue.

the (non-transposed) system matrix in Eq. (24) are zero. In this case, the adjoint system can be efficiently solved directly
using block back-substitution, which is equivalent to applying one iteration of LBGS.

We rely on OpenMDAO [73] to assemble the linear system defined in Eq. (24) for each of the functions of interest
for our optimization, and to then compute the required total derivatives of each function using the unified derivatives
equations (UDE) [77, 78]. We provide analytically differentiated partial derivatives for each term in the analysis that we
are able to. Unfortunately, we are unable to analytically differentiate through the ESP CAD system, so we rely on finite
differences to compute the required derivatives. We use forward-difference finite differences with step size 𝛿 = 10−6 to
compute the partial derivatives of the mesh coordinates 𝒙ℎ with respect to the geometric design variables identified in
Table 1.

IV. Results and Discussion
In this section, we present a verification study of the analytical derivatives we compute through the electro-thermal

analysis and then present a series of optimization results. Specifically, we consider two optimizations using the
feedforward-coupled model, each using a different reference temperature, and an additional optimization using the
feedback-coupled model.

A. Derivative Verification
We verify the accuracy of our analytically computed derivatives by comparing them to both a forward and central

finite-difference directional derivative. We analytically compute a directional derivative of the efficiency, power out, and
maximum temperature outputs with respect to all of the motor’s design variables in a normalized random perturbation
direction. Then, using the same perturbation direction, we compute a series of first-order forward- and second-order
central-difference finite-difference derivative approximations, sweeping from finite difference step size 𝛿 = 10−4 to
10−10. Finally, we plot the absolute value of the relative error in the finite-difference derivative approximations on a
log-log scale in Figure 5. As expected, the forward difference error converges as O(𝛿), while the central difference
error converges as O(𝛿2). The finite-difference derivative approximations eventually become inaccurate as floating
point errors due to subtractive cancellation begin to dominate. The agreement that we do see between the analytically
computed derivatives and the finite differences gives us confidence that the analytical derivatives are correct.

B. Optimization Results
With the model derivatives verified, we now describe the optimization problem we use to demonstrate the use of the

analytically computed derivatives through the coupled model. The objective of the optimization is to maximize the

10



Table 3 Electric-motor optimization problem statement.

Function/variable Description

maximize [ Motor efficiency

with respect to 10 mm ≤ 𝑙s ≤ 80 mm Stack length
1 mm ≤ 𝑑s Slot depth
1 mm ≤ 𝑡m ≤ 5 mm Magnet thickness

10 mm ≤ 𝑟ri Rotor inner radius
𝑟ro Rotor outer radius
𝑟si Stator inner radius
𝑟so ≤ 100 mm Stator outer radius

2.5 mm ≤ 𝑤t Tooth width
0.75 mm ≤ 𝑡tt Tooth tip thickness
0.1 mm ≤ 𝑟s ≤ 0.32 mm Strand radius
1.75 A < 𝑖 Strand RMS current

10 ≤ 𝑛t Number of turns

subject to 𝑃out = 10 kW Output power
𝑇max = 413.15 K Motor maximum temperature

𝑡ry ≡ 𝑟ro − 𝑟ri ≥ 1 mm Rotor yoke thickness
𝑡sy ≡ 𝑟so − 𝑟si − 𝑑s ≥ 1 mm Stator yoke thickness
𝑡g ≡ 𝑟si − 𝑟ro − 𝑡m = 1 mm Air-gap thickness

efficiency of the motor, subject to power out, thermal, and geometric constraints. Table 3 provides a summary of the
optimization problem. In lieu of a model that estimates the voltage required by the motor, we artificially put lower
bounds on the current and stack length design variables. The authors have found that without imposing a constraint on
these design variables during optimizations, the optimizer will tend to increase the stack length and reduce the current
to such low levels that the resulting design would require motor drives capable of producing unreasonably high voltages
to meet the motor’s output power requirement. We solve the optimization problem given in Table 3 using both the
feedforward- and feedback-coupled models described in Section III; we adopt reference temperatures of 𝑇0 = 333.15 K
and 𝑇0 = 373.15 K for the two feedforward problems.

We start each optimization from the initial design specified in Table 4, with the remaining fixed parameters given in
Table 5. The initial motor geometries and their corresponding magnetic flux-density fields are plotted in Fig. 6. We use
SNOPT [79, 80] version 7.7.1 with optimality and feasibility tolerances of 10−6 to solve the electric motor optimization
problems. We interface with SNOPT using OpenMDAO [73] through the PyOptSparse [81] optimization driver.

We plot the optimized geometries and magnetic flux density fields for each optimization in Fig. 7, and the optimization
optimality and feasibility histories in Fig. 8. While not every case was able to achieve the optimality tolerance of 10−6,
each was able to reduce the norm in the optimality by at least 5 orders of magnitude, indicating strong convergence. In
each case, the final feasibility achieved was below the desired tolerance.

Each optimization case successfully improved the motor efficiency compared to the infeasible initial design, while
simultaneously satisfying all constraints. The optimization of the feedback-coupled model raised the efficiency from
95.6 % to 98.0 %, while the feedforward-coupled models raised the efficiency from 95.9 % and 95.8 %, to 98.2 %
and 98.1 %, for the 𝑇0 = 333.15 K and 𝑇0 = 373.15 K cases, respectively. Further, the maximum motor temperature
computed by the feedback-coupled model at its optimized design is 390.0 K. The maximum motor temperatures at
the ends of the feedforward-coupled optimizations are 383.2 K and 390.0 K for the 𝑇0 = 333.15 K and 𝑇0 = 373.15 K
cases, respectively.

At first glance, it may be surprising that the feedforward-coupled optimized designs seem more performant than
the feedback-coupled optimized design; the optimized feed-forward efficiencies given in Table 4 are higher than the
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(a) Feedback (b) Feedforward (𝑇0 = 333.15 K) (c) Feedforward (𝑇0 = 373.15 K)

Fig. 6 The magnitude of the magnetic flux density in the different initial motor geometries. Note that while only
a quarter of the geometry is shown, the full motor was simulated.

(a) Feedback (b) Feedforward (𝑇0 = 333.15 K) (c) Feedforward (𝑇0 = 373.15 K)

Fig. 7 The magnitude of the magnetic flux density in the different optimized motor geometries. Note that while
only a quarter of the geometry is shown, the full motor was simulated. The optimized geometries are plotted on
the same scale as the initial geometries shown in Fig. 6.
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Table 4 Electric-motor design variables and outputs for the initial design and optimized designs.

Initial Design Feedback
Feedforward

𝑇0 = 333.15 K 𝑇0 = 373.15 K

[ - 97.995 % 98.223 % 98.059 %
[0 - 95.557 % 95.932 % 95.775 %

𝑙s 34.5 mm 80.0 mm 80.0 mm 80.0 mm
𝑑s 12.1 mm 19.401 mm 19.613 mm 19.638 mm
𝑡m 4.4 mm 5.0 mm 5.0 mm 5.0 mm
𝑟ri 55.625 mm 17.000 mm 14.960 mm 15.834 mm
𝑟ro 61.250 mm 23.641 mm 21.380 mm 22.350 mm
𝑟si 62.250 mm 24.641 mm 22.380 mm 23.350 mm
𝑟so 78.225 mm 48.542 mm 46.492 mm 47.488 mm
𝑤t 4.3 mm 3.059 mm 2.728 mm 2.809 mm
𝑡tt 1.0 mm 1.5 mm 1.5 mm 1.5 mm
𝑟s 0.32 mm 0.32 mm 0.32 mm 0.32 mm
𝑖 2.0 A 1.75 A 1.75 A 1.75 A
𝑛t 100 85.286 83.006 85.611

𝑃out - 10.000 kW 10.000 kW 10.000 kW
𝑃out,0 - 4.256 kW 4.342 kW 4.319 kW
𝑇max - 389.990 K 383.217 K 389.569 K
𝑇max,0 - 420.469 K 410.990 K 415.311 K
𝑡ry 1.225 mm 1.642 mm 1.419 mm 1.516 mm
𝑡sy 2.875 mm 3.0 mm 3.0 mm 3.0 mm
𝑡g 1.0 mm 1.0 mm 1.0 mm 1.0 mm

Table 5 Electric-motor optimization fixed parameters.

Parameter Value

𝑆 6000 RPM
𝑛p 20
𝑛s 24
h 100 W

m2K
𝑇f 293.15 K
𝑞r 10 W

m2

13



100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

O
pt

im
al

ity

feedback

feedforward (𝑇0 = 333.15 K)
feedforward (𝑇0 = 373.15 K)

0 10 20 30 40 50
Major Iterations

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

Fe
as

ib
ili

ty

Fig. 8 Convergence history for the coupled electric motor optimization problem defined in Table 3, considering
both feedback and feedforward coupled models.
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feedback efficiency, and the maximum motor temperatures are lower than the feedback maximum temperature. However,
the results reported in Table 4 are accurate according to the model that was used to compute them. Running the
feedback-coupled model on the feedforward-optimized designs reveals that under the higher-fidelity feedback-coupled
model, the feedforward-optimized design would not produce the required output power, producing only 9.378 kW for
the 𝑇0 = 333.15 K case, and 9.793 kW for the 𝑇0 = 373.15 K case.

Since the feedforward-coupled model does not update the temperature during the optimization, it does not adequately
model the effects of temperature on the magnetic field solution if the reference temperature is far from the true
temperature. For the 𝑇0 = 333.15 K case, the feedback-coupled model computes a maximum temperature of 388 K.
This 55 K temperature difference between the feedback- and feedforward-coupled models accounts for the 622 W
difference in output power between the models for the same design. This discrepancy between the feedforward- and
feedback-coupled models motivates the need for feedback coupling, particularly for optimizations where it is unlikely
that a known temperature distribution can be assumed a priori.

V. Conclusions
Numerical optimization of electric motors will increasingly become a critical component of the design of new

electrified aircraft. This paper has presented a coupled electro-thermal multi-disciplinary motor analysis and optimization
framework. We have used coupled adjoints to analytically differentiate through the coupled analysis, enabling the use of
scalable gradient-based optimization algorithms.

We subsequently demonstrated the optimization framework on a series of realistic aerospace-grade electric motor
optimization problems. We conducted optimizations considering both feedforward- and feedback-coupled analysis
models. Further, we showed that the feedforward-coupled optimized designs are infeasible when analyzed by the
feedback-coupled analysis, further motivating the need for feedback-coupled modeling.

Future work is needed to further increase the fidelity of the coupled model, particularly the inclusion of a model for
the heat transfer due to the turbulent Taylor-Couette flow in the motor’s air gap, and a more sophisticated demagnetization
model. Further, validation of the model against experimental data is needed to prove its merit and predictive capabilities.
Nevertheless, no matter the model, the use of coupled adjoints will allow efficient gradient-based optimization of electric
motors at whichever phase of the design process an engineer desires.

Appendix

A. Reluctivity Model
We model the reluctivity, a (𝑩), as a piecewise-continuous function a : R→ R, ∀ 𝒙 ∈ ΩE, where each sub-function

of a is based on the material it is in. We use constant values for the reluctivity in the motor’s air gap, magnets and
windings. For the air gap and motor windings this value is the reluctivity of free space a0 = 1

`0
= 1

4𝜋×10−7 . For the
magnets, we use the constant value amag = 1

`r`0
, where `r is the magnet’s relative permeability, a value commonly listed

in a material datasheet. We use a value of `r = 1.04 for the Nd2Fe14B magnets considered in this work.
The reluctivity of the motor’s steel (the material used in the stator and rotor) is more complicated than the rest of the

components as it is a nonlinear function of the magnetic flux density. The model used is written as

aFe = exp ( 𝑓 (∥𝑩∥)) , (25)

where 𝑓 (∥𝑩∥) is a cubic B-spline that represents the log-transformed reluctivity as a function of the magnitude of the
magnetic flux density. The B-spline knot vector and control points are found by minimizing the least-squares error
between the spline and discrete 𝐵-a data points. The control points and knot vector for the Hiperco 50 magnetic steel
used for the results presented in this work are listed in Table 6. Thus, the final reluctivity function is given as

a (𝑩) =


1
`0

𝒙 ∈ Ωair
1
`0

𝒙 ∈ ΩW
1

`r`0
𝒙 ∈ Ωmag

aFe (∥𝑩∥) 𝒙 ∈ ΩS

. (26)
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Table 6 Control points and knot vector for the cubic B-spline fit used in the Hiperco 50 reluctivity calculation.

Control Points Knots

5.5286 0.0
5.4645 0.0
4.5597 0.0
4.2891 0.0
3.8445 0.1479
4.2880 0.5757
4.9505 0.9924
11.9364 1.4090
11.9738 1.8257
12.6554 2.2424
12.8097 2.6590
13.3347 3.0757
13.5871 3.4924
13.5871 3.9114
13.5871 8.0039

10.0
10.0
10.0
10.0

B. Core Loss Model
We follow Xue et al. [31] and define the core loss coefficient functions 𝑘h and 𝑘e as

𝑘h (𝑇, 𝑓 , 𝐵pk) = 𝑘 th (𝑇, 𝑓 , 𝐵pk)𝑘ℎ,𝑇C,0 ( 𝑓 , 𝐵pk), (27)

and
𝑘e (𝑇, 𝑓 , 𝐵pk) = 𝑘 te (𝑇, 𝑓 , 𝐵pk)𝑘𝑒,𝑇C,0 ( 𝑓 , 𝐵pk), (28)

where 𝑘 th and 𝑘 te are the temperature-dependent hysteresis and eddy-current coefficients, and 𝑘h,𝑇C,0 and 𝑘e,𝑇C,0 are the
coefficients defined at the reference temperature 𝑇C,0. We define 𝑘 th and 𝑘 te as

𝑘 th (𝑇, 𝑓 , 𝐵pk) = 1 + (𝑇 − 𝑇C,0)𝐷h ( 𝑓 , 𝐵pk), (29)

and
𝑘 te (𝑇, 𝑓 , 𝐵pk) = 1 + (𝑇 − 𝑇C,0)𝐷e ( 𝑓 , 𝐵pk), (30)

where we further define 𝐷h ( 𝑓 , 𝐵pk) and 𝐷e ( 𝑓 , 𝐵pk) as

𝐷h ( 𝑓 , 𝐵pk) =
𝑘h,𝑇C,1 ( 𝑓 , 𝐵pk) − 𝑘h,𝑇C,0 ( 𝑓 , 𝐵pk)
(𝑇C,1 − 𝑇C,0)𝑘h,𝑇C,0 ( 𝑓 , 𝐵pk)

, (31)

and
𝐷e ( 𝑓 , 𝐵pk) =

𝑘e,𝑇C,1 ( 𝑓 , 𝐵pk) − 𝑘e,𝑇C,0 ( 𝑓 , 𝐵pk)
(𝑇C,1 − 𝑇C,0)𝑘e,𝑇C,0 ( 𝑓 , 𝐵pk)

. (32)

Here 𝑘h,𝑇C,1 ( 𝑓 , 𝐵pk), 𝑘h,𝑇C,0 ( 𝑓 , 𝐵pk), 𝑘e,𝑇C,1 ( 𝑓 , 𝐵pk), and 𝑘e,𝑇C,0 ( 𝑓 , 𝐵pk) are the hysteresis and eddy-current loss
coefficient functions at the reference temperatures 𝑇C,1 and 𝑇C,0 respectively.
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Table 7 Empirical hysteresis and eddy-current coefficients used for the core loss models computed using data
from [82].

𝑘h0 𝑘h1 𝑘h2 𝑘h3

𝑇C,0 = 296.15 K 5.978 × 10−2 −6.586 × 10−2 3.521 × 10−2 −6.548 × 10−3

𝑇C,1 = 423.15 K 5.787 × 10−2 −7.947 × 10−2 5.092 × 10−2 −1.111 × 10−2

𝑘e0 𝑘e1 𝑘e2 𝑘e3

𝑇C,0 = 296.15 K 3.831 × 10−5 −4.200 × 10−5 2.098 × 10−5 −3.886 × 10−6

𝑇C,1 = 423.15 K 3.205 × 10−5 −1.435 × 10−5 −3.748 × 10−6 2.685 × 10−6

We use third-order polynomials to model these coefficient functions. For each of the two reference temperatures, the
forms of these polynomials are respectively given as

𝑘h,𝑇C ( 𝑓 , 𝐵pk) = 𝑘h0 + 𝑘h1𝐵pk + 𝑘h2𝐵
2
pk + 𝑘h3𝐵

3
pk, (33)

and
𝑘e,𝑇C ( 𝑓 , 𝐵pk) = 𝑘e0 + 𝑘e1𝐵pk + 𝑘e2𝐵

2
pk + 𝑘e3𝐵

3
pk. (34)

We use tabulated experimental Supermendur core loss data from Wieserman et al. [82] for the determination of
empirical parameters in the temperature-dependent core loss model. Using this experimental data, we perform a linear
least-squares curve fit across a spectrum of frequencies to yield the hysteresis and eddy current coefficients shown in
Table 7.
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