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Topology optimization applications
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Topology optimization

SOUONNONONNNNNNNNANN

» Optimized structural design with few geometric constraints
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What we're trying to solve next
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Where does OpenMDAO come in”

Where we're using it now:

 Structural optimization with objectives and
constraints from system performance

* Integration with mphys
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Where we're going to use it:

* Improve modularity of our own
codes that are coupled together

* Integrate with other disciplines

* Include derivatives/adjoint-
compatibility for all coupling



ParOpt: Driver and in pyOptSparse
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Using exact Hessian-vector products

* Hessian-vector products can
speed up solution

« Can be used as a globalization
strategy

Second-order adjoint
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Curvature condition failures for compliance optimization

Compliance minimization
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Approximate only the positive part of the Hessian

82 > Negative part Causes curvature condition
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Maximize stiffness and optimize for frequency

Method

SQP active-set line search method
Interior point method
SQP trust region method

SQP trust region with quasi-Newton
correction

Method of moving asymptotes

Test problem 1: compliance minimization Test problem 2: mass minimization
under a linear constraint under natural frequencchonstraint Optimizer
min  ¢(x) = flu el gt SNOPT
X
2 IPOPT
such that  x € (0, 1] such that x € (0,1]
T g(x;p) =0 ParOpt
m- x < my
governed by AP = PA ParOpt w/
governed by K(p)ju="f . correction
- P P =1
pi=Ha MMA
p=Fx

NSy

(b) cantilever beam w/
orthogonal forces

Design domains and boundary conditions for problem 1

(a) cantilever beam (c) Michell beam (d) MBB beam

(b) Michell beam (¢) MBB-type beam

(a) cantilever beam

(d) L-bracket

(e) L-bracket
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Curvature condition failures

 Curvature condition fails on average 50% — 90% of the time

 Very few failures with correction

Quasi-Newton update failing rate (%)
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Correction performs better across 150 problems
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Performance profile after 100 function evaluations
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Large-scale results: 90+ million dof




Second derivative conclusions

e First-order derivatives need to be accurate

« Second-order derivatives generally do not — positive curvature is more
important
* WWe make our “Hessian approximation” worse and the optimizer converges

faster
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TACS and pthreads: A cautionary tale

* Around 2011 | added pthreads to TACS
« This was actually a lot of fun to do, but tedious

if (thread_info->getNumThreads() > 1) {

e This was before c++11 so

numCompletedElements = 0;

tacsPInfo->assembler = this; functors/lambdas weren’t Wldely
B T TS available yet

pthread_attr_t attr;

pthread_attr_init(&attr); i Shared memOI’y - a” thl’eadS WOFK

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

on the same memory
for (int k = @; k < thread_info->getNumThreads(); k++) {

pthread_create(&threads [k], &attr, TACSAssembler::assembleRes_thread, o L_C)tf; ()f LjrwrWEBCDEBESESEirB/ ()()thr()| ()\/EEF
(void x)tacsPInfo); .the thread beha\/|or

» Not portable code

for (int k = @; k < thread_info->getNumThreads(); k++) {
pthread_join(threads[k], NULL);

pthread_attr_destroy(&attr);
} else { 16




Vector access and memory layout

lobal solution lobal residual 0 .
J J  Contribution from a single

element residual
o Read/write to random
locations within the
element solution and residual
solutlon vectors

* WWhen you parallelize

vectors you implement
element some buffering magic so
residual that non-local components
can be accessed
» For instance Petsc

vectors
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BSetter parallelism, more memory

global solution

|

element solution

view

l

global residual

—

element residual

view

* From the element
perspective, the view of the
vector has changed

 Fewer cache misses since
the variables are stored in
the correct view

 This is a generalization of
the vector magic that Petsc
implements
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Iwo abstractions and programming efficiency

o Abstraction 1: Vector views and access

| want to express the finite-element equations in a generic way without worrying
about how memory is accessed

» Abstraction 2: Execution pattern
| don’t want to deal with pthreads
* Implementation should express an algorithm, not a specific implementation

* Programming efficiency: Automatic differentiation for everything
* | never want to compute a derivative again
« But | don’t want to give up performance

» We’re developing A2D (Aimost Automatic Differentiation) to achieve these
goals



A2D: Almost Automatic Differentiation

 Straightforward to implement new tightly coupled multiphysics analysis

* Derivatives computed using automatic differentiation
* We need first and second derivatives

* Target different HPC architectures
* We use Kokkos to abstract the vectors and execution space

« Path towards integration with TACS
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Why second derivatives?

» Total potential energy: Computed from the
/ element solution
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Why second derivatives?

* The Jacobian is the second derivative of energy:
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How the second derivatives are computed

_ // Express energy using Uxi
° Ol’lglﬂal COde auto mult = A2D::MatMatMult(Uxi, Jinv@, Ux);

auto strain = A2D::MatGreenStrain(Ux, E);
i = y; — f(y(z))

auto energy = A2D::SymmIsotropicEnergy(mu, lambda, E, output);

// Reverse sweep
energy.reverse();
strain.reverse();

* Reverse mode AD mult.reverse();

8f . . 6y] // Forward and reverse sweep

= ' €T: = .— < mult.hforward();
y] . l J aa;, strain.hforward();
(

)
energy.hreverse();
strain.hreverse():
mult.hreverse(); // Jacobian is available

 Forward and reverse mode for Hessian

. Oy 0%y P 0° f .
8332' yk@xzﬁaﬁj S 833@633] /
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Initial optimization demonstration with A2D

analysis
» Optimized design changes <>®
with load magnitude /_\ j
‘ F=50N
F

« Compliance minimization with F = 10N

geometrically nonlinear

= 100N,



A path to BYOV in OpenMDAO/Mphys?

global vector

« Current approach to vector views provides component-
wise slices of the residual/solution/design
]

I ¢ Problem: Not all data will be on the CPU or should be
] copied from component

ﬁ = * \Vector class encapsulates two behaviors

] » Global operations — uses inaccessible data implicitly
view buffer for * norm, dot-product, axpy
d/writ « Component-wise access and manipulation — explicit
reac/write access only to buffered data
e _ setitem__, _ getitem__
inaccessible * Provide component-wise vector through views of subset
data on GPU of data

* Less capability for automatic scaling/unit conversions on
Inaccessible data
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Conclusions

« Second derivatives can improve computational efficiency
« Automatic differentiation can be used for multiphysics applications

« Something like BYOV needed for integration of OpenMDAQO with GPU/HPC
computing



History of topology optimization

SIMP penalization Evolution of density solutions
1.0 Credit; author Credit; author
. Level set function and isolines Level set cantilever solution
0.8 [frm—p =2 Credit: Nicoguaro, Credit: Jiang et al.
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Density method (SIMP)
(M. Bendsge, 1989, Rozvany
and Zhou, 1991)
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Level-set method
(Oscher and Sethian, 1998, etc.)

Others (phase field
Analytical optimal Topology Optimization w/ : - approach, evolutionary
truss layout homogenization method oo icd Carhvallies approach, discrete
y g (Eschenauer et al., 1994)
(A. Michell, 1904) (M. Bendsge, 1988) approach, etc.)
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Optimal Michell-type w/

homogenization and projection
Credit: Groen et al.

27



