Topology optimization, second
derivatives and OpenMDAO

2022 OpenMDAO workshop
Graeme J. Kennedy
Georgia Institute of Technology

Topology optimization applications

HINGE R 1

ORIVE RiBl 1 INBOARD

DAIVE RIB | OUTBOARD

INTERMEDIATE RIE

_ HINGE RIB 3

DAIVE RIB 3 NBOARD

» DAIVE RIB 3 OUTBOARD

DRVE AIB 4INBOARD ~— >

¢ DAVERIBAOUTBOARD

AIRBUS: 13 A380 leading edge ribs Prototype “A” slab, 80% mass reduction Topologically optimized chassis
Credit: AIRBUS Credit: Andrei Jipa et al. Credit: SIEMENS

Topology optimization

SOUONNONONNNNNNNNANN

» Optimized structural design with few geometric constraints
“
/
/
/
/
“
/
/
4
/
“
/
/
/
“
Problem Definition Discretize
min ~ ¢(x) =flu

X

such that x € (0,1]"
m’ x < my

governed by K(p)ju="f

p=Fx

What we're trying to solve next

lgorithms

10N a

izat

M

* Improve opt

ICS

nys

inear p
hysics problems

* Include more nonl
e Solve mult
« Coupl

P

lines

P

1ISC

ith other di

iNg Wi

Where does OpenMDAO come in”

Where we're using it now:

 Structural optimization with objectives and
constraints from system performance

* Integration with mphys

f(xk) Vixf(xk)

N

egadsdpy —» TMR —— TACS ParOpt

Xk+1

2 pz
IndepVarComp

T3
i

con2* Jemmy con2 /oo
con2 2 s

Where we're going to use it:

* Improve modularity of our own
codes that are coupled together

* Integrate with other disciplines

* Include derivatives/adjoint-
compatibility for all coupling

ParOpt: Driver and in pyOptSparse

300 4

200 -

Cumulative time (s)

50

—
()
o

https://github.com/smdogroup/paropt

A4\ Quasi-Newton Subspace Size = 25
B8 Quasi-Newton Subspace Size = 10
— ldeal

48

72 96 120 144
Number of processors

Using exact Hessian-vector products

* Hessian-vector products can
speed up solution

« Can be used as a globalization
strategy

Second-order adjoint

o——o ParOpt: /., norm

/ aK 102! r— |POPT: /o, norm
u g
Ky = 5 P :
>
% E
TaKu ol Y
Hpa: — 2¢ 0 !
0x g
\ 10 55 50 75 100 125 150 175 200 205 250 275

Hessian-vector product torat
eration 7

Curvature condition failures for compliance optimization

Compliance minimization

min c(z1,22) =flu
L1,T2
such that r1,x2 € [0.1,1]

x1+x2 <1
governed by K(z1,z2)u="f

A

2

x1 = A1

Stolpe-Svanberg 6-bar truss system

1.0

0.8

0.6

<

0.4

\l

compliance
o

o1

q=20

~ ~
\ o s'Bs>0

1 7’

1.0

7’
| 3 2 a0y
_~—I-°-———?— ...O I I
0.2 0.4 0.6 0.8
X1

compliance

12

10

6

3

/

& 1 1 1

~

0.2 0.4 0.6
X1

Compliance contours, definiteness contours and constraint subspace

H(x) =0

indefinite
H(x)

H(x) <0

pTH(x)p
>0

pT H(x)p

pTH(x)p
<0

Approximate only the positive part of the Hessian

82 > Negative part Causes curvature condition
— failures
—R — IN

8X2 Positive part

Maximize stiffness and optimize for frequency

Method

SQP active-set line search method
Interior point method
SQP trust region method

SQP trust region with quasi-Newton
correction

Method of moving asymptotes

Test problem 1: compliance minimization Test problem 2: mass minimization
under a linear constraint under natural frequencchonstraint Optimizer
min ¢(x) = flu el gt SNOPT
X
2 IPOPT
such that x € (0, 1] such that x € (0,1]
T g(x;p) =0 ParOpt
m- x < my
governed by AP = PA ParOpt w/
governed by K(p)ju="f . correction
- P P =1
pi=Ha MMA
p=Fx

NSy

(b) cantilever beam w/
orthogonal forces

Design domains and boundary conditions for problem 1

(a) cantilever beam (c) Michell beam (d) MBB beam

(b) Michell beam (¢) MBB-type beam

(a) cantilever beam

(d) L-bracket

(e) L-bracket

10

Curvature condition failures

 Curvature condition fails on average 50% — 90% of the time

 Very few failures with correction

Quasi-Newton update failing rate (%)

g

30

60 I

40 -

20

IPOPT
SNOPT

ParOpt
ParOpt w/ correction

11

Correction performs better across 150 problems

135 | |
O —— ParOpt
> 1.30 F P
g = ParOpt w/ correction
2 1.25 — |IPOPT
3 —— SNOPT
-% 1.20 F MMA
=
S 1.15 |
5
)
8’ 1.10 [
)
>
< 1.05F

1.00

0 250 500 750 1000 1250 1500
Number of objective function evaluations

12

Performance profile after 100 function evaluations

100
~~ 80 [
g\i = ParOpt
g = ParOpt w/ correction =i
3 60 —— SNOPT ——
O
0 — |[POPT J

|

S MMA
2 40
O
®
L —

20 [

0
1.000 1.025 1.050 1.0/5 1.100 1.125 1.150 1.175 1.200
Normalized objective (compliance)

13

Large-scale results: 90+ million dof

Second derivative conclusions

e First-order derivatives need to be accurate

« Second-order derivatives generally do not — positive curvature is more
important
* WWe make our “Hessian approximation” worse and the optimizer converges

faster
1.35
0
2 130F — ParOpt
I — ParOpt w/ correction
%’ 1.25 | — |POPT
e —— SNOPT
-% 1.20 MMA
£
S 115}
e
(&)
g 1.10
(O]
>
< 1.05 |
1.00 Lﬁﬂ=— J L !
0 250 500 750 1000 1250 1500

Number of objective function evaluations

TACS and pthreads: A cautionary tale

* Around 2011 | added pthreads to TACS
« This was actually a lot of fun to do, but tedious

if (thread_info->getNumThreads() > 1) {

e This was before c++11 so

numCompletedElements = 0;

tacsPInfo->assembler = this; functors/lambdas weren’t Wldely
B T TS available yet

pthread_attr_t attr;

pthread_attr_init(&attr); i Shared memOI’y - a” thl’eadS WOFK

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

on the same memory
for (int k = @; k < thread_info->getNumThreads(); k++) {

pthread_create(&threads [k], &attr, TACSAssembler::assembleRes_thread, o L_C)tf; ()f LjrwrWEBCDEBESESEirB/ ()()thr()| ()\/EEF
(void x)tacsPInfo); .the thread beha\/|or

» Not portable code

for (int k = @; k < thread_info->getNumThreads(); k++) {
pthread_join(threads[k], NULL);

pthread_attr_destroy(&attr);
} else { 16

Vector access and memory layout

lobal solution lobal residual 0 .
J J Contribution from a single

element residual
o Read/write to random
locations within the
element solution and residual
solutlon vectors

* WWhen you parallelize

vectors you implement
element some buffering magic so
residual that non-local components
can be accessed
» For instance Petsc

vectors

17

BSetter parallelism, more memory

global solution

|

element solution

view

l

global residual

—

element residual

view

* From the element
perspective, the view of the
vector has changed

 Fewer cache misses since
the variables are stored in
the correct view

 This is a generalization of
the vector magic that Petsc
implements

18

Iwo abstractions and programming efficiency

o Abstraction 1: Vector views and access

| want to express the finite-element equations in a generic way without worrying
about how memory is accessed

» Abstraction 2: Execution pattern
| don’t want to deal with pthreads
* Implementation should express an algorithm, not a specific implementation

* Programming efficiency: Automatic differentiation for everything
* | never want to compute a derivative again
« But | don’t want to give up performance

» We’re developing A2D (Aimost Automatic Differentiation) to achieve these
goals

A2D: Almost Automatic Differentiation

 Straightforward to implement new tightly coupled multiphysics analysis

* Derivatives computed using automatic differentiation
* We need first and second derivatives

* Target different HPC architectures
* We use Kokkos to abstract the vectors and execution space

« Path towards integration with TACS

DAVAVE

Why second derivatives?

» Total potential energy: Computed from the
/ element solution
& = Zwi@i(vu) Vu = Nu,
)
* Residual is the derivative of energy:
- AT
0D,
Wy
- 1T oVu
R = E w; N* 0%i 1 N* /ADa_ jed here
— ; —
Z, OVu PP

Why second derivatives?

* The Jacobian is the second derivative of energy:

920, "
__ AL 2 __
J—;sz Foaz| V=N N
\ N 0D, T
A
 Adjoint terms are Hessian-vector products AD applied here
OR 0%, 1T
TV N4 ?
v O0x ; wit; OVudx

How the second derivatives are computed

_ // Express energy using Uxi
° Ol’lglﬂal COde auto mult = A2D::MatMatMult(Uxi, Jinv@, Ux);

auto strain = A2D::MatGreenStrain(Ux, E);
i = y; — f(y(z))

auto energy = A2D::SymmIsotropicEnergy(mu, lambda, E, output);

// Reverse sweep
energy.reverse();
strain.reverse();

* Reverse mode AD mult.reverse();

8f . . 6y] // Forward and reverse sweep

= ' €T: = .— < mult.hforward();
y] . l J aa;, strain.hforward();
(

)
energy.hreverse();
strain.hreverse():
mult.hreverse(); // Jacobian is available

 Forward and reverse mode for Hessian

. Oy 0%y P 0° f .
8332' yk@xzﬁaﬁj S 833@633] /

23

Initial optimization demonstration with A2D

analysis
» Optimized design changes <>®
with load magnitude /_\ j
‘ F=50N
F

« Compliance minimization with F = 10N

geometrically nonlinear

= 100N,

A path to BYOV in OpenMDAO/Mphys?

global vector

« Current approach to vector views provides component-
wise slices of the residual/solution/design
]

I ¢ Problem: Not all data will be on the CPU or should be
] copied from component

ﬁ = * \Vector class encapsulates two behaviors

] » Global operations — uses inaccessible data implicitly
view buffer for * norm, dot-product, axpy
d/writ « Component-wise access and manipulation — explicit
reac/write access only to buffered data
e _ setitem__, _ getitem__
inaccessible * Provide component-wise vector through views of subset
data on GPU of data

* Less capability for automatic scaling/unit conversions on
Inaccessible data

25

Conclusions

« Second derivatives can improve computational efficiency
« Automatic differentiation can be used for multiphysics applications

« Something like BYOV needed for integration of OpenMDAQO with GPU/HPC
computing

History of topology optimization

SIMP penalization Evolution of density solutions
1.0 Credit; author Credit; author
. Level set function and isolines Level set cantilever solution
0.8 [frm—p =2 Credit: Nicoguaro, Credit: Jiang et al.
— P —_ 3 £
0.6

Eg

09 o0 "’
° 2 :‘ 2
‘y 1 X y ¥
optimal frame for singular . -
supported beam :

Credlt MIChE” y y
T 00 02 04 06 08 N e W
P P W T ’

\\\ . A’,

Density method (SIMP)
(M. Bendsge, 1989, Rozvany
and Zhou, 1991)

Esimp (x)
o
~

o
N

Level-set method
(Oscher and Sethian, 1998, etc.)

Others (phase field
Analytical optimal Topology Optimization w/ : - approach, evolutionary
truss layout homogenization method oo icd Carhvallies approach, discrete
y g (Eschenauer et al., 1994)
(A. Michell, 1904) (M. Bendsge, 1988) approach, etc.)

r

- \ year
\ /

Optimal Michell-type w/

homogenization and projection
Credit: Groen et al.

27

