Design of Floating Offshore Wind Turbines Using OpenMDAO and Dymos

Yong Hoon Lee

Assistant Professor Department of Mechanical Engineering

Two months with

Work based on collaborations with

Work partially sponsored by

Lee Research Group @ UofM - research topics and capabilities

System modeling and design, MDAO studies

Dynamic system control co-design (CCD) Cor

Complex fluids + geometry design

Table of contents

- Floating Offshore Wind Turbine (FOWT) system overview
- MDO implementations of numerical models and design elements
- The use of $equal Derived Derived and <math>\partial y$ in the FOWT design
- Needs for next generation MDO approaches that can further enhance design processes
- Ongoing work and future plans

Platform

Floating Offshore Wind Turbine (FOWT) system overview

- Offshore wind energy can go larger, which also means higher efficiency.
 - Shipyard-built system No transportation constraints
 - Current development projects are mostly 5-18MW scales
 - The largest land-based turbines are mostly in 1-2.5MW scales (utility-scale wind turbines)
- FOWTs enable the installation of wind farms in deep-water regions.
 - 60% of offshore wind energy resides in deep-water regions
 - Strong and steadier wind resources
 The Gulf of Mexico, the Gulf of Maine, etc.
- Disadvantages
 - High capital and operating/maintenance costs
 - Less-explored technologies

Floating Offshore Wind Turbine (FOWT) system overview

- Multidisciplinary nature of the FOWT system
 - System components
 - Rotor blades, hub, pitch mechanism
 - Drivetrain and generator, Vertical-axis wind turbine intra-cycle control
 - Controller (PID, NMPC, OLOC), various sensors, LIDAR (Scholbrock, 2016)
 - Tower and yaw device (important for farm-level optimization)
 - Floating platform and ballast system
 - Mooring lines and fairleads, Tension active control (Li & Wu, 2016)
 - Anchoring system
 - Environmental interactions
 - Wind aerodynamic loads, aerodynamic wakes, turbulence
 - Platform hydrostatics and hydrodynamic forcings
 - Ocean current and waves
 - Costs, performances, constraints, and other factors
 - Design Load Cases and failure modes (motion, stress, fatigue, etc.)
 - Annual Energy Production
 - Capital expenses, operating expenses
 - Manufacturability constraints

MDO implementations for numerical models and design elements

- MDO motivation
 - A hierarchical system-level + subsystem-level design problems of the vertical-axis wind turbines.
 - The system model became too complicated.
 - With many disciplinary domain models, a sequential analysis strategy was not always efficient.
 - The hierarchical system-level + subsystem-level design approach required a derivative of multi-level formulation, such as the ATC.
- Started looking into using OpenMDAO as an optimization driver
 - Many physics domains created interfaces to OpenMDAO.
 - Reformulated problem structures.
 - Multi-level formulation is still ongoing task.

MDO implementations of numerical models and design elements

MDO implementations of numerical models and design elements

MDO implementations of numerical models and design elements

The use of $equal open MD \land O$ and $\partial y mos$ in the FOWT design

10

Needs for next generation MDO approaches that can further enhance design processes

- Design practices in multi-institutional collaborations cannot be easily integrated. Example: the FOWT design process:
 - Floating platform experts floater design
 - Wind turbine aerodynamics experts tower and blade design
 - Experimental fluids experts wind tunnel experiments
 - System design experts communicate with all other groups and create corresponding lowerfidelity models
- Modern engineering systems are too complicated, so that system engineers may not be able to understand all aspects of the system.
- Integrated system analysis and design tools are not readily available in many domains.
- Human expert's heuristic decisions are sometimes valuable. Mathematical expressions do not always reflect the exact reality.

Ongoing work and future plans

- Reassess necessities of conventional design limits and constraints.
 - Remove predefined shape or design parameterization
 - Allow full freedom in design

Designing with viscoelastic material functions to achieve system-optimal solution (Lee 2019)

Allowing design freedom via geometric parameterizations (Lee 2017)

Ongoing work and future plans

- Number of scalars in the hydrodynamic coefficients in varied frequency range are large
 - Connecting variables between disciplinary models need to be reduced.
 - Proper orthogonal decomposition (POD) based dimension reduction is being explored.

General IDF formulation

```
\begin{array}{ll} \underset{\mathbf{x}, \hat{\mathbf{y}}_{i}}{\operatorname{minimize}} & f\left(\mathbf{x}, \mathbf{y}\left(\mathbf{x}, \hat{\mathbf{y}}\right)\right) \\ \operatorname{subject to} & \mathbf{g}\left(\mathbf{x}, \mathbf{y}\left(\mathbf{x}, \hat{\mathbf{y}}\right)\right) \leq \mathbf{0} \\ & \mathbf{h}\left(\mathbf{x}, \mathbf{y}\left(\mathbf{x}, \hat{\mathbf{y}}\right)\right) = \mathbf{0} \\ & \mathbf{h}_{c} = \hat{\mathbf{y}} - \mathbf{y} = \mathbf{0} \quad \# \text{ coupling constraints} \\ \operatorname{where} & \mathbf{y} = \{y_{i}: \forall i = 1, \cdots, N\} \\ & \hat{\mathbf{y}} = \{\hat{y}_{i}: \forall i = 1, \cdots, N\} \quad \# \text{ coupling variables} \end{array}
```

<u>Turbulent stress (\overline{uu}/U) reconstructed using the POD</u>

Number of required coupling variables/constraints for hydrodynamics with 60 periods = 4095

Added mass term: 1320 variables A16 A26 A35 0 $A_{ii}(\omega) =$ A46 A55 A56 A53 A65 A66 Radiation damping term: 1320 variables B16 B22 B26 B35 0 $B_{ii}(\omega) =$ B46 B55 B56 B65 B66

Hydrostatic stiffness term: 9 variables

C _{ij} =	0	0	0	0	0	0
	0	0	0	0	0	0
	0	0	C33	C34	C35	0
	0	0	C43	C44	C45	0
	0	0	C53	C54	C55	0
	0	0	0	0	0	0

Viscous damping stiffness term: 6 variables

V _{ij} =	V11	0	0	0	0	0
	0	V22	0	0	0	0
	0	0	V33	0	0	0
	0	0	0	V44	0	0
	0	0	0	0	V55	0
	0	0	0	0	0	V66

Froude-Krylov force: 720 variables

	F _{FK} 1	φ _{FK} 1	
	F _{FK} 2	φ _{FK} 2	
$F_{-1}(\omega) =$	F _{FK} 3	ф _{FK} 3	
· _{FK} (∞)	F _{FK} 4	ф _{FK} 4	
	F _{FK} 5	ф _{гк} 5	
	F _{FK} 6	ф _{FK} 6	
[Diffract	ion for	ce: 720 variables
	$F_{D}1$	$\phi_{D}1$	
	F _D 2	$\phi_D 2$	

F _D (ω) =	F _D 3	φ _D 3	
	F _D 4	φ _D 4	
	F _D 5	φ _D 5	
	F _D 6	φ _D 6	

Ongoing work and future plans

- Distributed MDAO that involves heterogeneous decision-making processes
 - Aim: Enabling effective collaborative design processes in large groups of experts through the effective exchange of design decisions and knowledge.
 - Use of the MDAO framework in heterogeneous decision-making processes beyond computational models.
 - Subsystem-level high fidelity computational models
 - System-level low fidelity computational model
 - Quantitative and qualitative human expert inputs, hardware-in-the-loop optimization, etc.
 - System-level lower-fidelity models and corresponding high-fidelity subsystem models need to be concurrently optimized.

Thank you.

Yong Hoon Lee

yhlee@memphis.edu

Mechanical Engineering The University of Memphis