A Coupled Spacecraft System and Trajectory Optimization Framework Using GMAT and OpenMDAO

Gage Harris, Ping He, and Ossama Abdelkhalik

Aerospace Engineering Department, Iowa Stata University

Overview

Background

Method

- > GMAT
- Rocket Engine Model
- > OpenMDAO
- > SMOT

Results

- Single Point optimization
- Multi-point optimization
- Summary
- Future Work

Space missions need to design spacecraft system and trajectory

CubeSat Design

NASA Artemis II Mission Design

- https://techcrunch.com/2019/07/29/tesseract-makes-spacecraft-propulsion-smaller-greener-stronger/
- https://exploredeepspace.com/deep-space-mission/artemis-missions/

Existing studies optimized trajectory and systems separately

Recent studies in this field:

- Frank et al. [2017] optimize rocket engine only.
- ➤ Hwang et al. [2014] optimize multiple systems.
- > Izzo et al. [2015] optimize trajectory only.
- > Darani & Abdelkhalik [2018] optimize trajectory only.
- Lamroqere et al. [2014] optimize trajectory only.

Three-impulse transfer orbit (Darani & Abelkhalik [2018])

Objective: Use OpenMDAO to optimize the trajectory and system simultaneously with a high number of design variables.

We developed a coupled spacecraft system and trajectory optimization framework using OpenMDAO

We used NASA's General Mission Analysis Tool GMAT to compute the spacecraft trajectory

Open-source package developed by NASA	Inputs	
Configure spacecrafts, force models, and other		
spacecraft hardware		
Mission sequence to simulate spacecraft		
User interaction:		
 Graphical user interface (GUI) 		
Python API		
Fixed mission sequence created	Outputs	
Interplanetary mission to Mars used in this study		V

	Function/Variable	Description	Quantity
Inputs	F^{Earth}	Thrust magnitude Earth (N)	1
_	$I_{\rm sp}^{\rm Earth}$	Specific Impulse Earth (s)	1
	d_n^{Earth}	Thrust directions Earth	3
	T_{h}^{Earth}	Earth burn time (s)	1
	F^{Mars}	Thrust magnitude Mars (N)	1
	$I_{\rm sp}^{\rm Mars}$	Specific Impulse Mars (s)	1
	d_n^{Mars}	Thrust directions Mars	3
	$T_b^{\rm Mars}$	Mars burn time (s)	1
	ŤŎF	Time of flight (day)	1
	m^0	Fuel mass before flight (kg)	1
	m^{engine}	Mass of engine (kg)	1
		Total Inputs	15
Outputs	R_{mag}	Center of Mars to spacecraft (km)	1
-	m^{excess}	Excess fuel (kg)	1
	$ V_{\rm x,y,z} \le 0.01$	Spacecraft relative velocity (km/s)	3
	m_b	Fuel burn (kg)	1
		Total Outputs	6

We developed an analytical rocket engine model (1/2)

- Spacecraft system being coupled
- Implemented as a rocket engine model in Python
- Exit Mach number used as input instead of exit area. Allows engine model to be explicit.
- Exit area computed as output and constrained during optimization

	Function/Variable	Description	Quantity
Inputs	P_{c}	Chamber pressure (MPa)	1
	M_R	Mixture ratio	1
	A_t	Nozzle throat area (m ²)	1
	M_{e}	Exit Mach number	1
		Total Inputs	4
Outputs	F	Thrust magnitude (N)	1
	$I_{\rm sp}$	Specific Impulse (s)	1
	$m^{\hat{\text{engine}}}$	Mass of engine (kg)	1
	A_e	Nozzle exit area (m ²)	1
		Total Outputs	4

We developed an analytical rocket engine model (2/2)

- Surrogate model created to compute
 - Chamber temperature
 - Specific heat ratio
 - Gas constant
- 500 sample points generated using various chamber pressure and mixture ratios
- Rocket Propulsion Analysis tool (RPA) was run with each sample point
- RBF Surrogate model was trained with RPA outputs
- Assumed constant composition in the nozzle

$$\begin{split} \dot{m} &= \frac{A_t P_c}{\sqrt{T_c}} \sqrt{\frac{\gamma}{R}} \left(\frac{\gamma+1}{2}\right)^{\frac{-\gamma-1}{2\gamma-2}} \\ \frac{A_e}{A_t} &= \left(\frac{\gamma+1}{2}\right)^{\frac{-\gamma-1}{2\gamma-2}} \left(1 + \frac{\gamma-1}{2}M_e^2\right)^{\frac{\gamma+1}{2\gamma-2}} M_e^{-1} \\ &\qquad \frac{T_e}{T_c} = \left(1 + \frac{\gamma-1}{2}M_e^2\right)^{-1} \\ &\qquad \frac{P_e}{P_c} = \left(1 + \frac{\gamma-1}{2}M_e^2\right)^{\frac{-\gamma}{\gamma-1}} \\ &\qquad v_e = M_e \sqrt{\gamma R T_e} \\ &\qquad F = \dot{m}\lambda_b v_e + (P_e - P_o)A_e \end{split}$$

 $m^{\rm engine} = 1.866 \times 10^{-10} F^2 + 0.00130 F + 77.4$

The N2 diagram of the coupled optimization

https://openmdao.org/

We developed a Spacecraft Mission Optimization Tool called SMOT

- We developed a python interface combing GMAT and OpenMDAO
- GMAT acts as trajectory analysis tool
- OpenMDAO acts as the optimizer
 - All components defined
 - Optimizer: SNOPT
- Python runscript is how to interact with SMOT
 - Tells OpenMDAO which trajectory component or mission to optimize
 - > Set up initial conditions
 - Modify constraints
- Currently only one trajectory component in SMOT
 - Interplanetary mission to Mars

Results

Mission set up:

- Two impulsive burns
- No fly-bys considered
- Sun only gravitational body

Three different departure days studied

- May 27th , 2020
- > July 27th , 2020
- September 8th , 2020

Two optimization types

- Single point
- Multi-point
- Objective to reach Mars with smallest amount of fuel burned
- Constraints
 - ➤ 3000 km from Mars
 - > 0.01 km/s relative velocity
 - Exit areas equal

GMAT GUI

Single Point Optimizations

- Five different optimization configurations
- > [1] Trajectory
 - ISP fixed; all other engine parameters neglected
- ▶ [2] Fixed Engine Geometry (FEG)
 - Engine geometry fixed; chamber pressure allowed to change
- ▶ [3] Fixed Engine Geometry MR
 - Engine geometry fixed; chamber pressure and mixture ratio allowed to change
- ▶ [4] Coupled
 - Coupled trajectory and full engine optimization, but mixture ratio must be equal
- ➢ [5] Coupled MR
 - Coupled trajectory and full engine optimization
- Optimization formulation for Coupled MR can be seen

	Function/Variable	Description	Quantity
Minimize	m_b	Total fuel burned (kg)	1
w.r.t	P_c^{Earth}	Chamber pressure (MPa) Earth	1
	P_c^{Mars}	Chamber pressure (MPa) Mars	1
	$M_B^{\rm Earth}$	Mixture ratio Earth	1
	M_B^{Mars}	Mixture ratio Mars	1
	A_t	Throat area (m ²)	1
	$M_e^{\rm Earth}$	Exit Mach number Earth	1
	M_e^{Mars}	Exit Mach number Mars	1
	d_n^{Earth}	Thrust directions Earth	3
	T_{b}^{Earth}	Earth burn time (s)	1
	d_n^{Mars}	Thrust directions Mars	3
	T_{b}^{Mars}	Mars burn time (s)	1
	TOF	Time of flight (day)	1
	m^0	Fuel mass before flight (kg)	1
		Total Design Variables	17
Subject to	$R_{\rm mag} \leq 3000$	Center of Mars to spacecraft (km)	1
	$m^{\text{excess}} \ge 200$	Forced excess fuel (kg)	1
	$\mathrm{V} V_{\mathrm{x,y,z}} \le 0.01$	Spacecraft relative velocity (km/s)	3
	$A_e^{\text{Earth}} = A_e^{\text{Mars}}$	Earth-Mars exit areas equal	1
		Total Constraints	6

Coupled optimization used 25% less fuel than the trajectory-only case: May 27, 2020

Function/Variable	Trajectory	FEG	FEG MR	Coupled	Coupled MR
m_b (kg)	5150	5250	4819	4071	4014
$R_{\rm mag}$ (km)	3004	3025	3000	2807	2856
m ^{excess} (kg)	200	200	200	200	200
$ V_{\rm x} $ (km/s)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
$ V_{\rm y} $ (km/s)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
$ V_{\rm z} $ (km/s)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
$ A_e^{\text{Earth}} - A_e^{\text{Mars}} $	$< 10^{-8}$	$< 10^{-8}$	$< 10^{-8}$	$< 10^{-8}$	$< 10^{-8}$
F_{Earth} (N)	51200	38580	36540	31800	31520
F_{Mars} (N)	15730	38580	6974	7644	6399
$I_{\rm sp}$ (s)	445.7	441.8	460.0	477.5	480.6
A^e/A_t	61	61	61	126.9	153.4
m ^{engine} (kg)	206	206	206	118.9	118.6

Comparison between the baseline and optimized trajectories: May 27, 2020

15

Coupled optimizations outperformed the trajectory-only case for each departure date

Coupled optimization uses 28% less fuel than the trajectory only case: July

Coupled optimization uses 22% less fuel than the trajectory only case: Sep

Function/Variable	Trajectory	FEG	FEG MR	Coupled	Coupled MR	Function/Variable	Trajectory	FEG	FEG MR	Coupled	Coupled MR
m_b (kg)	3258	3348	3076	2474	2462	m_b (kg)	7103	7192	6626	5739	5705
$R_{mag} (km)$ $m^{excess} (kg)$ $ V_x (km/s)$ $ V_y (km/s)$ $ V_z (km/s)$ $ A_e^{Earth} - A_e^{Mars} $	3200 200 <0.01 <0.01 $<10^{-8}$	3234 200 <0.01 <0.01 <0.01 <10 ⁻⁸	3120 200 <0.01 <0.01 $<10^{-8}$	3000 200 <0.01 <0.01 $<10^{-8}$	$2940 \\ 200 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 10^{-8}$	$R_{\text{mag}} \text{ (km)}$ $m^{\text{excess}} \text{ (kg)}$ $ V_x \text{ (km/s)}$ $ V_y \text{ (km/s)}$ $ V_z \text{ (km/s)}$ $ A_e^{\text{Earth}} - A_e^{\text{Mars}} $	3000 200 <0.01 <0.01 $<10^{-8}$	3024 200 <0.01 <0.01 $<10^{-8}$	3003 200 <0.01 <0.01 $<10^{-8}$	$2439 \\ 200 \\ <0.01 \\ <0.01 \\ <0.01 \\ <10^{-8}$	3000 200 <0.01 <0.01 $<10^{-8}$
$F_{\text{Earth}} (\text{N})$ $F_{\text{Mars}} (\text{N})$ $I_{\text{sp}} (\text{s})$ A^{e}/A_{t} $m^{\text{engine}} (\text{kg})$	29860 15180 445.7 61 206	23040 23040 439.4 61 206	21750 38390 459.6 61 206	17500 7014 487.3 212.9 100.2	17450 7320 488.6 237.1 100.1	$F_{\text{Earth}} (N)$ $F_{\text{Mars}} (N)$ $I_{\text{sp}} (s)$ A^{e}/A_{t} $m^{\text{engine}} (\text{kg})$	55240 13200 445.7 61 206	55980 55980 443.4 61 206	53880 56210 459.0 61 206	45630 9083 473.9 112.1 137.1	45450 7670 475.3 112.5 136.9

Trajectory and Engine separate optimizations

- Final single point optimization to be compared
- How traditional trajectory and engine optimizations are done
- Trajectory optimization run first
- Engine optimization constrained given thrust magnitudes
- Fuel burned calculated using mass flow rate and burn time from trajectory optimization

	Function/Variable	Description	Quantity
Maximize	ISP _{av}	Average Specific Impulse (s)	1
w.r.t	P_c^{Earth}	Chamber pressure (MPa) Earth	1
	P_c^{Mars}	Chamber pressure (MPa) Mars	1
	$M_R^{\rm Earth}$	Mixture ratio Earth	1
	$M_R^{\rm Mars}$	Mixture ratio Mars	1
	A_t	Throat area (m ²)	1
	$M_e^{\rm Earth}$	Exit Mach number Earth	1
	$M_e^{\rm Mars}$	Exit Mach number Mars	1
	-	Total Design Variables	7
Subject to	$F_{\text{Earth}} = \text{Trajectory}$	Center of Mars to spacecraft (km)	1
	$F_{\text{Mars}} = \text{Trajectory}$	Earth-Mars exit areas equal	1
	$A_e^{\text{Earth}} = A_e^{\text{Mars}}$	Earth-Mars exit areas equal	1
		Total Constraints	3

$$m_b(kg) = \dot{m}_{\text{Earth}} T_b^{\text{Earth}} + \dot{m}_{\text{Mars}} T_b^{\text{Mars}}$$

Coupled optimizations outperformed the trajectory and engine separate optimizations

- Results are between the FEG and FEG MR case for each date
- Both coupled optimizations are far superior
- Coupled MR shown for comparison
- Clearly shows the benefit of coupling both disciplines
 - DV's and constraints are the same for both shown optimizations
 - > Only difference is the coupling

Date	Separate (kg)	Coupled MR (kg)	Percent difference
May 27^{th}	4855	4014	19.0
July 27 th	3020	2462	20.4
September 8 th	6715	5705	16.3

Multi-point optimization

- Single point optimization worked well for specific departure date
- Multi-point combines all three departure dates
- Objective function is average fuel burned from all three dates
- Formulation similar to Coupled MR of single point optimization
- Each date has it own design variables and constraints, except throat area

	Function/Variable	Description	Quantity
Minimize	$(m_b^{\text{May}} + m_b^{\text{Jul}} + m_b^{\text{Sep}})/3$	Averaged fuel burned (kg) for the	1
		May, Jul, & Sep simulations	
w.r.t.	P_c^{Earth}	Chamber pressure (MPa) Earth	3
	P_c^{Mars}	Chamber pressure (MPa) Mars	3
	$M_B^{ m Earth}$	Mixture ratio Earth	3
	$M_B^{ m Mars}$	Mixture ratio Mars	3
	A_t	Throat area (m ²)	1
	$M_e^{ m Earth}$	Exit Mach number Earth	3
	$M_e^{ m Mars}$	Exit Mach number Mars	3
	d_n^{Earth}	Thrust directions Earth	9
	T_{b}^{Earth}	Earth burn time (s)	3
	d_n^{Mars}	Thrust directions Mars	9
	T_{b}^{Mars}	Mars burn time (s)	3
	TOF	Time of flight (day)	3
	m^0	Fuel mass before flight (kg)	3
		Total Design Variables	49
Subject to	$R_{ m mag} \leq 3000$	Center of Mars to spacecraft (km)	3
	$m^{\mathrm{excess}} \ge 200$	Forced excess fuel (kg)	3
	$ V_{\mathrm{x,y,z}} \le 0.01$	Spacecraft relative velocity (km/s)	9
	$A_e^{\mathrm{Earth}} = A_e^{\mathrm{Mars}}$	Earth-Mars exit areas equal	3
	$A_e^{\text{Earth}}(\text{May}) = A_e^{\text{Earth}}(\text{Jul})$	May-Jul exit areas equal	1
	$A_e^{\text{Earth}}(\text{May}) = A_e^{\text{Earth}}(\text{Sep})$	May-Sep exit areas equal	1
		Total Constraints	20

Multi-point optimization compromised the engine size between the three departure dates

Function/Variable	May	July	September
$m_b (\mathrm{kg})$	4190	2692	5707
$R_{\rm mag}~({\rm km})$	3009	2873	3047
$m^{ m excess}$ (kg)	200.0	200.0	200.0
$ V_{\rm x} $ (km/s)	< 0.01	< 0.01	< 0.01
$ V_{\rm y} $ (km/s)	< 0.01	< 0.01	< 0.01
$ V_{\rm z} $ (km/s)	< 0.01	< 0.01	< 0.01
$ A_e^{\text{Earth}} - A_e^{\text{Mars}} $	$< 10^{-8}$	$< 10^{-8}$	$< 10^{-8}$
F_{Earth} (N)	35610	26602	45450
F_{Mars} (N)	12071	9518	9563
$I_{\rm sp}$ (s)	475.2	475.4	475.1
$A^{\hat{e}}/A_t$	113.8	113.8	113.8
m ^{engine} (kg)	136.9	136.9	136.9

Optimization Type	Throat Area (m^2)	Expansion ratio
May (single point)	0.003222	153.4
July (single point)	0.001752	237.1
September (single point)	0.004701	112.5
Multi-point	0.004698	113.8

Multi-point optimization verification (1/2)

- Engine design for one date might work poorly for another
- This final optimization answers this question
- Uses the engine geometry generated by one date and uses it in coupled optimization of another date
- Appendix shows optimized A_t and M_e for any Coupled MR optimization
- These three values fixed and used in a coupled optimization for other dates

	Function/Variable	Description	Quantity
Minimize	m _b	Total fuel burned (kg)	1
w.r.t	P_c^{Earth}	Chamber pressure (MPa) Earth	1
	P_c^{Mars}	Chamber pressure (MPa) Mars	1
	$M_R^{\rm Earth}$	Mixture ratio Earth	1
	$M_R^{ m Mars}$	Mixture ratio Mars	1
	d_n^{Earth}	Thrust directions Earth	3
	T_{h}^{Earth}	Earth burn time (s)	1
	d_n^{Mars}	Thrust directions Mars	3
	T_{b}^{Mars}	Mars burn time (s)	1
	TOF	Time of flight (day)	1
	m^0	Fuel mass before flight (kg)	1
		Total Design Variables	14
Subject to	R < 3000	Center of Mars to spacecraft (km)	1
Subject to	$\Lambda_{\rm mag} \leq 5000$	Earned among fuel (km)	1
	$m^{\text{minimage}} \ge 200$	Forced excess fuel (kg)	1
	$V V_{x,y,z} \le 0.01$	Spacecraft relative velocity (km/s)	3
	$A_e^{\text{Earth}} = A_e^{\text{Mars}}$	Earth-Mars exit areas equal	1
		Total Constraints	6

Multi-point optimization verification (2/2)

- Diagonal entries are Coupled MR cases for each respective date
- Every other entry was a fixed engine geometry from another date
- NA terms come from infeasible solutions
 due to DV limit violations
- Namely the Earth burn chamber pressure due to engine sizing
 - Larger thrust = Larger engine size
- Single point optimizations made engines
 big enough for specific date

Engine Design	Used in May 27 th	Used in July 27 th	Used in September 8 th
May 27 th	4014	2588	NA
July 27 th	NA	2462	NA
September 8 th	4208	2702	5734

Summary

- Developed an efficient method to simultaneously optimize spacecraft trajectory and systems by combining GMAT and OpenMDAO.
- The more design freedom given to the engine design the more fuel reduction was achieved. The coupled engine and trajectory optimizations obtained 16-20% more fuel burn reduction than the separate optimizations.
- This study can be extended to more spacecraft onboard systems and has the potential to enable larger design freedom for more efficient spacecraft missions.

Future work: develop the capability to consider discrete design variables in OpenMDAO

Coupled genetic algorithm and gradient-based optimization framework in OpenMDAO

More MDO results will be presented at Mphys workshop

Wing-propeller multi-component aerodynamic optimization

Thank You