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Space missions need to design spacecraft 
system and trajectory
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NASA Artemis II Mission Design

CubeSat Design

https://exploredeepspace.com/deep-space-mission/artemis-missions/

https://techcrunch.com/2019/07/29/tesseract-makes-spacecraft-propulsion-smaller-
greener-stronger/



Existing studies optimized trajectory and systems separately
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Recent studies in this field:
 Frank et al. [2017] optimize rocket engine only.

 Hwang et al. [2014] optimize multiple systems. 

 Izzo et al. [2015] optimize trajectory only.

 Darani & Abdelkhalik [2018] optimize trajectory only.

 Lamroqere et al. [2014] optimize trajectory only.

Objective: Use OpenMDAO to optimize the trajectory and system 
simultaneously with a high number of design variables.

Three-impulse transfer orbit
(Darani & Abelkhalik [2018])



We developed a coupled spacecraft system and trajectory
optimization framework using OpenMDAO
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We used NASA’s General Mission Analysis Tool GMAT
to compute the spacecraft trajectory
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 Open-source package developed by NASA

 Configure spacecrafts, force models, and other 

spacecraft hardware

 Mission sequence to simulate spacecraft

 User interaction: 
 Graphical user interface (GUI)

 Python API

 Fixed mission sequence created

 Interplanetary mission to Mars used in this study

https://sourceforge.net/projects/gmat/files/GMAT/GMAT-R2016a/



We developed an analytical rocket engine model (1/2)
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 Spacecraft system being coupled

 Implemented as a rocket engine model 

in Python

 Exit Mach number used as input instead 

of exit area. Allows engine model to be 

explicit.

 Exit area computed as output and 

constrained during optimization



We developed an analytical rocket engine model (2/2)
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 Surrogate model created to compute
 Chamber temperature

 Specific heat ratio

 Gas constant

 500 sample points generated using various 

chamber pressure and mixture ratios 

 Rocket Propulsion Analysis tool (RPA) was run 

with each sample point 

 RBF Surrogate model was trained with RPA 

outputs

 Assumed constant composition in the nozzle



The N2 diagram of the coupled optimization
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https://openmdao.org/



We developed a Spacecraft Mission Optimization Tool 
called SMOT
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 We developed a python interface 
combing GMAT and OpenMDAO

 GMAT acts as trajectory analysis tool
 OpenMDAO acts as the optimizer

 All components defined
 Optimizer: SNOPT

 Python runscript is how to interact 
with SMOT
 Tells OpenMDAO which trajectory component or 

mission to optimize 
 Set up initial conditions
 Modify constraints

 Currently only one trajectory 
component in SMOT
 Interplanetary mission to Mars



Results
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 Mission set up:
 Two impulsive burns
 No fly-bys considered
 Sun only gravitational body

 Three different departure days studied
 May 27th , 2020
 July 27th , 2020
 September 8th , 2020

 Two optimization types
 Single point
 Multi-point

 Objective to reach Mars with smallest amount 
of fuel burned

 Constraints
 3000 km from Mars
 0.01 km/s relative velocity
 Exit areas equal GMAT GUI



Single Point Optimizations
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 Five different optimization configurations

 [1] Trajectory
 ISP fixed; all other engine parameters neglected

 [2] Fixed Engine Geometry (FEG)
 Engine geometry fixed; chamber pressure allowed to change

 [3] Fixed Engine Geometry MR
 Engine geometry fixed; chamber pressure and mixture ratio 

allowed to change

 [4] Coupled
 Coupled trajectory and full engine optimization, but mixture 

ratio must be equal

 [5] Coupled MR
 Coupled trajectory and full engine optimization

 Optimization formulation for Coupled MR 

can be seen



Coupled optimization used 25% less fuel than the 
trajectory-only case: May 27, 2020
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Comparison between the baseline and optimized 
trajectories: May 27, 2020
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Initial conditions Coupled MR trajectory

Earth Thrust: 56360 (N)
Mars Thrust:  20590 (N)
TOF:  200 (d)
Fuel burn: 9000 (kg)

Earth Thrust:  31520 (N)
Mars Thrust:  6399 (N)
TOF:  258.6 (d)
Fuel burn: 4014 (kg)



Coupled optimizations outperformed the trajectory-only 
case for each departure date
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Coupled optimization uses 28%
less fuel than the trajectory only case: July 

Coupled optimization uses 22%
less fuel than the trajectory only case: Sep



Trajectory and Engine separate optimizations
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 Final single point optimization to be compared

 How traditional trajectory and engine 

optimizations are done

 Trajectory optimization run first

 Engine optimization constrained given thrust 

magnitudes 

 Fuel burned calculated using mass flow rate 

and burn time from trajectory optimization



Coupled optimizations outperformed the trajectory and 
engine separate optimizations
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 Results are between the FEG and FEG 

MR case for each date

 Both coupled optimizations are far 

superior

 Coupled MR shown for comparison

 Clearly shows the benefit of coupling 

both disciplines

 DV’s and constraints are the same 

for both shown optimizations

 Only difference is the coupling



Multi-point optimization
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 Single point optimization worked well for 

specific departure date

 Multi-point combines all three departure 

dates

 Objective function is average fuel 

burned from all three dates 

 Formulation similar to Coupled MR of 

single point optimization

 Each date has it own design variables 

and constraints, except throat area 



Multi-point optimization compromised the engine size 
between the three departure dates
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Optimization Type Throat Area (𝒎𝒎𝟐𝟐) Expansion ratio
May (single point) 0.003222 153.4
July (single point) 0.001752 237.1

September (single point) 0.004701 112.5

Multi-point 0.004698 113.8



Multi-point optimization verification (1/2)
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 Engine design for one date might work 

poorly for another 

 This final optimization answers this 

question

 Uses the engine geometry generated by 

one date and uses it in coupled 

optimization of another date

 Appendix shows optimized At and Me for 

any Coupled MR optimization

 These three values fixed and used in a 

coupled optimization for other dates 



Multi-point optimization verification (2/2)
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 Diagonal entries are Coupled MR cases 

for each respective date

 Every other entry was a fixed engine 

geometry from another date

 NA terms come from infeasible solutions 

due to DV limit violations

 Namely the Earth burn chamber pressure 

due to engine sizing
 Larger thrust = Larger engine size

 Single point optimizations made engines 

big enough for specific date 
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Summary

 Developed an efficient method to simultaneously optimize spacecraft 
trajectory and systems by combining GMAT and OpenMDAO.

 The more design freedom given to the engine design the more fuel 
reduction was achieved. The coupled engine and trajectory 
optimizations obtained 16-20% more fuel burn reduction than the 
separate optimizations.

 This study can be extended to more spacecraft onboard systems and 
has the potential to enable larger design freedom for more efficient 
spacecraft missions.



Future work: develop the capability to consider discrete 
design variables in OpenMDAO
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MGA trajectory with free number of DSMs
(Darani & Abelkhalik [2018])

Current mission framework 
(No DSMs or gravity assists)



Coupled genetic algorithm and gradient-based optimization 
framework in OpenMDAO
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More MDO results will be presented at Mphys workshop
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Wing-propeller multi-component aerodynamic optimization

UAV propeller aerostructural optimization
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Thank You
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