

Mphys: Standardizing High-fidelity Optimization with OpenMDAO

Kevin Jacobson NASA Langley Research Center

2022 OpenMDAO Workshop

www.nasa.gov

2

State of High-fidelity Coupling in MDAO

Industry regularly performs single discipline high-fidelity modeling in MDAO

Sequential aerodynamic shape optimization and structural sizing

State-of-the-art research shows benefit of coupled high-fidelity sensitivities

- Let the optimizer see the interactions of disciplines
- Coupling 2 or 3 disciplines
- Small subset of required design conditions and constraint types

Everyone in high-fidelity MDAO does their own implementation

- Difficult to implement and extend
- Difficult to transition research developments to industry users

$$\begin{aligned} \frac{df}{d\mathbf{x}} &= \left\{ \frac{\partial f}{\partial \mathbf{x}_{A,0}} + \sum_{k=1}^{N} \left[\left(\psi_{D}^{(k)} \right)^{T} \frac{\partial \mathbf{D}^{(k)}}{\partial \mathbf{x}_{A,0}} + \left(\psi_{R}^{(k)} \right)^{T} \frac{\partial \mathbf{R}^{(k)}}{\partial \mathbf{x}_{A,0}} + \left(\psi_{E}^{(k)} \right)^{T} \frac{\partial \mathbf{E}^{(k)}}{\partial \mathbf{x}_{A,0}} \right. \\ &+ \left(\psi_{L}^{(k)} \right)^{T} \frac{\partial \mathbf{L}^{(k)}}{\partial \mathbf{x}_{A,0}} + \left(\psi_{G}^{(k)} \right)^{T} \frac{\partial \mathbf{G}^{(k)}}{\partial \mathbf{x}_{A,0}} \right] + \left(\psi_{G}^{(0)} \right)^{T} \frac{\partial \mathbf{G}^{(0)}}{\partial \mathbf{x}_{A,0}} \right\} \frac{\partial \mathbf{x}_{A,0}}{\partial \mathbf{x}} \\ &+ \left\{ \frac{\partial f}{\partial \mathbf{x}_{S,0}} + \sum_{k=1}^{N} \left[\left(\psi_{D}^{(k)} \right)^{T} \frac{\partial \mathbf{D}^{(k)}}{\partial \mathbf{x}_{S,0}} + \left(\psi_{L}^{(k)} \right)^{T} \frac{\partial \mathbf{L}^{(k)}}{\partial \mathbf{x}_{S,0}} + \left(\psi_{S}^{(k)} \right)^{T} \frac{\partial \mathbf{S}^{(k)}}{\partial \mathbf{x}_{S,0}} \right] + \left(\psi_{S}^{(0)} \right)^{T} \frac{\partial \mathbf{S}^{(0)}}{\partial \mathbf{x}_{S,0}} \right\} \frac{\partial \mathbf{x}_{S,0}}{\partial \mathbf{x}} \end{aligned}$$

High-fidelity MDAO

CFD Vision 2030 - roadblocks to overcome:

- Computational cost
- Automation of high-fidelity modeling
 - » Mesh generation, lack of robustness of coupling methods, ...

Time and expertise required to develop high-fidelity MDAO capability
 » CFD-based MDAO limited by "one-off laborious, nonstandard interfaces"

Mphys: An OpenMDAO Library

The goals are:

- 1. Make high-fidelity coupling in MDAO more accessible
- 2. Create a modular high-fidelity MDAO environment
 - Standardize interfaces and automate coupling

Mphys is a collaborative effort

- » Open-source package developed with biweekly telecons
- » Participants from government, academia, and industry

The Mphys package provides:

- 1. A library of standardized multiphysics problems for OpenMDAO
- 2. Utilities to set up optimization problems

Mphys Models

- Mphys provides a library of standardized multiphysics Scenarios for OpenMDAO
- Multipoint Group holds Scenarios defining the model
- Builders are associated with a disciplinary solver
 - Produce OpenMDAO subsystems to populate the Scenario
- Model Assembly Process
 - 1. Pick which builders to use (select disciplinary solvers)
 - 2. Give these builders to desired Scenarios
 - 3. Add Scenarios to the Multipoint Group

Mphys Model Hierarchy

The Scenario groups hold components associated with a particular analysis condition

Mphys Model Hierarchy

Multipoint Groups hold a set of Scenarios and subsystems that interact with multiple Scenarios

How Mphys works under the hood

- Coupling variable named according to the Mphys standard
- Variables to be connected outside of a discipline's subsystem are tagged
 - "mphys_coupling", "mphys_coordinates", "mphys_input", or "mphys_result"

self.add_input('aoa', desc = 'Angle of attack', units='deg', tags=['mphys_input'])

- MphysGroup.mphys_add_subsystem()
 - Same as standard Group.add_subsystem() but tracks subsystem to promote tagged variables during configure

self.mphys_add_subsystem('disp_xfer', disp_xfer)
self.mphys_add_subsystem('geo_disp', geo_disp)
self.mphys_add_subsystem('aero', aero)
self.mphys_add_subsystem('load_xfer', load_xfer)
self.mphys_add_subsystem('struct', struct)

The CouplingGroup and Scenario use this tagged promotion

- Forms connections within the scenario
- Creates consistent access for inputs and results
 - » Raise inputs and results to Scenario level for easy and single-point connection by user: "cruise.aoa"

Standardized Interfaces in Mphys

• Types of coupled problems we're looking at so far:

- Interfaces are defined as vectors of coupling states at domain boundaries
 - Projection of these vectors from one mesh to another is handled by transfer components when necessary

Standardization of Interface Definitions

• Minimum set of data to allow as many solvers to fit interface as possible

Modularity with Mphys

*Partially integrated

What can you do with the modularity?

objective

mass

- Easier transfer of technology
- Work out high-fidelity optimization kinks with lower fidelities 2.
 - Scaling of DVs
 - Relative weight of competing objectives
 - Identify missing constraints
- Reduce cost of optimization (use HiFi only when necessary) 3.
 - Sequence physics during optimization
 - Multifidelity optimization

function **UQ – Gradient-enhanced Entropy Contour Location** 4.

Multifidelity flutter-constrained optimization 12

AGARD 445.6 Wing – Optimization Problem

- Inviscid, symmetric wing at Mach 0.5
 - Performed with Linearized Frequency Domain CFD (LFD) and Doublet Lattice Method (DLM) flutter analysis
- Minimize the mass subject to flutter constraint and fixed planform area

 $\begin{array}{ll} \min & mass\\ \text{subject to:} & KS_{f\,lutter} \leq 0\\ & A = A_0 \end{array}$

- 104 design variables
 - 100 structural thicknesses
 - 4 geometric (affect aero. and struct. meshes)

AGARD 445.6 – Optimized Designs

Impact of Mphys on OpenMDAO

- Mphys pushes the envelope for large parallel models in OpenMDAO
- Enhancements to OM due to Mphys
 - 1. Distributed variables instead of components
 - 2. Jacobian-vector product method at driver level for time-domain coupling
 - 3. Change to parallel reduction order to have consistent dual states when using different number of processors
 - 4. Redesign of recursive linear solver algorithms to avoid excess derivative computations
 - 5. Shape by connection for inputs and outputs
 - 6. Random vectors for directional derivatives
 - 7. Aitken relaxation in linear block Gauss-Seidel solver
 - + Many bug reports

Conclusions

Mphys is a collaborative effort to standardize coupling in high-fidelity MDAO

- Address "one-off laborious, nonstandard interfaces"
- Uses OpenMDAO for automated coupling analysis and sensitivities
- Provides utilities to simplify the optimization problem setup

Mphys provides flexibility

- Analyses and optimizations of the same problems with different solvers
 - » Swap different fidelities for the same discipline
- Different types of multiphysics problems

Learn more at the Mphys workshop tomorrow

Backup Slides

Automated coupling and coupled sensitivities

- Easier extension to new disciplines
- Separation of responsibility and expertise
- Low barrier to entry
 - Component development is simple for users
 - » Custom objectives or constraints
 - Provides diagnostic tools for visualizing and checking a problem setup
- Easier integrate into larger MDAO processes compared to previous one-off frameworks

Isogai Airfoil – Flutter-Constrained Optimization

• By changing the post-coupling groups, we can do flutter constraints

Aeroelastic Optimization with Physics Sequencing

NASA

Objective:

Minimize the mass of the wingbox

Constraints at maneuver condition:

- Trim: L=2.0W
- Stress: 1.5 * KS failure < 1.0

Design variables:

- Angle of attack (1)
- Wingbox panel thicknesses (240)

Optimization process:

- 1. Perform optimization with VLM
- 2. Use VLM result as initial condition for CFD aerodynamics

