

DYMOS DEVELOPMENT UPDATE

Rob Falck Development Team Lead

RECENT EFFORTS INVOLVING DYMOS

• Dymos will form the basis of NASA's next generation of open-source aircraft sizing tools.

- Pushing Dymos development efforts in
 - Analytic phases
 - Performance
 - Training

SPACECRAFT ATTITUDE OPTIMIZATION

- Given a 3DOF reference trajectory, minimize reaction wheel inputs to
 - Maintain pointing necessary for 3DOF solution
- Using Sympy to develop vehicle 6DOF equations of motion from first principles.
- Sympy-to-OpenMDAO Component is currently a custom script
 - Would the community use a more canonical OpenMDAO solution to interface with Sympy?
- Sympy's differentiation can be inefficient

SPACECRAFT ATTITUDE OPTIMIZATION

Current model

- 14 state variables
- 49 inputs
- 52 constant inputs specified via options
- 196 partial declarations
- Symbolic "source-code transformation" differentiation via Sympy
- Sympy's naive differentiation is inefficient
 - Some derivative involve 10,000 characters.
 - Repeated calculation of some sin & cos terms
 - Use common subexpression elimination!
 - sympy.cse

FOCUS OF RECENT DEVELOPMENT

PHASE LINKAGE REPORT

- See how phases are linked via constraint or connection.
- Identify errant linkages between fixed quantities.

LINKAGE REPORT RACECAR PROBLEM

- Example of Linkages for racecar example.
- "Minimize track lap time subject to returning to the same initial point."

TIMESERIES & CONSTRAINT EXPRESSIONS

• User-defined expressions as timeseries outputs.

- - phase.add_timeseries_output('mach = sos / v')
- No need to change the ODE system
- Evaluated by ExecComp
- Expressions can be used as constraints.

phase.add_boundary_constraint('bc0=x-p', loc='final', equals=0)

phase.add_path_constraint('pc0 = x - min_x', lower=0, ref=1000)

SHOOTING METHODS

- We may want physical validity without optimization.
 - Get physically valid results with run_model
 - Reduce the degrees of freedom for the optimizer
- simulate uses scipy.integrate.solve_ivp to propagate trajectories
 - Does not propagate derivatives
- Option solve_segments can be used with pseudospectral transcriptions to solve defects with a Newton solver.
 - Subject to grid accuracy issues
 - What if the solver doesn't converge?

EXPLICIT SHOOTING

The ExplicitShooting transcription provides fixedstep integration.

Propagates derivatives of final state value in a segment wrt segment initial states, initial time and duration, parameters, and control values.

✓ No convergence issue

- Error in a step rather than failing to converge
- Allows for enforcement of path constraints at segment bounds.
- Significantly slower than pseudospectral methods.
- Prone to getting stuck in the design space
 - Local extrema
 - Singularities
- -What about grid issues...adaptive step?

ANALYTIC PHASES

- Sometimes you know the solution to your ODE through an analytic expression
 - Breguet Range
 - 2-body orbital motion
- This can be accomplished by a simple OpenMDAO system.
- Allow system with no integrated states in a trajectory.
 - Boundary & Path constraints
 - Phase linkages
 - Variable continuity plots

FUTURE DEVELOPMENT EFFORTS

RESTART IMPROVEMENTS

- Dymos methods work best with initial guesses
 - Previous optimization on a nearby solution
 - Explicit simulation
- Current restart capability interpolates design variables but not implicit outputs within the model
- Find a simple way of mapping phases in a recording file to phases in a run case when there's not a 1:1 mapping.

ADAPTIVE-STEP SHOOTING METHODS

- Use state-transition matrix approach to propagate sensitivities across each segment?
 - Errors with changing step size
 - Change in step size not accounted for in derivatives
 - On the Accuracy of Trajectory State-Transition Matrices, Pellegrini and Russell, August 2015
 - Adaptive-step RK methods are nondifferentiable

•
$$h = 0.9 \cdot h \cdot min\left(max\left(\sqrt{\left(\frac{tol}{2|\tau_{n+1}|}\right)}, 0.3\right)\right)$$

- $h = min(t + h, t_f)$
- Step size *h* is an implicit output of each step

TRAINING

- Develop series of videos on trajectory optimization
 - Build on John's excellent PracticalMDO series
 - Best practices
 - Difference between pseudospectral methods and simulation
 - Importance of parameterization
 - Leveraging sparsity

