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My thesis objective was to advance the state of the art 
in CFD-based aeropropulsive design optimization
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Developed a benchmark podded fan design,
which is based on the STARC-ABL’s BLI propulsor 
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Developed two coupled aeropropulsive models:
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Actuator Zone Boundary Condition



Used NASA’s framework 
to implement these coupled models 
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The actuator-zone (AZ) version works with 
momentum and energy source terms in the CFD model
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The aerodynamic and propulsion models are 
fully-coupled using momentum and energy terms
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The boundary-condition (BC) version works with 
subsonic outflow and inflow BCs in the CFD model
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The fully-coupled model is achieved using 
constraints that enforce conservation across the fan
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Single-point optimization structure only includes components 
to modify the design geometry and a single-MDA
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Only difference in the BC version compared to the AZ version 
is the inclusion of BC values and constraints

AZ Version BC Version



The geometry is parametrized using OpenVSP
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Single-point optimizations minimize power at cruise 
at a target net thrust and fan pressure ratio (FPR)
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AZ Version BC Version



We performed a parameter sweep of 5 net thrust and 5 FPR values 
for a total of 25 optimizations with each model
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AZ Version BC Version



Multipoint optimizations simulate the same design
at multiple flight conditions
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Multipoint optimizations also include 
a fan-face distortion constraint at rolling take off (RTO)
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Multipoint optimization reduced the fan face distortion at RTO 
by 35%, at the cost of 0.12% higher power at cruise
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Multipoint design optimization can significantly improve off-design performance
at the cost of a small performance penalty at the design point
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We performed 18 CFD-based 
aeropropulsive design optimizations
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We computed the PSC values 
at 9 design points
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Saja Kaiyoom is using the methodology on other 
coupled aircraft design problems



Andrew Lamkin is developing the capability further
to optimize complete turbofan engines
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The turbofan model uses 
both AZ and BC coupling approaches
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We are making steady progress in 
complete engine optimization!
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The optimizer finds a shock free design at the optimum 
and minimizes variations in pressure coefficient along the nacelle.
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Equality constraints commonly show up
in engineering design optimization
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Minimize 𝐶!

with respect to 𝑋"#$%&
𝛼

subject to 𝐶' = 𝐶'∗



The lift constraint can be satisfied 
by solving an additional “balance” equation
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Minimize 𝐶!

with respect to 𝑋"#$%&
𝛼

subject to 𝐶' = 𝐶'∗

𝑅)*! 𝑢)*! , 𝛼 = 0

𝑅)! 𝑢)*! , 𝛼 = 𝐶' − 𝐶'∗ = 0



Models with balance components 
can be divided into two “disciplines”
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Discipline 1 u1 R1(u1, u2)

u2 Discipline 2 R2(u1, u2)



The nonlinear block Gauss–Seidel method
is the most common approach for solving these models
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Solve R1(u1, u2) = 0 u1 u1

R1 Discipline 1

u2 Solve R2(u1, u2) = 0 u2

R2 Discipline 2

Each disciplinary model is solved individually, 
and the process is iterated until the coupled system converges



Solve R1(u1, u2) = 0 u1 u1

R1 Discipline 1

u2 Solve R2(u1, u2) = 0 u2

R2 Discipline 2

Gauss–Seidel-based methods 
cannot be used with saddle point problems
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Saddle point problems appear when a given discipline 
cannot be solved by just varying its own states



The diagonal sub-block of the Jacobian matrix
is non-invertible with saddle point problems
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Solve R1(u1, u2) = 0 u1 u1

R1 Discipline 1

u2 Solve R2(u1, u2) = 0 u2

R2 Discipline 2

The residuals of the second discipline 
do not depend on its own states directly

𝑅)*! 𝑢)*! , 𝛼 = 0

𝑅)! 𝑢)*! , 𝛼 = 𝐶' − 𝐶'∗ = 0



1. Solve by varying

2. Update   using the Schur complement:

3. Repeat until convergence

The NSC solver iterates between 
the two disciplines until convergence
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The benchmark aeropropulsive model uses 
subsonic outflow and inflow BCs in the CFD model
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The fully-coupled model contains balance equations
that enforce conservation across the fan

uaero, ubalance uprop

CFD Flow Conditions Flow Conditions Raero

Propulsion Fan Parameters Rprop

Balance Rbalance



We use the NSC solver together with 
the specialized disciplinary solvers
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The solver partially converges all systems 
until the coupled system reaches convergence
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