
Conceptual
Aircraft Design
in OpenMDAO

Eytan Adler

2022 OpenMDAO Workshop
NASA Glenn

October 24–25th

2Eviation Alice

Aerodynamics
Propulsion

Weight

Cost?
Thermal

Conceptual design is multidisciplinary

3

OpenConcept
Open-source conceptual aircraft
design tool built on OpenMDAO

Who is ”we”?

Ben Brelje

4

Hybrid electric aircraft design optimization

5Brelje and Martins, “Development of a Conceptual Design Model for Aircraft Electric Propulsion with Efficient Gradients”, 2018.

LSFB Planes Pictures
Licensed under CC BY-NC-ND 2.0

But we can do a lot more…

6

Adler, Brelje, and Martins, “Thermal Management
System Optimization for a Parallel Hybrid Aircraft

Considering Mission Fuel Burn”, 2022.

Start with a parallel hybrid turbofan

7

Adler, Brelje, and Martins, “Thermal Management
System Optimization for a Parallel Hybrid Aircraft

Considering Mission Fuel Burn”, 2022.

Battery powers the electric motor

8

Adler, Brelje, and Martins, “Thermal Management
System Optimization for a Parallel Hybrid Aircraft

Considering Mission Fuel Burn”, 2022.

Battery powers the electric motor

9

Adler, Brelje, and Martins, “Thermal Management
System Optimization for a Parallel Hybrid Aircraft

Considering Mission Fuel Burn”, 2022.

Cool the battery with a refrigerator

10

Adler, Brelje, and Martins, “Thermal Management
System Optimization for a Parallel Hybrid Aircraft

Considering Mission Fuel Burn”, 2022.

Refrigerator dumps heat into freestream

11

Adler, Brelje, and Martins, “Thermal Management
System Optimization for a Parallel Hybrid Aircraft

Considering Mission Fuel Burn”, 2022.

Same for the electric motor

12

Adler, Brelje, and Martins, “Thermal Management
System Optimization for a Parallel Hybrid Aircraft

Considering Mission Fuel Burn”, 2022.

…and the fault protection

13

Adler, Brelje, and Martins, “Thermal Management
System Optimization for a Parallel Hybrid Aircraft

Considering Mission Fuel Burn”, 2022.

And there is still more complexity

14Adler, Brelje, and Martins, “Thermal Management System Optimization for a Parallel Hybrid Aircraft Considering Mission Fuel Burn”, 2022.

• All in a mission analysis
• Battery and motor can accumulate

heat (not assuming steady state)
• Chiller bypass, variable exit duct,

and engine hybrid fraction can be
controlled during the mission

After running a mission, we can…

15

…analyze component temperatures

16

…and optimize duct area in time

17

18

Code flexibility

Mission analysis

Lessons learned

Code flexibility

Mission analysis

Lessons learned

21

Flexible Easy to use

• Use on a wide
range of problems

• Steeper learning curve
• Longer case setup time

• Well-defined
interfaces

• Easier to learn
• Simpler setup

22

Flexible Easy to use

OpenConcept

Aircraft model only has a few requirements

23

• Computes drag, thrust, and weight from CL and throttle
• Atmospheric and flight conditions available as inputs

class Aircraft(om.Group):
def setup(self):

self.add_subsystem("aero", AerodynamicModel()) # compute drag using lift coefficient
self.add_subsystem("prop", PropulsionModel()) # compute thrust using throttle

intfuel = self.add_subsystem(
"intfuel",
Integrator(num_nodes=21, method="simpson", diff_units="s", time_setup="duration”),

)
intfuel.add_integrand("fuel_used", rate_name="fuel_flow", units="kg")
self.connect("prop.fuel_flow", "intfuel.fuel_flow")

self.add_subsystem("weight", WeightModel()) # compute weight

Must compute drag and thrust

24

• Computes drag, thrust, and weight from CL and throttle
• Atmospheric and flight conditions available as inputs

class Aircraft(om.Group):
def setup(self):

self.add_subsystem("aero", AerodynamicModel()) # compute drag using lift coefficient
self.add_subsystem("prop", PropulsionModel()) # compute thrust using throttle

intfuel = self.add_subsystem(
"intfuel",
Integrator(num_nodes=21, method="simpson", diff_units="s", time_setup="duration”),

)
intfuel.add_integrand("fuel_used", rate_name="fuel_flow", units="kg")
self.connect("prop.fuel_flow", "intfuel.fuel_flow")

self.add_subsystem("weight", WeightModel()) # compute weight

Must compute weight

25

• Computes drag, thrust, and weight from CL and throttle
• Atmospheric and flight conditions available as inputs

class Aircraft(om.Group):
def setup(self):

self.add_subsystem("aero", AerodynamicModel()) # compute drag using lift coefficient
self.add_subsystem("prop", PropulsionModel()) # compute thrust using throttle

intfuel = self.add_subsystem(
"intfuel",
Integrator(num_nodes=21, method="simpson", diff_units="s", time_setup="duration”),

)
intfuel.add_integrand("fuel_used", rate_name="fuel_flow", units="kg")
self.connect("prop.fuel_flow", "intfuel.fuel_flow")

self.add_subsystem("weight", WeightModel()) # compute weight

Can use OpenConcept’s integrator for fuel

26

• Computes drag, thrust, and weight from CL and throttle
• Atmospheric and flight conditions available as inputs

class Aircraft(om.Group):
def setup(self):

self.add_subsystem("aero", AerodynamicModel()) # compute drag using lift coefficient
self.add_subsystem("prop", PropulsionModel()) # compute thrust using throttle

intfuel = self.add_subsystem(
"intfuel",
Integrator(num_nodes=21, method="simpson", diff_units="s", time_setup="duration”),

)
intfuel.add_integrand("fuel_used", rate_name="fuel_flow", units="kg")
self.connect("prop.fuel_flow", "intfuel.fuel_flow")

self.add_subsystem("weight", WeightModel()) # compute weight

Mission analysis Group is the top level

27

class Mission(om.Group):
def setup(self):

Define variables from airplane data file
ac_vars = self.add_subsystem("ac_vars", DictIndepVarComp(acdata), promotes_outputs=["*"])
ac_vars.add_output_from_dict("ac|aero|polar|e")
ac_vars.add_output_from_dict("ac|aero|polar|CD0")
ac_vars.add_output_from_dict("ac|geom|wing|S_ref")
ac_vars.add_output_from_dict("ac|geom|wing|AR")

Run a full mission analysis including takeoff, climb, cruise, and descent
self.add_subsystem(

"mission_analysis",
FullMissionAnalysis(num_nodes=21, aircraft_model=Aircraft),
promotes_inputs=["*"],
promotes_outputs=["*"],

)

Pull some variables from a data file

28

class Mission(om.Group):
def setup(self):

Define variables from airplane data file
ac_vars = self.add_subsystem("ac_vars", DictIndepVarComp(acdata), promotes_outputs=["*"])
ac_vars.add_output_from_dict("ac|aero|polar|e")
ac_vars.add_output_from_dict("ac|aero|polar|CD0")
ac_vars.add_output_from_dict("ac|geom|wing|S_ref")
ac_vars.add_output_from_dict("ac|geom|wing|AR")

Run a full mission analysis including takeoff, climb, cruise, and descent
self.add_subsystem(

"mission_analysis",
FullMissionAnalysis(num_nodes=21, aircraft_model=Aircraft),
promotes_inputs=["*"],
promotes_outputs=["*"],

)

Add mission analysis group

29

class Mission(om.Group):
def setup(self):

Define variables from airplane data file
ac_vars = self.add_subsystem("ac_vars", DictIndepVarComp(acdata), promotes_outputs=["*"])
ac_vars.add_output_from_dict("ac|aero|polar|e")
ac_vars.add_output_from_dict("ac|aero|polar|CD0")
ac_vars.add_output_from_dict("ac|geom|wing|S_ref")
ac_vars.add_output_from_dict("ac|geom|wing|AR")

Run a full mission analysis including takeoff, climb, cruise, and descent
self.add_subsystem(

"mission_analysis",
FullMissionAnalysis(num_nodes=21, aircraft_model=Aircraft),
promotes_inputs=["*"],
promotes_outputs=["*"],

)

Code flexibility

Mission analysis

Lessons learned

What is mission analysis?

• Simulate aircraft flying mission while satisfying physics
• Determine fuel burn
• Analyze component temperatures, hydrogen boil off, etc.

31

Takeoff

Climb

Cruise

Descent

We assume steady flight at integration points

• This avoids working directly
with the equations of motion

• Validated against real world
data from Pipistrel

32Brelje, “Multidisciplinary Design Optimization of Electric Aircraft Considering Systems Modeling and Packaging”, 2021.

balance forces
at each node

Basic mission setup

33

Basic mission setup

34

Basic mission setup

35

Basic mission setup

36

Solving an individual flight phase (climb)

37

Integrator solves for altitude and range

38

Integrator uses Simpson’s rule

39

Integrator uses Simpson’s rule

40

Integrator uses Simpson’s rule

41

Integrator uses Simpson’s rule

42

Integrator uses Simpson’s rule

43

Integrator uses Simpson’s rule

44

Set phase duration so it ends at cruise altitude

45

Atmospherics computes flight conditions

46

Aircraft model computes forces

47

Net forces driven to zero by Newton solver

48

We usually use a single Newton solver

49

The integrator is also used elsewhere

• Integrate fuel flow to
compute fuel burn

• Integrate heat flows to compute
component temperature

• Brelje magic automatically finds states
within aircraft model to integrate and
links them across mission phases

50

TM

intfuel = self.add_subsystem(
"intfuel",
Integrator(num_nodes=21, method="simpson", diff_units="s", time_setup="duration”),

)
intfuel.add_integrand("fuel_used", rate_name="fuel_flow", units="kg")

Code flexibility

Mission analysis

Lessons learned

Not designed for trajectory optimization

52

Optimize cruise airspeed
and vertical speed

We linearly interpolate within phases

53

Climb Descent

Takeoff

Cruise

We linearly interpolate within phases

54

Climb Descent

Takeoff

Cruise

Vectorization for efficiency

55

class SimpleMotor(om.ExplicitComponent):
def initialize(self):

self.options.declare("num_nodes", default=11)
self.options.declare("efficiency", default=0.95)

def setup(self):
nn = self.options["num_nodes"]

self.add_input("throttle", shape=(nn,))
self.add_input("elec_power_rating", units="W")

self.add_output("shaft_power_out", units="W", shape=(nn,))
self.add_output("elec_load", units="W", shape=(nn,))

declare sparse partials here

def compute(self, inputs, outputs):
outputs["shaft_power_out"] = inputs["throttle"] * inputs["elec_power_rating"] * self.options["efficiency"]
outputs["elec_load"] = inputs["throttle"] * inputs["elec_power_rating"]

Propulsion modeling with surrogates

• Detailed turbomachinery and
propulsion models use offline
surrogates (often pyCycle)

• Avoids challenges with
robustness and cost

56

What is best for mission analysis?

• OpenConcept’s approach
• Fast
• Robust-ish
• Physics valid once Newton solver converges (no optimization required)

• Trajectory optimization-style approach
• Not as robust
• More general representation of mission profile
• Better for mission profile optimization

57

We developed a tool for efficient conceptual
aircraft design with OpenMDAO

Rapidly optimize aircraft architectures

Steady flight mission phases with
predefined profile

Hybrid mission analysis
approach for the best of both?

58

59

github.com/mdolab/openconcept

	Conceptual Aircraft Design�in OpenMDAO
	Conceptual design is multidisciplinary
	OpenConcept
	Who is ”we”?
	Hybrid electric aircraft design optimization
	But we can do a lot more…
	Start with a parallel hybrid turbofan
	Battery powers the electric motor
	Battery powers the electric motor
	Cool the battery with a refrigerator
	Refrigerator dumps heat into freestream
	Same for the electric motor
	…and the fault protection
	And there is still more complexity
	After running a mission, we can…
	…analyze component temperatures
	…and optimize duct area in time
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Aircraft model only has a few requirements
	Must compute drag and thrust
	Must compute weight
	Can use OpenConcept’s integrator for fuel
	Mission analysis Group is the top level
	Pull some variables from a data file
	Add mission analysis group
	Slide Number 30
	What is mission analysis?
	We assume steady flight at integration points
	Basic mission setup
	Basic mission setup
	Basic mission setup
	Basic mission setup
	Solving an individual flight phase (climb)
	Integrator solves for altitude and range
	Integrator uses Simpson’s rule
	Integrator uses Simpson’s rule
	Integrator uses Simpson’s rule
	Integrator uses Simpson’s rule
	Integrator uses Simpson’s rule
	Integrator uses Simpson’s rule
	Set phase duration so it ends at cruise altitude
	Atmospherics computes flight conditions
	Aircraft model computes forces
	Net forces driven to zero by Newton solver
	We usually use a single Newton solver
	The integrator is also used elsewhere
	Slide Number 51
	Not designed for trajectory optimization
	We linearly interpolate within phases
	We linearly interpolate within phases
	Vectorization for efficiency
	Propulsion modeling with surrogates
	What is best for mission analysis?
	We developed a tool for efficient conceptual aircraft design with OpenMDAO
	Slide Number 59

