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OpenConcept
Open-source conceptual aircraft 
design tool built on OpenMDAO



Who is ”we”?

Ben Brelje
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Hybrid electric aircraft design optimization

5Brelje and Martins, “Development of a Conceptual Design Model for Aircraft Electric Propulsion with Efficient Gradients”, 2018.
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But we can do a lot more…
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Adler, Brelje, and Martins, “Thermal Management 
System Optimization for a Parallel Hybrid Aircraft 

Considering Mission Fuel Burn”, 2022.



Start with a parallel hybrid turbofan

7

Adler, Brelje, and Martins, “Thermal Management 
System Optimization for a Parallel Hybrid Aircraft 

Considering Mission Fuel Burn”, 2022.



Battery powers the electric motor
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Adler, Brelje, and Martins, “Thermal Management 
System Optimization for a Parallel Hybrid Aircraft 

Considering Mission Fuel Burn”, 2022.



Battery powers the electric motor
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Adler, Brelje, and Martins, “Thermal Management 
System Optimization for a Parallel Hybrid Aircraft 

Considering Mission Fuel Burn”, 2022.



Cool the battery with a refrigerator
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Adler, Brelje, and Martins, “Thermal Management 
System Optimization for a Parallel Hybrid Aircraft 

Considering Mission Fuel Burn”, 2022.



Refrigerator dumps heat into freestream
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Adler, Brelje, and Martins, “Thermal Management 
System Optimization for a Parallel Hybrid Aircraft 

Considering Mission Fuel Burn”, 2022.



Same for the electric motor
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Adler, Brelje, and Martins, “Thermal Management 
System Optimization for a Parallel Hybrid Aircraft 

Considering Mission Fuel Burn”, 2022.



…and the fault protection
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Adler, Brelje, and Martins, “Thermal Management 
System Optimization for a Parallel Hybrid Aircraft 

Considering Mission Fuel Burn”, 2022.



And there is still more complexity

14Adler, Brelje, and Martins, “Thermal Management System Optimization for a Parallel Hybrid Aircraft Considering Mission Fuel Burn”, 2022.

• All in a mission analysis
• Battery and motor can accumulate 

heat (not assuming steady state)
• Chiller bypass, variable exit duct, 

and engine hybrid fraction can be 
controlled during the mission



After running a mission, we can…
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…analyze component temperatures
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…and optimize duct area in time
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Mission analysis

Lessons learned
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Flexible Easy to use

• Use on a wide
range of problems

• Steeper learning curve
• Longer case setup time

• Well-defined 
interfaces

• Easier to learn
• Simpler setup
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Flexible Easy to use

OpenConcept



Aircraft model only has a few requirements
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• Computes drag, thrust, and weight from CL and throttle
• Atmospheric and flight conditions available as inputs

class Aircraft(om.Group):
def setup(self):

self.add_subsystem("aero", AerodynamicModel())    # compute drag using lift coefficient
self.add_subsystem("prop", PropulsionModel())     # compute thrust using throttle

intfuel = self.add_subsystem(
"intfuel",
Integrator(num_nodes=21, method="simpson", diff_units="s", time_setup="duration”),

)
intfuel.add_integrand("fuel_used", rate_name="fuel_flow", units="kg")
self.connect("prop.fuel_flow", "intfuel.fuel_flow")

self.add_subsystem("weight", WeightModel())       # compute weight



Must compute drag and thrust
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• Computes drag, thrust, and weight from CL and throttle
• Atmospheric and flight conditions available as inputs

class Aircraft(om.Group):
def setup(self):

self.add_subsystem("aero", AerodynamicModel())    # compute drag using lift coefficient
self.add_subsystem("prop", PropulsionModel())     # compute thrust using throttle

intfuel = self.add_subsystem(
"intfuel",
Integrator(num_nodes=21, method="simpson", diff_units="s", time_setup="duration”),

)
intfuel.add_integrand("fuel_used", rate_name="fuel_flow", units="kg")
self.connect("prop.fuel_flow", "intfuel.fuel_flow")

self.add_subsystem("weight", WeightModel())       # compute weight



Must compute weight
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• Computes drag, thrust, and weight from CL and throttle
• Atmospheric and flight conditions available as inputs

class Aircraft(om.Group):
def setup(self):

self.add_subsystem("aero", AerodynamicModel())    # compute drag using lift coefficient
self.add_subsystem("prop", PropulsionModel())     # compute thrust using throttle

intfuel = self.add_subsystem(
"intfuel",
Integrator(num_nodes=21, method="simpson", diff_units="s", time_setup="duration”),

)
intfuel.add_integrand("fuel_used", rate_name="fuel_flow", units="kg")
self.connect("prop.fuel_flow", "intfuel.fuel_flow")

self.add_subsystem("weight", WeightModel())       # compute weight



Can use OpenConcept’s integrator for fuel
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• Computes drag, thrust, and weight from CL and throttle
• Atmospheric and flight conditions available as inputs

class Aircraft(om.Group):
def setup(self):

self.add_subsystem("aero", AerodynamicModel())    # compute drag using lift coefficient
self.add_subsystem("prop", PropulsionModel())     # compute thrust using throttle

intfuel = self.add_subsystem(
"intfuel",
Integrator(num_nodes=21, method="simpson", diff_units="s", time_setup="duration”),

)
intfuel.add_integrand("fuel_used", rate_name="fuel_flow", units="kg")
self.connect("prop.fuel_flow", "intfuel.fuel_flow")

self.add_subsystem("weight", WeightModel())       # compute weight



Mission analysis Group is the top level
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class Mission(om.Group):
def setup(self):

# Define variables from airplane data file
ac_vars = self.add_subsystem("ac_vars", DictIndepVarComp(acdata), promotes_outputs=["*"])
ac_vars.add_output_from_dict("ac|aero|polar|e")
ac_vars.add_output_from_dict("ac|aero|polar|CD0")
ac_vars.add_output_from_dict("ac|geom|wing|S_ref")
ac_vars.add_output_from_dict("ac|geom|wing|AR")

# Run a full mission analysis including takeoff, climb, cruise, and descent
self.add_subsystem(

"mission_analysis",
FullMissionAnalysis(num_nodes=21, aircraft_model=Aircraft),
promotes_inputs=["*"],
promotes_outputs=["*"],

)



Pull some variables from a data file
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class Mission(om.Group):
def setup(self):

# Define variables from airplane data file
ac_vars = self.add_subsystem("ac_vars", DictIndepVarComp(acdata), promotes_outputs=["*"])
ac_vars.add_output_from_dict("ac|aero|polar|e")
ac_vars.add_output_from_dict("ac|aero|polar|CD0")
ac_vars.add_output_from_dict("ac|geom|wing|S_ref")
ac_vars.add_output_from_dict("ac|geom|wing|AR")

# Run a full mission analysis including takeoff, climb, cruise, and descent
self.add_subsystem(

"mission_analysis",
FullMissionAnalysis(num_nodes=21, aircraft_model=Aircraft),
promotes_inputs=["*"],
promotes_outputs=["*"],

)



Add mission analysis group
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class Mission(om.Group):
def setup(self):

# Define variables from airplane data file
ac_vars = self.add_subsystem("ac_vars", DictIndepVarComp(acdata), promotes_outputs=["*"])
ac_vars.add_output_from_dict("ac|aero|polar|e")
ac_vars.add_output_from_dict("ac|aero|polar|CD0")
ac_vars.add_output_from_dict("ac|geom|wing|S_ref")
ac_vars.add_output_from_dict("ac|geom|wing|AR")

# Run a full mission analysis including takeoff, climb, cruise, and descent
self.add_subsystem(

"mission_analysis",
FullMissionAnalysis(num_nodes=21, aircraft_model=Aircraft),
promotes_inputs=["*"],
promotes_outputs=["*"],

)



Code flexibility

Mission analysis

Lessons learned



What is mission analysis?

• Simulate aircraft flying mission while satisfying physics
• Determine fuel burn
• Analyze component temperatures, hydrogen boil off, etc.

31

Takeoff

Climb

Cruise

Descent



We assume steady flight at integration points

• This avoids working directly 
with the equations of motion

• Validated against real world 
data from Pipistrel

32Brelje, “Multidisciplinary Design Optimization of Electric Aircraft Considering Systems Modeling and Packaging”, 2021.

balance forces 
at each node



Basic mission setup
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Basic mission setup

34



Basic mission setup
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Basic mission setup
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Solving an individual flight phase (climb)
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Integrator solves for altitude and range
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Integrator uses Simpson’s rule
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Integrator uses Simpson’s rule
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Integrator uses Simpson’s rule
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Integrator uses Simpson’s rule
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Integrator uses Simpson’s rule
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Integrator uses Simpson’s rule
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Set phase duration so it ends at cruise altitude
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Atmospherics computes flight conditions
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Aircraft model computes forces
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Net forces driven to zero by Newton solver

48



We usually use a single Newton solver
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The integrator is also used elsewhere

• Integrate fuel flow to
compute fuel burn

• Integrate heat flows to compute 
component temperature

• Brelje magic   automatically finds states 
within aircraft model to integrate and 
links them across mission phases

50

TM

intfuel = self.add_subsystem(
"intfuel",
Integrator(num_nodes=21, method="simpson", diff_units="s", time_setup="duration”),

)
intfuel.add_integrand("fuel_used", rate_name="fuel_flow", units="kg")
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Mission analysis

Lessons learned



Not designed for trajectory optimization
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Optimize cruise airspeed 
and vertical speed



We linearly interpolate within phases
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Climb Descent

Takeoff

Cruise



We linearly interpolate within phases
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Climb Descent

Takeoff

Cruise



Vectorization for efficiency
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class SimpleMotor(om.ExplicitComponent):
def initialize(self):

self.options.declare("num_nodes", default=11)
self.options.declare("efficiency", default=0.95)

def setup(self):
nn = self.options["num_nodes"]

self.add_input("throttle", shape=(nn,))
self.add_input("elec_power_rating", units="W")

self.add_output("shaft_power_out", units="W", shape=(nn,))
self.add_output("elec_load", units="W", shape=(nn,))

# declare sparse partials here

def compute(self, inputs, outputs):
outputs["shaft_power_out"] = inputs["throttle"] * inputs["elec_power_rating"] * self.options["efficiency"]
outputs["elec_load"] = inputs["throttle"] * inputs["elec_power_rating"]



Propulsion modeling with surrogates

• Detailed turbomachinery and 
propulsion models use offline 
surrogates (often pyCycle)

• Avoids challenges with 
robustness and cost

56



What is best for mission analysis?

• OpenConcept’s approach
• Fast
• Robust-ish
• Physics valid once Newton solver converges (no optimization required)

• Trajectory optimization-style approach
• Not as robust
• More general representation of mission profile
• Better for mission profile optimization

57



We developed a tool for efficient conceptual 
aircraft design with OpenMDAO

Rapidly optimize aircraft architectures

Steady flight mission phases with 
predefined profile

Hybrid mission analysis
approach for the best of both?

58
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github.com/mdolab/openconcept
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