

## Conceptual Aircraft Design in OpenMDAO

Eytan Adler

2022 OpenMDAO Workshop NASA Glenn October 24–25<sup>th</sup>





#### **Conceptual design is multidisciplinary**

NBB2EV

Thermal

Cost?

#### Propulsion

#### Aerodynamics



Weight

**Eviation Alice** 

# OpenConcept

Open-source conceptual aircraft design tool built on OpenMDAO

| Search or jump to                                                                             | Pull requests Issues Marketpl            | lace Explore                                                                                                                                                                                                            | ¢ +• 🏚                                                                                                    |  |
|-----------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
| a mdolab / openconcept P<br>⇔ Code ⊙ issues th Pull re                                        |                                          | iki ① Security ⊠ Insights 🔞 Settings                                                                                                                                                                                    | ♀ Fork 24 + ☆ Star 21 +                                                                                   |  |
| P main → P 1 branch ⊙6 t                                                                      | ags                                      | Go to file Add file - Code -                                                                                                                                                                                            | About                                                                                                     |  |
| 🚱 eytanadler Changed image links in readme to absolute URLs 🗸 8a7661f on Aug 11 🕲 157 commits |                                          |                                                                                                                                                                                                                         | OpenConcept: A toolkit for conceptual<br>MDAO of aircraft with unconventional<br>propulsion architectures |  |
| github                                                                                        | Docs overhaul and refactor to organize   | code (#41) 2 months ago                                                                                                                                                                                                 |                                                                                                           |  |
| doc doc                                                                                       | Formatting and linting (#42)             | Formatting and linting (#42)     2 months ago       Bumped version to 1.0.0     2 months ago       Another attempt at coverage testing     4 years ago       Added ignore blame for formatting changes     2 months ago |                                                                                                           |  |
| openconcept                                                                                   | Bumped version to 1.0.0                  |                                                                                                                                                                                                                         |                                                                                                           |  |
| C .coveragerc                                                                                 | Another attempt at coverage testing      |                                                                                                                                                                                                                         |                                                                                                           |  |
| .git-blame-ignore-revs                                                                        | Added ignore blame for formatting char   |                                                                                                                                                                                                                         |                                                                                                           |  |
| 🖰 .gitignore                                                                                  | Formatting and linting (#42)             | Formatting and linting (#42) 2 months ago                                                                                                                                                                               |                                                                                                           |  |
| .readthedocs.yml                                                                              | Formatting and linting (#42)             | Formatting and linting (#42) 2 months ago                                                                                                                                                                               |                                                                                                           |  |
|                                                                                               | Initial commit                           | Initial commit 4 years ago                                                                                                                                                                                              |                                                                                                           |  |
| 🗋 pytest.ini                                                                                  | Ignore all pytest warnings related to de | Ignore all pytest warnings related to deprecating the numpy matrix cl 3 years ago                                                                                                                                       |                                                                                                           |  |
| 🗋 readme.md                                                                                   | Changed image links in readme to abso    | Changed image links in readme to absolute URLs 2 months ago                                                                                                                                                             |                                                                                                           |  |
| 🗅 setup.py                                                                                    | Formatting and linting (#42)             | Formatting and linting (#42) 2 months ago                                                                                                                                                                               |                                                                                                           |  |
| ≘ readme.md                                                                                   | 1                                        |                                                                                                                                                                                                                         | No packages published<br>Publish your first package                                                       |  |

#### OpenConcept - A conceptual design toolkit with efficient gradients implemented in the OpenMDAO framework

Languages

Python 100.0%

Contributors 5

🚳 🚯 🙂 🖗 🧕

O Build passing codecov Biss docs passing pypi v1.0.0 downloads 46/month

Authors: Benjamin J. Brelje and Eytan J. Adler

OpenConcept is a new toolkit for the conceptual design of aircraft. OpenConcept was developed in order to model and optimize aircraft with electric propulsion at low computational cost. The tools are built on top of NASA Glenn's OpenMDAO framework, which in turn is written in Python.

OpenConcept is capable of modeling a wide range of propulsion systems, including detailed thermal management systems. The following figure (from this paper) shows one such system that is modeled in the N3\_HybridSingleAisle\_Refrig.py example.



#### Who is "we"?



Ben Brelje

#### Hybrid electric aircraft design optimization





#### But we can do a lot more...

#### Start with a parallel hybrid turbofan



#### **Battery powers the electric motor**



#### **Battery powers the electric motor**



#### **Cool the battery with a refrigerator**



### **Refrigerator dumps heat into freestream**



#### Same for the electric motor



#### ...and the fault protection



## And there is still more complexity

- All in a mission analysis
- Battery and motor can accumulate heat (not assuming steady state)
- Chiller bypass, variable exit duct, and engine hybrid fraction can be controlled during the mission



#### After running a mission, we can...



#### ...analyze component temperatures





#### ...and optimize duct area in time





**Code flexibility** 

**Mission analysis** 

Lessons learned

**Code flexibility** 

Mission analysis

Lessons learned

#### Flexible

- Use on a wide range of problems
- Steeper learning curve
- Longer case setup time

Easy to use

- Well-defined interfaces
- Easier to learn
- Simpler setup



#### Aircraft model only has a few requirements

- $\bullet$  Computes drag, thrust, and weight from C  $_{\rm L}$  and throttle
- Atmospheric and flight conditions available as inputs

### Must compute drag and thrust

class Aircraft(om.Group):

def setup(*self*):

self.add\_subsystem("aero", AerodynamicModel()) # compute drag using lift coefficient
self.add\_subsystem("prop", PropulsionModel()) # compute thrust using throttle

intfuel = self.add\_subsystem(
 "intfuel",
 Integrator(num\_nodes=21, method="simpson", diff\_units="s", time\_setup="duration")
intfuel.add\_integrand("fuel\_used", rate\_name="fuel\_flow", units="kg")
self.connect("prop.fuel\_flow", "intfuel.fuel\_flow")

- $\bullet$  Computes drag, thrust, and weight from C  $_{\rm L}$  and throttle
- Atmospheric and flight conditions available as inputs

## Must compute weight

def setup(self):
 self.add\_subsystem("aero", AerodynamicModel()) # compute drag using lift coefficient
 self.add\_subsystem("prop", PropulsionModel()) # compute thrust using throttle
 intfuel = self.add\_subsystem(
 "intfuel",
 Integrator(num\_nodes=21, method="simpson", diff\_units="s", time\_setup="duration"),
 intfuel.add\_integrand("fuel\_used", rate\_name="fuel\_flow", units="kg")
 self.connect("prop.fuel\_flow", "intfuel.fuel\_flow")

- $\bullet$  Computes drag, thrust, and weight from C<sub>L</sub> and throttle
- Atmospheric and flight conditions available as inputs

## Can use OpenConcept's integrator for fuel

class Aircraft(om.Group):

def setup(*self*):

self.add\_subsystem("aero", AerodynamicModel()) # compute drag using lift coefficient self.add\_subsystem("prop", PropulsionModel()) # compute thrust using throttle

intfuel = self.add\_subsystem(
 "intfuel",
 Integrator(num\_nodes=21, method="simpson", diff\_units="s", time\_setup="duration"),

intfuel.add\_integrand("fuel\_used", rate\_name="fuel\_flow", units="kg")
self.connect("prop.fuel\_flow", "intfuel.fuel\_flow")

- $\bullet$  Computes drag, thrust, and weight from C  $_{\rm L}$  and throttle
- Atmospheric and flight conditions available as inputs

## Mission analysis Group is the top level

class Mission(om.Group):

#### def setup(*self*):

*# Define variables from airplane data file* 

ac\_vars = self.add\_subsystem("ac\_vars", DictIndepVarComp(acdata), promotes\_outputs=["\*"])

ac\_vars.add\_output\_from\_dict("ac|aero|polar|e")

ac\_vars.add\_output\_from\_dict("ac|aero|polar|CD0")

ac\_vars.add\_output\_from\_dict("ac|geom|wing|S\_ref")

ac\_vars.add\_output\_from\_dict("ac|geom|wing|AR")

# Run a full mission analysis including takeoff, climb, cruise, and descent self.add\_subsystem( "mission\_analysis", FullMissionAnalysis(num\_nodes=21, aircraft\_model=Aircraft), promotes\_inputs=["\*"], promotes\_outputs=["\*"],

### Pull some variables from a data file

#### class Mission(om.Group):

#### def setup(*self*):

# Define variables from airplane data file

ac\_vars = self.add\_subsystem("ac\_vars", DictIndepVarComp(acdata), promotes\_outputs=["\*"])

ac\_vars.add\_output\_from\_dict("ac|aero|polar|e")

ac\_vars.add\_output\_from\_dict("ac|aero|polar|CD0")

ac\_vars.add\_output\_from\_dict("ac|geom|wing|S\_ref")

ac\_vars.add\_output\_from\_dict("ac|geom|wing|AR")

# Run a full mission analysis including takeoff, climb, cruise, and descent
self.add\_subsystem(
 "mission\_analysis",
 FullMissionAnalysis(num\_nodes=21, aircraft\_model=Aircraft),
 promotes\_inputs=["\*"],
 nromotes\_outputs=["\*"]

## Add mission analysis group

#### class Mission(om.Group):

#### def setup(self):

# Define variables from airplane data file ac\_vars = self.add\_subsystem("ac\_vars", DictIndepVarComp(acdata), promotes\_outputs=["\* ac\_vars.add\_output\_from\_dict("ac|aero|polar|e") ac\_vars.add\_output\_from\_dict("ac|aero|polar|CD0") ac\_vars.add\_output\_from\_dict("ac|geom|wing|S\_ref") ac\_vars.add\_output\_from\_dict("ac|geom|wing|AR")

# Run a full mission analysis including takeoff, climb, cruise, and descen
self.add\_subsystem(
 "mission\_analysis",
 FullMissionAnalysis(num\_nodes=21, aircraft\_model=Aircraft),
 promotes\_inputs=["\*"],
 promotes\_outputs=["\*"],

Code flexibility

**Mission analysis** 

Lessons learned

## What is mission analysis?

- Simulate aircraft flying mission while satisfying physics
- Determine fuel burn
- Analyze component temperatures, hydrogen boil off, etc.



### We assume steady flight at integration points

• This avoids working directly with the equations of motion



 Validated against real world data from Pipistrel

Brelje, "Multidisciplinary Design Optimization of Electric Aircraft Considering Systems Modeling and Packaging", 2021.








# Solving an individual flight phase (climb)



# Integrator solves for altitude and range















#### Set phase duration so it ends at cruise altitude



# **Atmospherics computes flight conditions**



# Aircraft model computes forces



#### Net forces driven to zero by Newton solver



### We usually use a single Newton solver



## The integrator is also used elsewhere

• Integrate fuel flow to compute fuel burn

intfuel = self.add\_subsystem(
 "intfuel",
 Integrator(num\_nodes=21, method="simpson", diff\_units="s", time\_setup="duration"),
)
intfuel.add\_integrand("fuel\_used", rate\_name="fuel\_flow", units="kg")

• Integrate heat flows to compute component temperature



 Brelje magic<sup>™</sup> automatically finds states within aircraft model to integrate and links them across mission phases Code flexibility

Mission analysis

Lessons learned

### Not designed for trajectory optimization



### We linearly interpolate within phases



# We linearly interpolate within phases Cruise Descent Climb Takeoff

# **Vectorization for efficiency**

class SimpleMotor(om.ExplicitComponent):

def initialize(self):

self.options.declare("num\_nodes", default=11)
self.options.declare("efficiency", default=0.95)

def setup(*self*):

nn = self.options["num\_nodes"]

self.add\_input("throttle", shape=(nn,))
self.add\_input("elec\_power\_rating", units="W")

self.add\_output("shaft\_power\_out", units="W", shape=(nn,))
self.add\_output("elec\_load", units="W", shape=(nn,))

*# declare sparse partials here* 

def compute(self, inputs, outputs):
 outputs["shaft\_power\_out"] = inputs["throttle"] \* inputs["elec\_power\_rating"] \* self.options["efficiency"]
 outputs["elec\_load"] = inputs["throttle"] \* inputs["elec\_power\_rating"]

# **Propulsion modeling with surrogates**

- Detailed turbomachinery and propulsion models use offline surrogates (often pyCycle)
- Avoids challenges with robustness and cost



# What is best for mission analysis?

- OpenConcept's approach
  - Fast
  - Robust-ish
  - Physics valid once Newton solver converges (no optimization required)
- Trajectory optimization-style approach
  - Not as robust
  - More general representation of mission profile
  - Better for mission profile optimization

# We developed a tool for efficient conceptual aircraft design with OpenMDAO

Altitude (ft)

Rapidly optimize aircraft architectures

Steady flight mission phases with predefined profile

Hybrid mission analysis approach for the best of both?



Parallel hybrid

Ducted heat exchanger



#### github.com/mdolab/openconcept



