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For my PhD thesis, | decided to combine

Ideas from two research streams

Adjoint-based aerodynamic
shape optimization

1

Reuther1999-Constrained Multipoint
Aerodynamic Shape Optimization Using0

Baseline Optimized Baseline | Optimized

19a: Upper Surface 19b: Lower Surface

Reuther, Jameson, Alonso, Rimlinger, and Saunders.
Constrained multipoint aerodynamic shape optimization
using an adjoint formulation and parallel computers,
(parts 1 and 2). Journal of Aircraft,1999.
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a) Mnimum induced drag at fixed weight.

MDO of aircratft
configurations

b) Minimum total drag at fixed weight.

break points

Fig. 1 Wing element and panel geometry.

d) relief.

Minimum total drag at fixed weight
c)  with low speed lift constraints.

Minimum total drag, fixed weight, low
speed lift constraints, and fuel inertia

Minimum total drag, fixed weight, low

Fig. 2 Structural geometry. speed lift constraints, fuel inertia
e) relief, and static aeroelasticity.

Wakayama and Kroo. Subsonic wing planform design using
multidisciplinary optimization. Journal of Aircraft,1995.


http://mdolab.engin.umich.edu/content/scalable-parallel-approach-aeroelastic-analysis-and-derivative
http://mdolab.engin.umich.edu/content/scalable-parallel-approach-aeroelastic-analysis-and-derivative

The first CFD-based aerostructural design optimization

Conclusions

e Developed the general formulation for a coupled-adjoint method for
multidisciplinary systems.

e Applied this method to a high-fidelity aero-structural solver.

e Showed that the computation of sensitivities using the aero-structural
adjoint is extremely accurate and efficient.

e Demonstrated the usefulness of the coupled adjoint by optimizing a
supersonic business jet configuration.

& Coupled adjoint
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Ph.D. Oral Examination, Stanford University, September 2002 42

Martins, Alonso, and Reuther. High-fidelity aerostructural design optimization of a supersonic business jet.
Journal of Aircraft, 2004


http://mdolab.engin.umich.edu/content/scalable-parallel-approach-aeroelastic-analysis-and-derivative

| selected Python to implement a second version of the
aerostructural optimization framework

Discovered f2py Planned Python-based framework

Python Module Design

Long Term Vision

Aerostructure
<>t Geometry
<>t Structure
<t Flow | . ] .
i e =1__Moge! Continue work on a large-scale MDO framework for aircraft design
——<>t Node
—<>t Block ~N

— ——<>t Element
L {Surface Groun —P‘ CAD ) Central
<> Solver (C |j Database

onceptua
<> Parameters Matora Design *
def Iterate(self, load_case): —<<>t LoadCase
"ihTterates the =ara—ctrurstnral calutian i ¢ [Discretization)
self.flow.Iterat Aero-Structural Model and Solution Aerodynamics)
self._UpdateStru - ‘ — — »_ limi +
self.structure.C = Prglm.lnary
self.structure.C &= = P e esign Structures)
self._UpdateFlow Sl Multi-Disciplinary
return + Analysis
— Propulsion )
- Detailed Y
Design —
4( Optimizer ) MlSS|On)
J
University of Toronto Institute for Aerospace Studies, May 2002 38

PhD defense and UTIAS interview, 2002

Peterson, Martins, and Alonso. Fortran to Python interface
generator with an application to aerospace engineering.
Proceedings of the 9th International Python Conference, 2001.


http://mdolab.engin.umich.edu/content/scalable-parallel-approach-aeroelastic-analysis-and-derivative

| also worked on the complex-step method, for which
Python was really useful

Complex-step derivative
approximation

#! /usr/local/bin/python

Verification of the coupled adjoint

header_string = """ Sensitivity of C'p wrt Shape

Complexify 1.3

I |

| I

| J.R.R.A.Martins 1999 | 0.016 —

| update July 00 P. Sturdza | — —— Coupled adjoint

| | e —e— Complex ste

| f') ~ Im [ f(x+ih) 1/ h | - pexsse

| | 0.012 -—-- Coupled adjoint, fixed displacements
Notes: 0.01 - -—o-- Complex step, fixed displacements

1) Make sure you compile with -r8 flag

2) Does not handle f90 free format or f77 tab-format files yet
3) Make sure the main routine begins with 'PROGRAM'

4) Use 132 column option in compiler

4) Command line options:

—lucky_logic -- don't need fixing of .eq. and .ne.
-MIPS_logic  —— bug in MIPS pro V7.3 reqiures .ge. fixed too
—fudge_format —— dumb fix for format statements
def main():
global fix_relationals, fudge_format_statement
bad = 0

print header_string
if not sys.argv[1l:]: # No arguments
err('usage: \n\t' + sys.argv[0]
+ ' [-lucky_logic|-MIPS_logic|-fudge_format] file-pattern \t\n' +
\ Design variable, n
"\tpython ' + sys.argv[0]
+ ' [-lucky_logic|-MIPS_logic|-fudge_format] file-pattern \n\n' )
sys.exit(2) 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September 2002
for arg in sys.argv([1:]:
if arg == "-lucky_logic":
# don't attempt to fix .eq. and .ne. (works on PGF90)
fix_relationals = 0
continue
if arg == "-MIPS_logic":
# cheap fix for MIPS Pro
fix_relationals = 2

Martins, Sturdza, and Alonso. The complex-step derivative approximation. ACM Transactions on Mathematical Software, 2003


http://mdolab.engin.umich.edu/content/scalable-parallel-approach-aeroelastic-analysis-and-derivative

The MDO Lab developed MACH, a framework for
aerostructural design optimization

> Aerodynamics

» Structures

> Coupled adjoint

> First application
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Kenway, Mader, He, and Martins. Effective adjoint
approaches for computational fluid dynamics.
Progress in Aerospace Sciences, 2019

Kennedy and Martins. A parallel finite-element
framework for large-scale gradient-based design
optimization of high-performance structures.
Finite Elements in Analysis and Design, 2014

Kenway, Kennedy, and Martins. Scalable parallel
approach for high-fidelity steady-state aeroelastic
analysis and derivative computations. AIAA
Journal, 2014

Kenway and Martins. Multipoint high-fidelity
aerostructural optimization of a transport aircraft
configuration. Journal of Aircraft, 2014


http://mdolab.engin.umich.edu/content/scalable-parallel-approach-aeroelastic-analysis-and-derivative
http://mdolab.engin.umich.edu/content/scalable-parallel-approach-aeroelastic-analysis-and-derivative
http://mdolab.engin.umich.edu/content/scalable-parallel-approach-aeroelastic-analysis-and-derivative
http://mdolab.engin.umich.edu/content/scalable-parallel-approach-aeroelastic-analysis-and-derivative

MACH took years of development and many students

Python user script

Setup up the problem: objective function, constraints, design variables, optimizer and solver options

Optimizer intertace
pyOptSparse

Common Interface to various
optimization software

Aerostructural solver

AeroStruct

Coupled solution methods and coupled
derivative evaluation

SNOPT |Other

optimizers

Flow solver Structural solver
ADflow TACS

Governing and Governing and
adjoint equations adjoint equations

Geometry modeler
DVGeometry/GeoMACH

Defines and manipulates
geometry, evaluates derivatives

Kenway, Kennedy, and Martins. Scalable parallel approach for high-fidelity steady-state aeroelastic analysis and derivative computations.

AIAA Journal, 2014

Kennedy and Martins. A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures.

Finite Elements in Analysis and Design, 2014



http://www.sciencedirect.com/science/article/pii/S0168874X14000730
https://arc.aiaa.org/doi/abs/10.2514/1.J052255

TOGW optimized
TOGW:289553 kg
Fuel burn: 97551 kg
L/D: 19.55

Aspect ratio: 9.02
Altitude: 34000 ft
Wing mass: 41535 kg

Normalized Lift

Twist Crusie
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TOGW optimized
TOGW:289553 kg
Fuel burn: 97550 kg
L/D: 19.55

Aspect ratio: 9.02
Altitude: 34000 ft
Wing mass: 41535 kg

The coupled adjoint enabled us to perform
high-fidelity aerostructural optimization (again)
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Kenway and Martins. Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration. Journal of Aircraft, 2014


https://youtu.be/b-DbEmq_hVw
http://mdolab.engin.umich.edu/content/scalable-parallel-approach-aeroelastic-analysis-and-derivative

Tow-steered composite high AR wing

Conventional Composite Optimized
TOGW: 261707 kg

Fuel burn: 78703 kg

L/D: 22.42

Wing mass: 20004 kg

|

: -1 075 -05 -025 0 025 05 075 1

Tow-Steered Composite Optimized
TOGW: 257171 kg

Fuel burn: 77610 kg

L/D: 22.32

Wing mass: 16560 kg

Conventional Composite Optimized Tow-Steered Composite Optimized
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Brooks, Martins, and Kennedy. High-fidelity aerostructural optimization of tow-steered composite wings. Journal of Fluids and Structures, 2019


https://mdolab.engin.umich.edu/bibliography/Brooks2019a

The wingbox was tested by NASA and

IS now on display here
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Gradient-based optimization Is the only hope for
large numbers of design variables

4 N

o X
Optimizer 107 A Gradient free
& A 5 8
- M N -8 106 Finite
f, 8 Model = difference
g J C§ |
A y - 10° §
i i ) F
: Derivative 2 143
- i O | Gradient-based
Vf, ], kComputa,tlonj E 10
F :
o
g 10
= Analytic
= p—
— L
< 102 0.37
e —
—t—t——— # ——t—t—+—— : ———t——— 2>
— 101 102 103

Number of design variables

Martins and Ning. Engineering Design Optimization. Cambridge University Press, 2021.


https://www.dropbox.com/s/3i1qmydet323nx5/mdobook.pdf

Efficient and robust derivative computation Is crucial
for successful gradient-based optimization
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Methods for computing derivatives

Black box Analytic Algorithmic
01 =X
v3 = V3(v1, 02)
: r(x,u) = 0] :
f [ ) ] '
fx,u) f f= V(vy,...) e f
Inputs and outputs Governing equation Lines of code /
residuals and states R\ e

L Forward mode

Finite differences Direct method »
. ¢ (1y X 1y) dv; ~ dv; do
df _f(x)—f(x—he,-)_l_@(h) B avi _ i A0k
ox; p | do; = dvy do;
ﬂ _ 8_f B a_f or -1 ﬁ *_ Seeded input, 9;

Complex-step method ar o = 50 x Reverse mode

jf _ Im [f(xh+ ihej)] n @(hZ) (nfXmny) (nfxny) (ng X ny) (ny Xny) (ny Xny) do; _ 2 80]( dov;

Xj do: .

YT (nf X ny) dU] k=j+1 80] dvk
Adjoint method
Martins, Sturdza, and Alonso. The complex-step derivative approximation. Martins and Hwang. Review and unification of methods for computing derivatives

ACM Transactions on Mathematical Software, 2003. of multidisciplinary computational models. AIAA Journal, 2013.


https://mdolab.engin.umich.edu/bibliography/Martins2013a
https://mdolab.engin.umich.edu/bibliography/Martins2003a

For more detalls, see Chapter 6 of my new book
(the PDF If free at https://mdobook.github.i0)

Computing Derivatives 6

E N G I N E E R I N G Derivatives play a central role in many numerical algorithms. For

example, the Newton-based methods introduced in Section 3.7 require

the derivatives of the residuals.
The gradient-based optimization methods introduced in Chapters 4 Optimizer '—x
and 5 require the derivatives of the objective and constraints with I ‘
respect to the design variables, as illustrated in Fig. 6.1. The accuracy @

and computational cost of the derivatives are critical for the success of ;
J O A U I M R R A M A R'I'I NS these methods. Gradient-based methods are only efficient when the . T
N1, derivative computation is also efficient. The computation of derivatives Vf, e | Computation

can be the bottleneck in the whole procedure, especially when the
A N D R EW N I N G model solver needs to be called repeatedly. Fig. 6.1 Efficient derivative computa-

This chapter introduces the various methods for computing deriva- o0 is crucial for the overall efficiency
P : X of gradient-based optimization.
tives and discusses the relative advantages of each method.

By the end of this chapter you should be able to:

1. List the various methods used to compute derivatives.
2. Describe the pros and cons of these methods.

3. Use the methods in computational analyses.

1 Forward Js
6.1 Derivatives, Gradients, and Jacobians 1

The derivatives we focus on are first-order derivatives of one or more i)
functions of interest (f) with respect to a vector of variables (x). In 1
the engineering optimization literature, the term sensitivity analysis is
often used to refer to the computation of derivatives, and derivatives
are sometimes referred to as sensitivity derivatives or design sensitivities.
Although these terms are not incorrect, we prefer to use the more
specific and concise term derivative.

For the sake of generality, we do not specify which functions we want
to differentiate in this chapter (which could be an objective, constraints, +——| 1
residuals, or any other function). Instead, we refer to the functions i ] f I 1

Reverse

225

Martins and Ning. Engineering Design Optimization. Cambridge University Press, 2021.


https://www.researchgate.net/publication/352413464_Engineering_Design_Optimization
https://www.researchgate.net/publication/352413464_Engineering_Design_Optimization

The unified derivatives equation (UDE)
IS the core of OpenMDAO

ordu_, _orTdu’
oudr = Ju dr

» The UDE was motivated by the desire to unify all methods for
computing derivatives (implicit analytic methods and AD)

» The UDE concept was expanded to the modular analysis and unified
derivatives (MAUD) architecture

» OpenMDAO was refactored to incorporate MAUD

» Now let's derive the UDE! (Sec. 6.9 of the book)

Hwang and Martins. A computational architecture for coupling heterogeneous
numerical models and computing coupled derivatives. ACM Transactions on
Mathematical Software, 2018

Martins and Hwang. Review and unification of methods for computing derivatives
of multidisciplinary computational models. AIAA Journal, 2013.


https://mdolab.engin.umich.edu/bibliography/Martins2013a
https://www.researchgate.net/publication/325839518_A_Computational_Architecture_for_Coupling_Heterogeneous_Numerical_Models_and_Computing_Coupled_Derivatives

Governing equations can always be expressed as residuals

ri(ulluZI"'lun):OI i:]-/-'-/n Example forn = 2

. . _ A |
» Each residual i1s a scalar function of n \

state variables, u,, ..., u,

3 Solution

» There are n residual equations and n
unknowns

» We assume that there I1s at least one
solution

» In the n = 2 example, the each residual
function corresponds to a contour plot

» Here we visualize a variation In the
residual about zero (£ Ar)



L et's consider the total differential of the residual

(Why? We will see later...)

37’1' Br,-
dr; = T dui +...+ T

du,,,

1

=1,..

» These are first-order changes in r due to

perturbations in u

» In matrix form:

o 9n
U U,

du1

ot o ot
U U,

du,,

d1’1

dr,

., N

A

'L




This linear system relates changes In the residuals

to changes In the state variables

on o | |4 1

U U, “ "1

ot ot 2
£ £ du,, dr,

» Suppose we change one residual from zero to
ri = dry, while keeping all other residuals equal

{0 zero.

» Solving for this RHS yields the corresponding
changes In u that would satisfy this change

A New perturbed
solution

Original
solution

U1

This gives the change In states
for a prescribed change In
residuals



By setting the appropriate RHS, we can find any total derivative

» Suppose we want the derivative du./dr;
» We set the ith entry to dr; and the others to zero

» "Dividing” by dr;, yields the linear system:

on . 9n . Injldm

Bul 81/{1 6’un dTi 0
ori o on || dui
ou1 ou; ou, | | dr;

or., ory, ory, | | duy,

ou,  ou;  du,lldr

A New perturbed

solution

74
\
o

// A

Original
solution




Do this for all entries to get whole Jacobian matrix du/dr

on. . onfldm . du
duq du, | | dr dry, : )
drn  Odrp||du,  du, 0 ]
U1 u, | Ldr dr,,

This 1s the forward form of the UDE. In matrix form:

or du _|
ou dr

How Is this useful?



Reverse form of the UDE

AB=I=B=A1=BT=A"T= o
TRBT = A

ATBT =1 e -

Therefore " \\0\ / n?
Brdu_I:> 8eruT_I /SN
du dr ou dr ull .

The reverse form gives the
change In residuals for a
prescribed change In states

Again, how Is this useful?



UDE for mixed implicit and explict components ~* :

sone| |,

» Suppose we want df/dx, where r(x, u) = 0 L
[r(x, u) = OJ
. . r
» We can define new set of states and residuals as: \ A
o fe,u)— f
x o)
U= |u r=|r—-7(x,u)| =0
¥ This I1s what we want!
f f—f(x,u)

| | x0T al T i}
I 0 0 I 0 0 I 0 0 g _ort of , duT K
dx ox dx dx

oF  F du ) ) FT  fT duT dfT
= Th o | B | IRl
_B_f _8_f ﬁ 1l 0 0 I 0 0 I 0 0 I
dx du dr




UDE vyields the implicit analytic methods: direct and adjoint

YT e 0 T ij
I 0 0 I 0 0 I 0 0 I __5’_7‘ _.a_f. I d_u ﬂ
dx ox dx dx

oF  IF du _ _ COFT AfT duT dfT
= | Tm |l f a | ‘"N e | ‘o .
of 9 2 g 0 0 I 0 0 I I
ox ou dr

697'(¢, 697' é}r yp

ou ox

df _df 9f¢ df _of  _or
dx Jx oJdu' dx ~ ox ‘/’ax



The UDE also yields algorithmic differentiation (AD)

Define states and residuals as
v, =0i(v1,...,0i-1), i=1,...,n

ri = 0; — 51’(771/ ‘o ,Uz'—l)

Then, the forward UDE becomes

dv1

1 0 0
o dv1
- A%) dv, dovo
dv1 dvy dov
' ol| : .
_ 8’57’1 _ aén 1 dvn dvn
Jdv1 V-1 dovq dv,_1




The reverse form of UDE yields reverse AD

1

0

972
87)1

1

- 901

d0y,

0y,

dVy—1

1

doy
dvl

0

dvz

do;
d’()z

dv,

dvy,—1
dv;,—1

dv,,
dvl

dv,,

dv, -1
dv,,

do,,




Shape

Structural
sizing

Now let us consider multiple components of disciplines

.

J

® ® ®
* ¢
g ! P Surface
Aerodynamic presiures
solver I
I Structural Displacements
9
Displacements solver
3
. Y
; Weight
Weight ®
\ v 2
Surface
pressure o » Drag, lift
integration
. o
(= ' )
Stress . Structural
computation stresses
s J
fii v =
Fuel Fuel
: —> :
computation consumption



A coupled model has multiple residual and state subvectors

4 )
Ui
ri(x,u) =0
[ =0 N
X > ra(x,u) =0 >~ U = | U
_ L Uus
w0 B
Uus
r3(x,u) =0
\ Y

rl(ul; uz,...,ui,...,un):O

T(u) =0 = ri(ui; Ut, oo, Ui—1,Ujix1,. .. /un) =0

rn(ty; U1, oo Uiyee ., Upy—1) =0



The forward UDE yields the coupled direct method

r1(u) Ui
r(u)=| |, u=s
rn(u) Uy,
orq orq o011
| e R BT
dx Ox

or,, or,, or,,
duq U, (P X

Solve n_times

of  of

Ju;  du,

01



The reverse UDE yields the coupled adjoint method

97‘1 '
aul

37‘1 !
U,

Orn ' of Jrq
Juq Y1 U1 M
. | : df &’f T T .

: o B : d_ng_[¢1“'1/)n] :
oty ' of ! aﬁ
ou,, P ou,, “ ox

Solve netimes ™\



Wing example

o

/

O

The states are the circulations and

displacements

x

There are two corresponding sets of residual
eguations

|

Ui
u?

!

] _ [A(d)I‘ — v(d)]

Kd — q(T)

(

o =

aul

&

\

The Jacobian is

or1

9u1
37’2

Aerodynamics I'
AT —v(d)=0
A g Y
Structures
d Kd—-g()=0
orq A dv
duy | _ ST
37‘2 3 _L] K
8u2 oI




Wing example

S0 91 ==

» & . angle of attack

» b : wing span
» @ : twist distribution (vector)
» 1 thickness distribution (vector)

» 0 . stress distribution (vector)

» f: fuel burn

Design variables

-

Intermediate variables

>

Functions

> <

Yd

frw D TL

To



MAUD was first implemented in a satellite MDO problem

A Ground station LOS Sun LOS
S L] Ininninininl
‘0,. 6| ‘ ‘ 100
TN Total data X 60 Dattery state
transmitted [Gb] | \\ oo of charge [%]
2:01 0.08
Battery charge rate . - Solar exposure
Al  area [m?
A oo, aream?]
10 310
Power W] > 280 Temperature [K]
0 250
» %% S olar el
olar cell set point
0
Roll angle [deg] . - current Al
0 4 8 12 0 4 8 12
time [hr] time [hr]

blue: design variables

Hwang, Lee, Cutler, and Martins. Large-scale multidisciplinary optimization of a small satellite’s design and operation. Journal of Spacecraft and Rockets, 2014


https://www.researchgate.net/publication/325839518_A_Computational_Architecture_for_Coupling_Heterogeneous_Numerical_Models_and_Computing_Coupled_Derivatives

MAUD includes hierarchical solvers and coupled
derivatives for complex systems

[ Recursive J

solver
1 6
Uui Ui Uui
Recursive Recursive
solver solver
2 3 7 8
Us Us Us
Monolithic Recursive RN DRSS
[ T J [ e J [Component] [Component]
. > Parallel Serial Coupled
[Compone’nt] [Component] [Component] [Component]
Ui U1
U Uy D Parallel
us Us D Serial
Uy Uy D Coupled
Hwang and Martins. A computational architecture for coupling heterogeneous numerical Martins and Ning. Engineering Design Optimization.

models and computing coupled derivatives. ACM Transactions on Mathematical Software, 2018 Cambridge University Press, 2021.


https://www.researchgate.net/publication/325839518_A_Computational_Architecture_for_Coupling_Heterogeneous_Numerical_Models_and_Computing_Coupled_Derivatives
https://www.researchgate.net/publication/352413464_Engineering_Design_Optimization

MAUD was implemented In o<E.-/0T:'e|'|/l/'|D/\O
g

Component outputs

Component inputs —{Component}
Partial derivatives

Group

Component outputs

Component inputs — Component

Driver N J | Partial derivatives Model outputs

e.g., optimizer Model inputs — - 1V oo ciim- [ ;113221 deriva-
Component inputs > Component
Partial derivatives
Group
( 1 Component outputs
Model outputs Component inputs ~ Component >
Model inputs { Model }— Total  deriva- \L J J| Partial derivatives
tives = 2

> Developed at NASA Glenn

> Python-based

> Open-source framework

> Faclilitates the coupling multiple models and optimization
> Efficient coupled solution via Newton-type methods

> Efficient coupled adjoint derivative computation

Gray, Hwang, Martins, Moore, and Naylor. OpenMDAO: An open- source framework for multidisciplinary design, analysis, and optimization.
Structural and Multidisciplinary Optimization, 2019



https://doi.org/10.1007/s00158-019-02211-z

OpenMDAO performs Jacobian coloring automatically

» Consider a wind turbine optimization problem with geometry design
variables and multiple inflow conditions

» The geometry variables affect the performance at all inflow conditions

» But each inflow condition only affects the performance for that condition

Geometry Inflow Geometry Inflow

Outputs * Outputs

Gray, Hwang, Martins, Moore, and Naylor. OpenMDAO: An open- source framework for multidisciplinary design, analysis, and
optimization. Structural and Multidisciplinary Optimization, 2019


https://doi.org/10.1007/s00158-019-02211-z

Coloring greatly increases the efficiency of
derivative computation for sparse systems
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Gray, Hwang, Martins, Moore, and Naylor. OpenMDAO: An open- source framework for multidisciplinary design, analysis, and
optimization. Structural and Multidisciplinary Optimization, 2019


https://doi.org/10.1007/s00158-019-02211-z

It IS possible to optimize wing, trajectory, and
allocation together thanks to OpenMDAO
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Hwang, Jasa, and Martins. High-fidelity design-allocation optimization of a commercial aircraft maximizing airline profit. Journal of Aircraft, 2019.



https://doi.org/10.2514/1.C035082

Alrframe-propulsion integration demands
CFD-based MDO

This is the STARC-ABL concept

Yildirim, Gray, Mader, and Martins. Aeropropulsive design optimization of a boundary layer ingestion system.
AIAA 2019- 3455,


https://arc.aiaa.org/doi/abs/10.2514/6.2019-3455
https://youtu.be/1nyDCR-9RlA

Coupled CFD-based optimization with pyCycle turbofan model
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Lamkin, Yildirim, and Martins. Coupled aeropropulsive analysis and optimization of a high bypass turbofan engine. ICAS, 2022.



https://arc.aiaa.org/doi/abs/10.2514/6.2019-3455

OpenAeroStruct Is a low-fidelity OpenMDAO-based
version of MACH

https://github.com/mdolab/OpenAeroStruct 15 - T cruise
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Jasa, Hwang, and Martins. Open-source coupled aerostructural optimization using Python. Chauhan and Martins. Low-fidelity aerostructural optimization of aircraft wings with a

Structural and Multidisciplinary Optimization, 2018 simplified wingbox model using OpenAeroStruct. 2018


https://youtu.be/Q36UYrk4H64
https://github.com/mdolab/OpenAeroStruct
https://link.springer.com/article/10.1007/s00158-018-1912-8
https://www.youtube.com/watch?v=6cF6TBiUyr4&t=0s

OpenConcept developed for electric aircraft systems
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Brelje, Martins. Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, % exchanger
models, and design approaches. Progress in Aerospace Sciences, 2019 “‘L“:‘“ﬁ;: %@E‘“”“”““

Adler, Brelje, and Martins. Thermal management system optimization for a parallel hybrid
aircraft considering mission fuel burn. Aerospace, 2022.
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https://www.sciencedirect.com/science/article/pii/S0376042118300356
https://www.sciencedirect.com/science/article/pii/S0376042118300356

Rotor optimization of NASA Tiltwing
vehicle subject to noise constraints
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https://mdolab.engin.umich.edu/bibliography/Lyu2014f.html

Other OpenMDAO
applications

Gray, Hwang, Martins, Moore, and Naylor. OpenMDAO: An open-
source framework for multidisciplinary design, analysis, and
optimization. Structural and Multidisciplinary Optimization, 2019
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https://link.springer.com/article/10.1007/s00158-019-02211-z

Many of the implemented theoretical developments are

now avallable as open-source software
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Applications Implementation

Vurora

FLIGHT SCIENCES

dys  Oys
of _of R
dx Ox OX

t numpy as np

n openmdao.api import Exf

38 Disciplinel (ExplicitCq
ef setup(self):
self .add_input(’y2’

self .add_output(’y1l
self .declare_partia

partials[’yl?, 'y2?]

ef setup(self):
self .add_input(’x’)

self .add_output(’y2’

self .declare_par

lef linearize(self, inputs, outputs, partials):
partialn] y2*, 'x*] outputs[’y2’]
partials[’y2’, ’y1’] = (—outputs[’y2’] * np.exp(—inputs[’y1’] =*
outputs[’y2’]))
partials[’y2’, ’y2’] = (—inputs[’yl1’] x*
np.exp(—inputs[’y1’] * outputs[’y2’]) inputs[’x’

compute(self, inputs,
outputs[’yl’] = inputs[’y:

ef compute_partials(self,

self.add_input(’yi’)

self .declare_partials(’y2’,
self .declare_partials(’y2’,
125
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outputs):
'] k% 2

inputs, partials):
2 x inputs([’y2’]

Discipline2(ImplicitComponent ):
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https://www.researchgate.net/publication/352413464_Engineering_Design_Optimization

| ) bt

00000200000
l‘ll

A ‘luu‘\l‘
: nv\\s l/.\\\L.
N

S
6.?.\\ N

D,
9.

s
o9




Useful sections for OpenMDAO users RIS

» Sec. 1.2: Problem formulation JOAQUIM R.R.A. MARTINS

» Sec. 1.4.1-1.4.3: Gradient-based vs gradient-free optimization algorithms (see Fig. s
1.23 for cost comparison), local vs global search, mathematical vs heuristic
approaches

» Sec. 1.5: How to select an optimization algorithm

» Sec. 3.3: Introduction to residuals of governing equations and explicit/implicit

functions

Sec. 3.6: Overview of governing equation solvers

Chapter 4 header and Sec. 4.1-4.2: Basic idea of gradient-based optimization

Example 4.18 and Sec. 4.6: Comparison of gradient-based algorithms, summary

Chapter 5 header and Sec. 5.1: Basic idea of constrained optimization

Sec. 5.8: Summary of constrained optimization

Chapter 6: Derivatives. Whole chapter recommended, but especially: Sec. 6.7

(implicit analytic methods including adjoint), Sec. 6.8 (sparse Jacobians), Sec. 6.9

(UDE), and Sec. 6.10 (summary)

Sec. 7.1: When to use gradient-free algorithms

Chapter 13 header and 13.1: Introduction to MDO

Sec. 13.2: Coupled models and solvers (includes MAUD in Sec. 13.2.6)

Sec. 13.3.3: Implicit analytic coupled derivatives

Tip 13.4: OpenMDAO

Sec. 13.6: MDO summary
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https://www.researchgate.net/publication/352413464_Engineering_Design_Optimization

