
5/2/2016 Purpose of This Document — OpenMDAO 1.6.3 Alpha documentation

http://openmdao.readthedocs.io/en/1.6.3/conversion-guide/conversion.html 1/6

Purpose of This Document
The purpose behind the OpenMDAO Conversion Guide is to help users of previous versions of OpenMDAO
(versions up to and including 0.13.0) to change their models over to the new OpenMDAO 1.0.0 design. This will
require some re‑thinking and re‑structuring. If you are new to OpenMDAO, you should be able to start writing
new models, and this guide should not pertain to you. You should check out our OpenMDAO User Guide.

If you do not have OpenMDAO v 1.0 installed, you should first view our Getting Started Guide. Then we would
recommend becoming familiar with the new building blocks of OpenMDAO in the User Guide’s ‘Basics‘ section

Conceptually, the core building blocks of OpenMDAO 1.0 are similar to those found in previous versions, but the
syntax you use to define those building blocks is different. This guide will start by describing the differences
you’ll see when defining a Component. Then we’ll move on to the process of connecting your Components and
building your model.

Declaring a Simple Component
We’ll start off by defining a very simple component, one that has an input x and an output y, both having a value
of type float. When the component runs, it will assign the value of x*2.0 to y.

Imports
To define our new class, we need to import some class definitions. In old OpenMDAO, we had to import the
definition of Component and the trait class Float.

from openmdao.main.api import Component 
from openmdao.main.datatypes.api import Float 

In new OpenMDAO, we just need the definition of Component, but it now lives in a different location.

from openmdao.api import Component 

Declaring Variables
Our component needs 2 variables, x and y. In old OpenMDAO, variables were typically declared at the class level.

class Times2(Component): 
    x = Float(1.0, iotype='in', desc='my var x') 
    y = Float(2.0, iotype='out', desc='my var y') 

In new OpenMDAO, we add variables in our component’s __init__ method, using component methods
add_param to add an input, add_output to add an output, and add_state to add a state variable. For our
component, it would look like this:

class Times2(Component): 
    def __init__(self): 
        self.add_param('x', 1.0, desc='my var x') 
        self.add_output('y', 2.0, desc='my var y') 

The various add_* methods in new OpenMDAO allow arbitrary metadata to be specified as keyword arguments in
the same manner that they were specified in Float and the other trait constructors in older versions, so you
could do the following, for example:

def __init__(self): 
    self.add_param('z', 1.0, units='ft', weird_meta='foo') 

The example above also specifies units. New OpenMDAO uses the same unit names that work in the same way
as in old OpenMDAO.

Specifying how Data is Passed

  v: 1.6.3 

http://openmdao.readthedocs.io/en/1.6.3/usr-guide/basics.html
http://openmdao.readthedocs.io/en/1.6.3/getting-started/install.html
http://openmdao.readthedocs.io/en/1.6.3/usr-guide/basics.html


5/2/2016 Purpose of This Document — OpenMDAO 1.6.3 Alpha documentation

http://openmdao.readthedocs.io/en/1.6.3/conversion-guide/conversion.html 2/6

Specifying how Data is Passed
In both old and new versions of OpenMDAO, data can be passed between components in two different ways. By
default, variables that are differentiable are passed as part of a flattened numpy float array. Other variables are
just passed by reference. To force a variable to be passed by value in old OpenMDAO, you would set the noflat
metadata to True when creating the variable, for example:

x = Float(1.0, iotype='in', desc='my var x', noflat=True) 

In new OpenMDAO, you would set the pass_by_obj metadata to True, e.g.,

self.add_output('y', 2.0, pass_by_obj=True) 

Caution

When you force a variable to be pass_by_obj, you are excluding it from all derivative calculations, which could result in
incorrect answers, so use pass_by_obj with caution.

Defining Calculations
In old OpenMDAO, we would specify how our component updates its outputs based on the values of its inputs
by defining an execute method.

def execute(self): 
    self.y = self.x * 2.0 

In new OpenMDAO, we do the same thing by defining a solve_nonlinear method.

def solve_nonlinear(self, params, unknowns, resids): 
    unknowns['y'] = params['x'] * 2.0 

Aside from the name change, the other big difference here is that the variables are no longer attributes of our
component. Our inputs now live in the params dict‑like‑object and our outputs are found in the unknowns dict‑
like‑object.

One really nice feature of this new syntax is a very clear separation between framework variables and regular
python attributes. Anything that OpenMDAO knows about, and should be passed around by its data passing
system, will live in params, unknowns, or resids.

Defining Derivatives
In old OpenMDAO, we specified a Jacobian as a monolithic dense ndarray in the linearize method.

def linearize(self): 
    J = numpy.array([2.0]) 
    return J 

In new OpenMDAO, the jacobian is instead stored in a dictionary whose keys are (output, input) tuples. This is a
much more convenient manner for specifying the derivatives, especially for large numbers of variables. Also,
there is no longer any need for the list_deriv_vars function from older versions.

def linearize(self, params, unknowns, resids): 
    J = {} 
    J[('y', 'x')] = numpy.array([2.0]) 
    return J 

If your component does not have derivatives, you must set it up to be finite‑differenced. Old OpenMDAO
handled this automatically, but you now need to manually force the finite difference by:

self.fd_options['force_fd'] = True 



5/2/2016 Purpose of This Document — OpenMDAO 1.6.3 Alpha documentation

http://openmdao.readthedocs.io/en/1.6.3/conversion-guide/conversion.html 3/6

Here, self is the component instance. You can set any Component or Group to be finite differenced by setting this
option to True. If you force finite difference around a group, then you are taking the FD across that group as a
single block.

Variable Trees
Vartrees are supported in new OpenMDAO, but they are much simpler now. We will show you the differences in
how they are declared.

Note

Vartrees don’t have full functionality in 1.0 yet. The most notable missing feature is a convenience method to connect
whole vartrees between two components. Currently, you have to connect it one variable at a time, or write your own
convenience method. We’ll be working to get better support for vartrees in the near future.

For Old OpenMDAO:

from openmdao.main.api import Component, VariableTree 
from openmdao.lib.datatypes.api import Float, VarTree 
 
class FlightCondition(VariableTree): 
    """Container of variables""" 
 
    airspeed = Float(120.0, units='nmi/h') 
    angle_of_attack = Float(0.0, units='deg') 
    sideslip_angle = Float(0.0, units='deg')
 
 
class AircraftSim(Component): 
    """This component contains variables in a VariableTree""" 
 
    # create VarTrees to handle updates to our FlightCondition attributes 
    fcc1 = VarTree(FlightCondition(), iotype='in') 
    fcc2 = VarTree(FlightCondition(), iotype='out') 

And for new OpenMDAO:

from openmdao.api import Component 
 
class AircraftSim(Component): 
    def __init__(self): 
 
        self.add_param('fcc1:airspeed', 120.0, units='nmi/h') 
        self.add_param('fcc1:angle_of_attack', 0.0, units='deg') 
        self.add_param('fcc1:sideslip_angle', 0.0, units='deg') 
 
        self.add_output('fcc2:airspeed', 120.0, units='nmi/h') 
        self.add_output('fcc2:angle_of_attack', 0.0, units='deg') 
        self.add_output('fcc2:sideslip_angle', 0.0, units='deg') 

The main difference here is that you don’t actually create a new class to hold the hierarchical data structure.
Instead, you just create variables with a hierarchical naming pattern; a ”:” is used to delineate different levels of
the data structure. Each individual leaf behaves like any other variable.

Full Component Definition
Putting together the code from the previous sections, we get the following component definition for old
OpenMDAO:

from openmdao.main.api import Component 
from openmdao.main.datatypes.api import Float 
 
class Times2(Component): 
    x = Float(1.0, iotype='in', desc='my var x') 
    y = Float(2.0, iotype='out', desc='my var y') 
 
    def execute(self): 
        self.y = self.x * 2.0 



5/2/2016 Purpose of This Document — OpenMDAO 1.6.3 Alpha documentation

http://openmdao.readthedocs.io/en/1.6.3/conversion-guide/conversion.html 4/6

 
    def list_deriv_vars(self): 
        return ('x', ), ('y', 
        ) 
    def linearize(self): 
        J = numpy.array([2.0]) 
        return J 

And for new OpenMDAO:

from openmdao.api import Component 
 
class Times2(Component): 
    def __init__(self): 
        self.add_param('x', 1.0, desc='my var x') 
        self.add_output('y', 2.0, desc='my var y') 
 
    def solve_nonlinear(self, params, unknowns, resids): 
        unknowns['y'] = params['x'] * 2.0 
 
    def linearize(self, params, unknowns, resids): 
        J = {} 
        J[('y', 'x')] = numpy.array([2.0]) 
        return J 

To summarize the differences in Component definition:

The execute method is now called solve_nonlinear.
Variables are declared in __init__ instead of at class level.
Variables are no longer attributes of the Component but instead are accessed via the params and
unknowns objects that are passed into solve_nonlinear.
In Variable metadata, noflat is now pass_by_obj.
The Component class definition is imported from a different place.
OpenMDAO no longer uses the strong typing of Traits, so the associated imports (e.g. Float) are no longer
needed.

Building a Model

Grouping Components
In old OpenMDAO, Components can be grouped together in an Assembly, e.g.,

asm = Assembly() 
asm.add('comp1', Times2()) 
asm.add('comp2', Times2()) 

In new OpenMDAO, grouping of Components is done using a Group object, e.g.,

group = Group() 
group.add('comp1', Times2()) 
group.add('comp2', Times2()) 

Promoting Variables
In old OpenMDAO, Assemblies are Components and can have their own variables, and these variables can be
either explicitly linked to variables on the Assembly’s internal Components using connect, or can be
automatically created and linked using the create_passthrough convenience function. For example:

asm = Assembly() 
asm.add('comp1', Times2()) 
asm.create_passthrough('comp1.x') 

In new OpenMDAO, Groups are NOT Components and do not have their own variables. Variables can be
promoted to the Group level by passing the promotes arg to the add call, e.g.,



5/2/2016 Purpose of This Document — OpenMDAO 1.6.3 Alpha documentation

http://openmdao.readthedocs.io/en/1.6.3/conversion-guide/conversion.html 5/6

group = Group() 
group.add('comp1', Times2(), promotes=['x']) 

This will allow the variable x that belongs to comp1 to be accessed via group.params[‘x’].

Linking Variables
In old OpenMDAO, linking two variables within an Assembly is done by calling the connect method on the
Assembly.

asm.connect('comp1.y', 'comp2.x') 

In new OpenMDAO, explicitly linking two variables within a Group is done by calling the connect method on the
Group.

group.connect('comp1.y', 'comp2.x') 

Linking in new OpenMDAO can also be done implicitly, by using the promotes arg in the add call that we saw
earlier. See Basics, Group for details of linking using promotion.

Connecting Parts of Array variables
In old OpenMDAO, you can put array entry references in your connect statement. For example, to connect a slice
of an output variable to an input variable, you can do the following:

asm.connect('mycomp1.y[2:10]', 'mycomp2.x') 

In new OpenMDAO, you would do it like this:

group.connect('mycomp1.y', 'mycomp2.x', src_indices=range(2,10)) 

Note

Support for setting src_indices to a slice object or tuple is likely in the future, but for now, you must specify all of the
indices.

Caution

Old OpenMDAO also supported specifying array entries on the destination variable, e.g.,

asm.connect('mycomp1.y', 'mycomp2.x[5]') 

New OpenMDAO does not support that functionality.

Model Tree
In both old and new OpenMDAO, the model has a tree structure. In old OpenMDAO, the tree has an Assembly at
the top, and that Assembly contains Components and/or other Assemblies. In new OpenMDAO, the top of the
tree is a Problem object, and that Problem contains a single Group called root that contains the rest of the
model. A Group cannot be executed unless it is contained within a Problem object and that Problem’s setup
method has been called.

Drivers and Solvers
In old OpenMDAO, every Assembly has a Driver, and a Driver can be an optimizer or a Solver, as well as some
other iterative executive like a DOEDriver, etc.

In new OpenMDAO, a Solver is not a Driver, and only the Problem object can have a Driver. Every Group has a
nonlinear solver and a linear solver. The default nonlinear solver is RunOnce, which just runs solve_nonlinear
once on each of its children. The default linear solver is ScipyGMRES, just as it was in old OpenMDAO.

Execution Order

http://openmdao.readthedocs.io/en/1.6.3/usr-guide/basics.html#Group


5/2/2016 Purpose of This Document — OpenMDAO 1.6.3 Alpha documentation

http://openmdao.readthedocs.io/en/1.6.3/conversion-guide/conversion.html 6/6

Execution Order
In old OpenMDAO, execution order of the components within an Assembly is determined by a combination of
the order of the names in the Driver’s workflow attribute and the order of the data flow, which is determined
automatically based on connections between components.

In new OpenMDAO, subsystems within a Group are executed in an automatically determined order based on the
direction of data flow between them. You can override the automatic ordering by calling the set_order method
on the Group, giving it a list of names of subsystems in the order that you want. The setup method of Problem
will report any out‑of‑order systems that it finds.

Running the Model
The full code for defining and running our old OpenMDAO model, leaving out the necessary imports, is the
following:

asm = Assembly() 
asm.add('comp1', Times2()) 
asm.add('comp2', Times2()) 
asm.connect('comp1.y', 'comp2.x') 
asm.run() 

The corresponding model in new OpenMDAO looks like this:

prob = Problem(root=Group()) 
prob.root.add('comp1', Times2()) 
prob.root.add('comp2', Times2()) 
prob.root.connect('comp1.y', 'comp2.x') 
prob.setup() 
prob.run() 

Support
Moving your previous models to OpenMDAO 1.0 may be a bit of work, but one that we feel will be worth the
effort. If things get confusing or difficult, we’re here to help. Ask conversion questions at the old forum, or email
us at support@openmdao.org .

http://openmdao.org/forum
mailto:support%40openmdao.org

