Preprint of article: https://doi.org/10.2514/3.61260

Topology optimization in OpenMDAO

Hayoung Chung - John T. Hwang -
Justin S. Gray - H. Alicia Kim

Abstract Recently, topology optimization has drawn interest from both in-
dustry and academia as the ideal design method for additive manufacturing.
Topology optimization, however, has a high entry barrier as it requires substan-
tial expertise and development effort. The typical numerical methods for topol-
ogy optimization are tightly coupled with the corresponding computational
mechanics method such as a finite element method and the algorithms are in-
trusive, requiring an extensive understanding. This paper presents a modular
paradigm for topology optimization using OpenMDAO, an open-source com-
putational framework for multidisciplinary design optimization. This provides
more accessible topology optimization algorithms that can be non-intrusively
modified and easily understood, making them suitable as educational and re-
search tools. This also opens up further opportunities to explore topology
optimization for multidisciplinary design problems. Two widely used topology
optimization methods—the density-based and level-set methods—are formu-
lated in this modular paradigm. It is demonstrated that the modular paradigm
enhances the flexibility of the architecture, which is essential for extensibility.

1 Introduction
Topology optimization is a numerical method that computes an optimal struc-

tural layout for any given set of objective and constraints. There are two pri-
mary formulations used to perform topology optimization. One is the material-

H. Chung
University of California San Diego E-mail: hac210Qucsd.edu

J. T. Hwang
University of California San Diego

J. Gray
NASA Glenn Research Center

H. A. Kim
University of California San Diego; Cardiff University E-mail: alicia@ucsd.edu

2 Hayoung Chung et al.

distribution formulation where the material/void distribution in the design do-
main is optimized and the density of each finite element is the design variable.
The most common method in this category is Solid Isotropic Materials with
Penalization (SIMP) [7]. The other category is the boundary-based formulation
where the structure is defined by a function that is iteratively moved to deter-
mine the optimal layout. The most common method here is level-set topology
optimization which employs an implicit function to represent the boundaries
and the level-set advection problem is solved to move the boundaries.

Regardless of their parameterization, the two topology optimization meth-
ods share many common aspects as they have a strong tie to the structural
analysis and are inherently large-scale optimization. Both categories of topol-
ogy optimziation require the solution of a boundary value problem to compute
the structural response of any given design. Then the derivatives of the struc-
tural response with respect to the design variables — the values that control
the topology of the structure — are needed to leverage efficient gradient based
optimization algorithms and keep the computational cost of topology opti-
mization reasonable.

To reduce the entry barrier of building up these components, there are
numerous research and literature published with an educational purpose. For
example, the seminal paper by Sigmund (2001) [24] explains the basic set of
algorithms for SIMP topology optimization and provides a 99-line MATLAB
code that embodies the method. Several variants of the code have been pub-
lished since: a simpler code structure with enhanced program efficiency [3] and
extended capability [1,21]. There are also works using the different domain
representations, including the level-set method [19] and regularization [22].
Additionally, the efforts are made to leverage the benefits of open-source soft-
ware development [4] in solving the boundary value problems. By providing a
wrapper to the third-party applications, the user base of topology optimization
methods is expected to be widened. Having a primary goal of communicating a
working knowledge of the topology optimization schemes to their readers, these
codes have been successful in providing the essential numerical algorithms as
a self-sufficient program. However, as a consequence, the functionalities are
limited. Also, these programs present procedural architectures, where the nu-
merical algorithms are separated into several subroutines and the analysis and
the optimization layers are tightly coupled.

Such an architecture generally limits the reusability of these programs when
their extension or modification is desired. First, these subroutines are not in-
dependent as they are specifically designed to be used within the designated
context. Furthermore, any modification to the code such as changing objec-
tive function or adding a discipline requires an intrusive intervention into the
interconnected modules. This requires frequent re-programming as well as a
thorough knowledge of the entirety of the existing code structures. These lim-
itations are largely derived from the tight coupling between the analysis and
optimization. In addition, such coupling also prevents topology optimization
to be considered as one module in the context of multidisciplinary design opti-
mization (MDO) and presents challenges integrating into a system level design

Topology optimization in OpenMDAO 3

process. In order to make topology optimization more accessible, the domains
for optimization and analysis are treated as separate modules within the MDO
framework. For this goal, numerical algorithms involved in the methods are
programmed as separate objects that strictly comply not only with the OOP
(object-oriented programming) paradigm, but also the conventions of MDO.
These require a careful design of the classes including the encapsulation of the
variables and method specialized for optimization.

This paper presents both SIMP optimization [7] and level-set topology op-
timization (LSTO) [2, 8] implemented within a general MDO context, using
NASA’s OpenMDAO framework. Our selection of OpenMDAO as the platform
is motivated by the easy implementation of the program and its convenient
extension—the ease of reusing previously developed OpenMDAO code. The
benefits are primarily originated from two aspects of OpenMDAQ. The first
aspect is a the ability to develop topology optimization as a hierarchically
modularized program built from a set of small and reusable parts. Modularity
and reusability, while improving code reuse and flexibility, introduce a new
challenge when applied to topology optimization because of the need to use
gradient based optimization with analytic derivatives. With a code designed
to have parts being added, removed, and re-ordered on a regular basis, then
it becomes a tedious and expensive task to re-implement the derivative cal-
culations with every change of the model structure. The second aspect of the
OpenMDAO framework that motivates its use in this effort directly addresses
this challenge related to derivative computation. OpenMDAO can automat-
ically compute total derivatives of a model composed of multiple parts, as-
suming that each part provides its own partial derivatives. This means that
re-ordering of existing models requires no additional work with regard to com-
puting derivatives needed for optimization. Adding new functionality to the
model requires only differentation of the new calculations, but relieves you
of the need to integrated those partial derivative calculations into the overall
model. The modularity and automatic computation of total derivatives enable
a truly reusable and reconfigurable code design, as the need for an intrusive
inspection into the internal structure of computational units is eliminated.

2 Background
2.1 Material-distribution method: SIMP

SIMP explicitly describes topology as a distribution of the local material rep-
resented by densities p. The local material property is assumed to be propor-
tional to the local density, hence it is sometimes classified as a density-based
method. In this method, the design variables are discretized according to the
elements found in the finite element mesh. The local density p; is assigned
to the ith element and assumed to be a continuous variable between 0 (void)
to 1 (fully filled with the material). With the piecewise continuity and the
bound, the optimization problem is well-suited to employ gradient-based op-

4 Hayoung Chung et al.

timization. However, the continuous density leads to an intermediate density
that can make an identification of the resulting topology challenging. The
intermediate densities are therefore typically penalized to promote a binary
distribution. In addition, it is also customary to apply a filtering on sensitivity
or density to obtain a numerically stable solution. The physical analysis of a
structure employs the finite element method. For further details, the readers
are referred to [7].

A workflow of SIMP is illustrated in Fig. 1 by following the convention
of the extended design structure matrix (XDSM) diagram. Further details on
the XDSM convention can be found in [20]. First the initial design variable
vector [p°] filtered to compute [p] and later penalized by p. A state variable
vector of displacements ([u]) is calculated based on the finite element analysis,
where a distribution of the discrete densities [pP] is employed to construct
the global stiffness of the structure. The objective (f), constraints (g), and
their derivatives are computed with respect to the state and design variables.
Typically there are many more variables than objective and constrain values
so an adjoint method is used to efficiently calculate the total derivatives for
the optimizer.

0,4 1:

Optimization

1: p
2:p;
Filter i

2 e - p

2:p;P 3:p:P
Penalization @ LT—/ 1>
3
Finite Element Analysis Zda)
4
Objective
4
Constraint

Fig. 1 XDSM diagram of the SIMP method

2.2 Level-set based method: LSTO

LSTO employs an implicit representation of the structural boundaries that
characterizes the topological layout §2. The design is updated by moving the
boundaries instead of determining its distribution of the local materials. A pri-
mary advantage of LSTO comes from the smooth boundaries that are always

Topology optimization in OpenMDAO 5

well defined in contrast to the pixelated boundaries and intermediate density
elements found in the SIMP solutions. The solution obtained by LSTO is thus
easily interpreted to the structure. The boundary of the layout is defined as
a zero level-set function ¢(x) = 0, and it is modified or moved by solving the
Hamilton-Jacobi equation

3962 =G Vvl =0 (1)

where t is the pseudo timestep of the advection problem, and V,, is the advec-
tion velocity normal to the boundary, which is a key variable to get an optimal
solution. An explicit integration scheme is often employed to solve the problem
for such discretized space and time domains. This paper employs the LSTO
method where V,, at the k-th iteration is determined by solving a linearized
suboptimization problem. This is briefly discussed below, and the interested
readers are referred to the work by Sivapuram et al [25] for further details.

The change in the objective f and constraint functions g can be written
as,

of of S
Aty = {55 507 A2 = (AVE) S LS. 581, 2)

J

after linearization with respect to current domain £2*, and discretization by a
set of boundary points (B). Sy ; and Sy ; represent the shape sensitivities for
the objective and constraint, evaluated at the boundary point j. The sensi-
tivities are calculated based on the state variables obtained by finite element
analysis. The structure domain £2* is projected onto the finite element mesh by
Ersatz method, which replaces complex remeshing. The weighted least square
method is employed to reconstruct the shape sensitivity at the boundaries [11].
The sensitivities are numerically integrated by multiplying length segment ;.

Without loss of generality, an advecting velocity V,, is set to ad, where « is
a distance that boundary travels along the unit direction d. According to the
Ref. [25], (2) is further reduced to the following suboptimization formulation.

min Af = AtC} - o*d*
subject to Ag = AtC’;c cafdh < —gF
Ch+ MG,

k_ _—J 79 k k 1k k
d* = ||C’}“—|—/\kCgH’ Zn,min S a’d S Zn,maa:

(3)

where Cy = Sy x 1 and Cy, = S, x | are numerically integrated sensitivities. A
is the vector of Lagrange multipliers for inequality constraints equation. The
bounds on the traveling distance (zﬁymm, zfi’mm) are calculated based on the
two criteria: (i) the advected layout must not go outside the design domain, and
(ii) the distance cannot violate the CFL (Courant-Frederichs-Lewy) condition.
Solving the suboptimization problem (3) gives the optimum values for At, o*,
d*, which are then used to compute the optimum velocity V;, in (1).

The workflow of LSTO is illustrated in Fig. 2. There are two layers of al-

gorithms that corresponds to each optimization. Fig. 2(a) shows an update of

6 Hayoung Chung et al.

the level-set function ¢ by solving the Hamilton-Jacobi equation. Many of the
routines, marked by either pink or green boxes, are also found in the SIMP
case. However, there is no filtering or penalization methods that follows after
discretization. Suboptimization 3 is shown in Fig 2(b). The scaling operation
that normalizes the sensitivities to be bound to the limit [-1, 1] is also applied.
This auxiliary operation is essential in making the suboptimization indepen-
dent to the physical unit, hence decoupling the finite element analysis from
the level-set layer.

(@)
[

0,5 1:
Optimization t=(0, t*)

Discretization ii?—/

Finite Element Analysis

[s}
{5:2'_, q
: suboptimization
(b)

0,5—1 N .

o

Fig. 2 An XDSM diagram of LSTO (a) General outlook of LSTO (b) Suboptimization

2.3 OpenMDAO

OpenMDAO is an MDO platform developed and maintained by NASA [13,
14] (http://openmdao.org). Being capable of handling a large number of
variables and disciplines, it has been used to solve MDO problems in a wide

Topology optimization in OpenMDAO 7

range of engineering fields, e.g. satellite design [16], wind turbine design [13],
aircraft design [17] and aircraft trajectory optimization [12].

—[OpenMDAO }

Recorder, Visualizer
1
Problem)
Driver
Group |
Component

y Group Il

\ ; Co
Componen:
| Group Il]7

\ Co \
jﬁ {} Component Input
\ —
. A \ Component ¢ \
Design variables,

Objective, Constraints o
\ utput | Component
~=

Fig. 3 Illustration of modularized architecture found in OpenMDAOQO. Three set of the layers
are found at the different hierarchies: Component, Group, and Problem.

OpenMDAO has a hierarchical OOP architecture written in Python, ori-
ented for both system construction and optimization, as shown in Fig. 3. An
OpenMDAQO model is constructed by a combination of Component classes,
which are located at the lowest level of the class hierarchy. The governing
equations of the physics are embodied into the Components. The Component
class is designed for gradient-based optimization as it has methods to calculate
not only the output for the given inputs but also the partial derivatives be-
tween the arguments. Such a self-containing ferature enhances the reusability
of an object. The contents of the Components is determined by the degree of
modularization; the Component can be as comprehensive as a single discipline
(e.g., finite element analysis), or as small as a subset of the equations (e.g., the
penalization equation found in the SIMP-based optimization). Since increasing
the number of communicating variables leads to inefficiency, one needs to con-
sider the possible extensions of the system and design variables in choosing a
degree of decomposition. In this work, computation illustrated as a rectangular
box in a XDSM diagram is directly implemented as a Component. The Com-
ponent objects are contained within the Group class layer. The connectivity
between the Components is defined within a Group as shown in the Appendix.
It reflects the arrangement between the equations that is illustrated as a line
in the XDSM diagram. For every OpenMDAO program, a Problem object is

8 Hayoung Chung et al.

defined as the highest level class. The Problem class contains a system, and a
Driver object that executes the optimization.

During the assembling of a system, the total derivatives are computed
based on the partial derivatives of the corresponding Components. The con-
nectivity between the Components is reflected during the sensitivity analysis.
OpenMDAOQ assists the analysis as it is designed around a collection of equa-
tions and algorithms, called the MAUD architecture [18]. MAUD provides a
generalized method that unifies the derivative computation methods using a
matrix equation. This is useful when models contain implicit equations because
the user is no longer required to manually implement the adjoint method.

With OpenMDAOQO, the need for reprogramming and the likelihood of er-
rors are reduced. For example, programming for partial derivatives is simpli-
fied as the smaller components have fewer inputs and outputs, hence there
is less to differentiate. Furthermore, an intrusive inspection into an object is
not necessary for the analytic calculation of total derivatives as this compu-
tation is abstracted and automatically handled by the framework based on
the partial derivatives. It enhances the flexibility of the existing objects as the
programmed equations can be reused or reconfigured with ease.

3 Topology Optimization Algorithm in OpenMDAO
3.1 Optimization problem

Compliance minimization is a classic problem in topology optimization as
shown below [7].

min f(z) = u(z)TF
subject to g(z) —g* <0

(4)

where (2 is the structural domain, f is the compliance of the structure, which is
determined by design variable x, displacement function u(x), and mechanical
load F. A volume constraint, g(z) is usually imposed to be less than or equal
to g*. Note that u is also a function of x.

3.2 SIMP Algorithm

In OpenMDAO, SIMP has six Component objects, which include five sub-
routines described in the XDSM diagram (Fig. 1) and one Component that
defines the design variables. They are aggregated into one Group object to
create the SIMP method. In this section, each of the Components classes is
briefly explained in terms of its input and output arguments. The governing
equation and its partial derivatives are also described.

The Components and their connectivities are visualized using the design
structure matrix shown in Fig. 4, natively generated by OpenMDAO. Each
Component is marked by a blue box, and its inputs (pink) and outputs (either

Topology optimization in OpenMDAO 9

gray or orange) exposed to the Group layer are also specified. An orange output
is an unknown variable from the implicit function, while a gray variable is
an explicit output. The connectivities between variables are marked by black
squares. The connectivities found in the design structure matrix is diagonal-
dominant, as there is only one discipline and the coupling between Components
are forward-dominant.

L | |
L

ATl
-

=
T Hn

a1l
n

=N
T man
[

Fig. 4 Design structure matrix of SIMP method.

3.2.1 Global parameters

Scalar parameters that are neither input or output argument of the equation
are declared as global parameters. These parameters are not explicitly shown
in the XDSM, but all the Component objects have an access to the global
parameter. There are two global parameters in SIMP implementation. A pe-
nalization parameter p is set to be 3, and a filtering radius R is set to be the
double of the length of the elements.

3.2.2 Independent Variables (cInputs)

In SIMP, discretized piecewise material densities are defined as a design vari-
able. Although not shown in the XDSM diagram (Fig. 1) as a design variable,
the mechanical force F' is also defined herein because it is an input argument
of the finite element analysis object that solves a boundary value problem.

— Inputs: None
— Output: p;, F

10

Hayoung Chung et al.

3.2.8 Filtering (cFiltering)

A linear density filter is used herein.

pi = Zwij/)ja
J

()

where the p; refers the filtered density at element . w;; indicates the weighting
factor that are calculated by simple conic weight equation [26], which averages

the density values found 7 and the neighboring elements j.
— Inputs: p;

— Output: p;
— Partial derivatives: w;; only when ¢ = j; otherwise 0

3.2.4 Penalization (cPenalty)

— Inputs: p;
— Output: p;P
— Partial derivatives: pp;? !

3.2.5 Finite Element Analysis (cState)

In the finite element analysis object, an implicit equation
R(p%u, F)=K((p)u—F =0

is solved where K (p;?) refers a global stiffness matrix.

— Inputs: p;?, F

— Output: state variable u
— Partial derivatives: 2% 98 IR

9p;P? du’ OF

3.2.6 Objective (cObjective)

— Inputs: u, F'
— Output: f =u’F

— Partial derivatives: g—f:, oL

OF

3.2.7 Constraints (cConstraint)

— Inputs: p;?
— Output: g =", pi”

Topology optimization in OpenMDAO 11

3.3 LSTO Algorithm

As described in the XDSM diagram (Fig. 2), LSTO is composed of two sets
of computation layers: (i) an update of the level-set function by solving a
Hamilton-Jacobi equation on the level-set grid, and (ii) suboptimization, where
the optimal V,, is calculated at each iteration. In this work, the suboptimiza-
tion routine is implemented as the OpenMDAQO Problem object, while the rest
of the updating operations are implemented to wrap around the object for
computational efficiency. Given that optimal advecting distance z is obtained
for the given instance, their values are firstly extended to the level-set grid
using the 5th order WENO scheme. The signed distance function is then up-
dated using the fast marching method. The finite element discretization of the
current design domain employs an Ersatz model that cuts the material using
a marching square method. The structure of the level-set numerical libraries
are shown in the Appendix (6), and detailed descriptions of the numerical
procedures and their algorithms can be found in Ref. [10,15].

The suboptimization scheme is implemented as eight Components. Since
all the equations are explicit, their partial derivatives are not shown herein for
brevity.

e
| N |

|
sy [|
o LI |

z N |
2g-(g-g) [|

Fig. 5 Design structure matrix of the suboptimization found in LSTO

12 Hayoung Chung et al.

3.8.1 Global parameters

The descritized properties that describe the structure are declared as the global
parameters. The length segment [is defined at each boundary node. The bound
of the Lagrange multiplier &,,in,maz iS computed by considering the limit of
the boundary movement of the nodes.

3.5.2 Independent Variables (cInputs)

The £ vectors contains the Lagrange multipliers and pseudo-time, found in
(3). The sensitivities Sy and S, are given as the independent variables. g
and g*, which refer the constraint value and the corrent step and the problem
constraint are specified, since their difference g — g* constrains the z to enforce
the solution to be within inactive constraint region.

— Inputs: None
— Outputs: &, Sf, S, 9 — g*

3.8.8 Scale parameters (cScaling_f, ¢Scaling_g)

These two Components are based on the same subroutine that normalizes the
sensitivity to be bounded to [-1, 1]. Each compute the scaling parameter for
objective (c¢Scaling_f or constraints (cScaling_g) .

Sy =1/max(|Ssll), Sy = 1/mazx(]|S,]]) (7)

The normalization is a essential in calculating z, as it should not be biased
by the magnitude of the sensitivites, which is affected by a definition of the
objective and constraint functions.

— Input: S, (a can be either f or g)
— Output: S,
3.8.4 Displacement (cDisp)

The displacement z is calculated based on (3). The scaling parameters are
included alongside with the sensitivities.

— Inputs: S, Sy, gf, gg, £
— Output: z

3.8.5 Boundary integration (cIntg_f, cIntg_g)

— Inputs: S, (a can be either f or g)
— Output: C,

Topology optimization in OpenMDAO 13

3.3.6 Objective (cDel_f)

— Inputs: Sy, z, §f

— Output: Af = Sf x 2 x Sy
3.3.7 Constraints (cDel_g)

— Inputs: Sy, z, gg, g" —g*
— Output: Ag — (¢* — g%)

4 Numerical results and Discussions
4.1 Problem definition

We demonstrate SIMP and LSTO algorithms in OpenMDAO using a familiar
numerical example. A compliance of a rectangular cantilevered beam of Fig.
6 is minimized while the total material is subject to be less than or equal to
40% of the area of total design domain.

80

A R

4

»] F
v

160

Fig. 6 The cantilevered plate for the compliance minimization problem.

Young’s modulus E and Poisson ratio v are set to 1.0 and 0.3, respectively.
A vertically downward force F' is applied with a value of 1 at the mid-point of
the right edge. A linear elasticity is assumed. Sequential Quadratic Program-
ming (SLSQP) from SciPy optimization library is used, with a convergence
criteria (Af < 1075).

4.2 SIMP
Initial material densities are assumed to be uniform throughout the design

domain, while their sum is set to 0.861 of the total volume to match with the
LSTO example. The finite element domain and the equivalent design space is

14 Hayoung Chung et al.

discretized with 80 x 40 quadrilateral elements. Figure 7(a) shows the conver-
gence graph of the compliance f(p) and the total material density g(p). The
compliance profile fluctuates in the first 10 iterations while the constraint is
satisfied within 2 iterations. After the oscillation, compliance keeps decreasing
until it converges as shown in the Fig. 7(a). The optimal layout is obtained at
iteration 120. The intermediate densities, and the disconnected materials that
are observed in the early iterations are removed. The jagged boundary is found
in the optimal layout, which is a characteristic of the material-distribution
method.

(@ a0 8.7 1
400 |, f 93.6 Initial configuration
350 | — & 93.5 08
¢ 300
9 934
_E 250 60 80 100 120 06 ;
= 200 oa &
£ 1% L %
O 100 0.2
50 f(p,u) = 62.265
0 0 =0.861
0 20 40 60 80 100 120 g(p)
(b) Iteration
Iteration 6 Iteration 60 Iteration 120
—
WH‘
il '
f(p,u) =264.51 f(p,u) = 93.677 f(p,u) = 93.431
g(p) =0.482 2(p) = 0.400 g(p) = 0.400

Fig. 7 Numerical results of SIMP. (a) a convergence profile and initial configuration (b)
topological solutions, compliance (f), and area fraction (g) at the 6%, 60*", and 120*"
iterations.

4.3 LSTO

The same compliance minimization problem is solved with the LSTO method.
The initial design domain has seeded holes, instead of utilizing the hole-
creation algorithms [9]. Both level-set grid and finite element mesh for struc-
tural domain are set to 80 x 40. The CFL condition of 0.5 is used. Figure
8(a) shows the convergence. In contrast to the SIMP example, both the com-
pliance and constraint values exhibit a smooth convergence. The convergence
is achieved at iteration 121, which is equivalent to the SIMP example. The
changes of the topological layouts are illustrated in the Fig. 8(b). The opti-
mal solution agrees well with the established optimum solution. An optimal
topology is found to be similar to the that from SIMP method, and the overall

Topology optimization in OpenMDAO 15

solutions have a similar quality. Although it is true that the resulting compli-
ance is lower in the LSTO case than in the SIMP case, it does not necessarily
ensure the relative optimality of the former layout. These optimization schemes
have different design space hence the values are not directly comparable. The
lower value of the LSTO case is partially accounted by a removal of a jagged
boundary, and an allowed partial elements, but the direct comparison between
these results are not the aim of the present work.

@) 10 1

PR g Initial configuration
0.8

v
S

@
S

0.6

3 ‘eaay

0.4

Compliance, f
o =
g3 3

o
S

£(Q,u) = 50.7864

40 0 2(Q2) = 0.861
0 20 40 60 80 100 120
(b) Iteration
Iteration 8 Iteration 40 Iteration 122
(2, u) = 78.058 f(Q, u) =73.372 f(Q, u) = 72.601
2() = 0.450 () =0.400 g(2) = 0.3992

Fig. 8 Numerical results of LSTO. (a) a convergence profile and initial configuration (b)
topological solutions, compliance (f), and area fraction (g) at the 8", 40", and 122th
iterations.

5 Demonstration of Reusability and Reconfigurability

This section demonstrates the benefits of the architecture’s reusability and re-
configurability for education and research via two examples. The first example
shows the enhanced reusability of the Component objects. The second exam-
ple shows the easy reconfigurability, where the sequence of the Component
objects within the Group is randomly arranged.

5.1 Example 1: Reusability

The reusability of the modules is exemplified by reusing the existing Compo-
nents for a new topology optimization formulation that bears similarities to the
parameterized level-set topology optimization approach [6,8,23]. This method
is, in essence, a density-based approach, but the densities are parametrized
using a level-set function that implicitly represents the boundary. Instead of
tracking the boundary directly, the value of this function is used to control

16 Hayoung Chung et al.

the densities in the elements, using a Heaviside function to map to the (0, 1)
interval and SIMP-type penalization to discourage intermediate densities.
The Components of finite element analysis (cState), penalization (cPenalty),
objective (cObjective) and constraints (cConstraint) are reused. Only the meth-
ods for the parameterizing level-set function ¢ are newly implemented. The
design structure matrix of this optimization method is shown in Fig. 9.

5.1.1 Independent variables (cInputs)

The design variables are the values of the regularly spaced points p. The nodal
force F' is also declared as an independent variable as done in SIMP-based
optimization.

— Inputs: None

— Output: p, F

5.1.2 Parameterization (cParam)

The continuous hypersurface ¢ is computed using a bivariate B-spline inter-
polation of the given control points p, which are the design variables. The
order of the B-spline is set to 3, and 9 Gauss quadrature points are selected
to evaluate the function. The function is evaluated at the Gauss quadrature
points g.

— Inputs: p
— Output: ¢q4

5.1.3 Heaviside filtering (cHeaviside)

A smooth approximate H(z) to the Heaviside function is employed to map
the large values found in the Gauss quadrature points to the (0, 1) interval.
The hyperbolic tangent function is used as an analytical Heaviside function.

p=H(6) = (1 + tanh(9)) ®)

— Inputs: ¢,
— Output: p,

5.1.4 Averaging (cAverage)

The filtered values found in the ith element are averaged to generate piecewise
constant densities p;, which are interpreted as SIMP-like material densities.

— Inputs: p,
— Output: p;

Topology optimization in OpenMDAO 17

= —
3 o
B -

&g L
& "

Py |
=

p (m |
[= [.

PP min

p’ |
¥ -

u o

u |

F |

f |

p |
B]

Fig. 9 Design structure matrix of the parametric level-set approach for topology optimiza-
tion.

The convergence graphs are presented in Fig. 10(a). Since the method
is essentially a density-based method like SIMP, oscillations are observed in
the earlier steps during optimization. The material layout and compliance
value found in Fig. 10(b) are comparable to those from the SIMP-based op-
timization. There are several oscillations in the optimized layouts that are
presumably numerical artifacts due to the coarseness of the level-set function
parameterization [23]. However, a detailed discussion on the optimality of the
results is out of the scope of this work, as our goal here is to highlight the
reusability as a benefit from using a modular computational approach.

5.2 Example 2: Reconfigurability

This example demonstrates the ease of reconfigurability. We investigate the
density filtering effect by filtering the penalized densities instead of the unpe-
nalized densities. This can be achieved simply by switching the order of the
cFiltering and cPenalty Components found in Fig. 4. The new design structure
matrix is shown in Fig. 11.

In practice, this can be achieved by changing three lines of code, as shown
in Fig. 12. This contrasts with the previous code structures [21,24,27], where
making such a change requires significant re-programming effort for the sen-
sitivity analysis method and also intrusive inspection of the existing density
filter.

Although the whole code is not shown herein, one may easily see how
the removal of the filter can be realized as well. The numerical results of
these modifications are shown in Fig. 13. All the numerical parameters are

18

Hayoung Chung et al.

()

7000
6000

S 2
S 3
S 3

—f

Dow &0
S
S
S

000

Compliance, f

_.
g
- 8

()

Iteration 6

20

40

60 80

Iteration

£(Q, u) = 166.62
g(@) = 0.5712

Iteration 50

(0, u) =73.372
() = 0.400

Initial configuration

8 ‘eany

f(p,u) = 80.073
g(p) =0.812

Iteration 107

£(Q, u) = 72.470
2(Q) = 0.400

Fig. 10 Numerical results of SIMP. (a) a convergence profile and initial configuration (b)
topological solutions, compliance (f), and area fraction (g) at the 6!*, 50", and 107t

iterations.

=

T

B~
£

@ © vom o8 =2 m R

Fig. 11 The design structure matrix of the SIMP method, where the filter object is rear-

ranged with respect to that of the penalization step

equivalent to the SIMP example shown in Sec. 4.2. As one may expect, either
rearrangement (Fig. 13(a)) or removal (Fig. 13(b)) of the existing filter each
saliently generates an intermediate density or a checkerboard pattern in the
converged solutions.

Although the presented system configurations are not typical in the topol-
ogy optimization method, these exhibit the effect of the filtering and its ar-

Topology optimization in OpenMDAO 19

(2) (W]

self.connect(‘cInputs.dvs’', ‘cFiltering.dvs’) self.connect(‘cInputs.dvs', ‘cPenalty.x')

filter # filter

comp = DensityFilterComp(..) comp = DensityFilterComp(..)
self.add_subsystem(‘cFiltering', comp) self.add_subsystem(‘cFiltering', comp)
self.connect('cFiltering.dvs_bar', ‘cPenalty.x’) self.connect('cFiltering.dvs_bar’, ‘cState.rho’)
penalization # penalization

comp = PenalizationComp() comp = PenalizationComp()
self.add_subsystem(‘cPenalty', comp) self.add_subsystem(‘cPenalty', comp)
self.connect(‘cPenalty.y’, ‘cState.rho') self.connect(‘cPenalty.y', ‘'cFiltering.dvs')

Fig. 12 a code snippet for the reconfiguration that exemplifies the easy reconfiguration:
(a) a declaration of the connectivities between Components found in original SIMP Group
(b) corresponding code where the cPenalty and cFiltering are switched.

rangement to the resulting layouts. It also illustrates the educational benefits
of using OpenMDAO for topology optimization, since the ill-posedness of cer-
tain formulations can be tested and demonstrated with minimal programming
effort.

Fig. 13 Optimal solutions where the filter object is (a) rearranged or (b) removed

6 Conclusion

This paper demonstrates the feasibility of formulating topology optimization
as an MDO problem, using the OpenMDAO software framework. OpenMDAO
offers a distinctive modular architecture with a hierarchical class design, and
it is designed specifically for gradient-based optimization. The model used for
topology optimization is decomposed into a set of modular Component objects
that each define equations and their partial derivatives. These Components
are assembled in a Group object where the total derivatives are calculated
semi-automatically. Using this modular approach, the programming effort is
reduced and the reusability of the resulting components is increased. Moreover,
the MAUD architecture enables non-intrusive programming thus making the
existing objects truly reusable and reconfigurable.

Both the material-distribution (SIMP) and boundary-based (LSTO) topol-
ogy optimization methods are decomposed into a set of subroutines, and im-
plemented in a modular way. A classical compliance minimization problem is
solved, and similar topological designs are obtained. The benefits from the
architecture, the reusability, and the reconfigurability are also demonstrated
through two examples. The first example demonstrates the ease of reusing the

20 Hayoung Chung et al.

pre-existing Component objects. Several Components found in SIMP are eas-
ily reused to implement a different optimization method, where the level set
function is constructed using B-spline interpolation and it parameterizes the
material density. Such an example implies that the objects can be reused in a
different context hence a user can easily implement the new idea or algorithms
based on the existing methods. Additionally, the flexible rearrangement of the
objects is shown in the second example. The effect of the density filtering to
the optimization is easily investigated by only changing a few lines of code. In
both examples, the programming effort involved and required understanding
are both minimized.

Although the modular approach presented here offers significant advan-
tages there are some potential counterpoints worth discussing. The primary
reason for the fine-grained decomposition used here was to rely on OpenM-
DAQ’s built-in capability to reduce the overall implementation complexity
and effort for computing analytic derivatives for the optimizer. However, if
gradient-free optimization methods were employed there would obviously be
no need for the analytic derivatives which would reduce the motivation for
the modularity here, and a more tightly integrated code might be preferred.
Additionally, it should be noted that at the time of writing this OpenMDAO
does not support analytic hessian calculations, which some practitioners are
taking advantage of to achieve more efficient gradient-based optimizations. If
Hessians are required, then at the current time OpenMDAO cannot support
the needed computations.

Despite these potential minor limitations, the advantages of this modular
approach remain significant because of the dramatic improvement in code
flexibility and re-use as well as the significant reduction in implementation
effort for computing analytic derivatives.

A. Appendix
A.1 Numerical Libraries

In this work, the existing finite element and level-set libraries written by
C++ are interfaced to OpenMDAO by Cython [5] for an efficient computa-
tion. OpenLSTO (open-sourced level-set topology optimization) is a recently-
published level-set topology optimization suite and in active development by
researchers at the University of Cardiff and the University of California San
Diego, which is freely available (https://github.com/M2D0Lab/0penLSTO-1ite).
The program is designed to provide users with easy access to the level-set
method. To make a compilation process straightforward and demonstrate its
usage within OpenMDAO, we provide the aforementioned OpenMDAO classes
and OpenLSTO as a single suite (https://github. com/chungh6y/openmdao_
TopOpt/tree/master/OpenLSTO-master). Detailed installation process is pro-
vided therein. After compilation, the user may find two libraries (the finite
element and the level-set) as a shared library, which can be imported as the

Topology optimization in OpenMDAO 21

Python object. The concise examples of the given libraries along with the
comments are found below.

A.1.1 Finite Element Method

As specified in the Fig. 6, dimensions (Iz, ly), number of elements (nelz, nely),
and force conditions are specified. Detailed descriptions of functions that spec-
ify boundary conditions can also be found in the GitHub repository. To be
used within OpenMDAO, the calculation routines for the stiffness matrices
and their derivatives give out the entities of sparse matrix, which is built by
SciPy.sparse library.

from pyBind import py-FEA

Meshing
fem_solver = py-FEA(lx = 160, ly = 80,
nelx =80, nely =40, element_order=2)
[node, elem, elem_dof] = fem_.solver.get-mesh ()
Material
fem_solver.set_material (E=1., nu=.3)
Boundary condition
coord = np.array ([0,0])
tol = np.array ([le—3,1e10])
fem_solver.set-boundary (coord = coord,tol = tol)
BCid = fem_solver.get_-boundary ()
External force as specified at Fig. 2
coord = np.array ([length_x ,length_y /2])
tol = np.array ([1,1])
GF_. = fem_solver.set_force (coord = coord, tol = tol,
direction = 1, f = —1.0)

Stiffness matriz given as the entities of sparse matriz (CSC)
nELEM = elem .shape[0]
(rows, cols, vals) = fem.solver.compute_K_SIMP (np.ones (nELEM))

A.1.2 Level-set Method

In the present section, a brief usage of the level-set library is illustrated. The
method is classified into three categories: (1) geometric property extraction (2)
boundary sensitivity evaluation, (3) and the update of ¢ after suboptimization.
After the signed distance function is set (set_levelset), based on the current
domain, Ersatz model area fraction as well as the geometric properties are
evaluated using the discretise function. The boundary sensitivities bptSens are
then obtained from the sensitivity module, where the compliance sensitivities
are computed at the boundary points by various subroutines including least
square method. Note that these values are the ingredients of suboptimization,
wherein advection velocities at the boundary points (Bpt-Vel, timestep) are
computed. The level-set function is then updated and reinitialized accordingly.

from py.lsmBind import py.LSM
from from pyBind import py_Sensitivity

LSM initialization (with initial holes) =
Ism_solver = py-LSM(nelx = nelx, nely = nely,
moveLimit = movelimit)
hole = np.array ([[16, 14, 5], ... , [l44, 66, 5]])
lsm_solver.add_holes (locx = list (hole[:,0
locy = list (hole[:,1]
radius = list (hole [:
lsm_solver.set_levelset ()

22 Hayoung Chung et al.

Discretization
(bpts_xy , arcafraction, seglength) = lsm_solver.discretise ()
(1b2 ,ub2) = lsm_solver.get_-Lambda_Limits ()

FEA that gives out structural response u

Sensitivity module
pySens = py-Sensitivity (fem_solver , u)
bptSens = pySens.compute_boundary_sens (bpts_xy)

suboptimization through the OpenMDAO
Advection of the sign distance function ======—=—====—=——c—=

lsm_solver.advect (Bpt_-Vel, timestep)
Ism-solver.reinitialise ()

A.1.3 Configuration of the connectivity

For an illustration of the connectivities established between variables of dif-
ferent Components, we present here the code snippet of the Group object of
SIMP topology optimization method.

As the Group component initializes before components are called, a num-
ber of shared member variables in relation to the finite element meshes (e.g.,
nNODE, nELEM) as well as optimization parameters (e.g., penalization order
p) are defined using metadata.

The numerous Component objects shown in Fig. 4 are added via add_subsystem,
and their variables are connected by connect functions. Note that connections
are made at the Group level; therefore, the connections can be modified easi-
lywithout intrusive re-programming of the Components.

from openmdao.api import Group, IndepVarComp
from pyBind import py_-FEA

SIMP Group initialization
class SimpGroup (Group):

def initialize (self):
Prescribing shared member variables within group
self.metadata.declare (’'fem.solver’', type_-=py.FEA, required=True)
self.metadata.declare (’'force’, type.=np.ndarray, required=True)
self.metadata.declare ('num_elem_x’', type_=int, required=True)

self.metadata.declare ('num_elem_y’, type_=int, required=True)
self . metadata.declare(’penal’, type_-=(int, float), required=True)
self . metadata.declare (

’volume_fraction’, type-=(int, float), required=True)

def setup(self): # Where the Connectivity between components are set up
fem_solver self.metadata|’ fem_solver ']
force = self.metadata[’ force ']

=1

num_elem_x self .metadata | num_elem_x |

num_elem_.y = self.metadata[’ num_elem_y ']

p = self.metadata| penal’]

volume_fraction = self.metadata[’ volume_fraction’]

(nodes, elem, elem_dof) = fem-_solver.get_mesh ()

(length_x , length_.y) = (np.max(nodes[:, 0], 0), np.max(nodes[:, 1], 0))
(num_nodes-x , num-nodes.y) = (num-elem_x + 1, nume-elem.y + 1)

nNODE = num-_nodes_x * num-_nodes_y

nELEM = (num-_nodes_x — 1) # (num._nodes.y — 1)

nDOF = nNODE x 2

Input component
Independent variables are defined as outputs of IndepVarComp component
comp = IndepVarComp ()

comp.add.output (’force’, val=force)

comp.add-output (’dvs’, val=0.5, shape=nELEM)
comp.add_design-var(’dvs’, lower=0.01, upper=1.0) ## Design wariables
self.add_subsystem (’cInputs’, comp)

self.connect(’cInputs.dvs’, ’'cFiltering.dvs’)
self.connect(’cInputs.rhs’, ’cState.rhs’)

self.connect(’cInputs.rhs’, ’'cObjective.forces’)

Topology optimization in OpenMDAO 23

density filter

comp = DensityFilterComp (length_x=length_x , length_y=length_y ,
num-nodes_x=num_nodes_x , num-nodes_y=num-nodes_y ,
num_dvs=nELEM, radius=length_x / (float(num-nodes_.x) — 1) * 2)

self.add-subsystem (’cFiltering’, comp)

self.connect(’cFiltering.dvs_bar’, ’cPenalty.x’)
self.connect(’cFiltering.dvs_bar’, 'cConstraint.x’)

penalization

comp = PenalizationComp (num=nELEM, p=p)

self.add_subsystem (’cPenalty’, comp)

self.connect (’cPenalty.y’, ’'cState.multipliers’)

states

comp = StatesComp (fem_solver=fem_.solver ,

num-nodes_-x=num-nodes_-x, num-nodes_.y=num-nodes.y ,
isSIMP = True)

self.add_subsystem (’cState’, comp)

self.connect(’cState.states’, 'cObjective.disp’)

compliance
comp = ComplianceComp (num_nodes_x=num._nodes_x , num._nodes_y=num_nodes_y)
comp.add_objective ('compliance’) ## Objective

self.add_subsystem (’cObjective’, comp)
weight
comp = WeightComp (num=nELEM)
comp.add_constraint (’weight’, upper=volume_fraction) ## Constraint
self.add_subsystem (’cConstraint’, comp)
Acknowledgement

We acknowledge the support of the NASA Transformational Tools and Tech-
nologies Project, contract number NNX15AU22A.

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no
conflict of interest.

Replication of Results

To comply with Replication of Results and help the reader in using the present
work in research and education, the codes of the present work is open to public
e codes(https://github.com/chungh6y/openmdao_TopOpt). Instruction for
installation and running a program can be found therein.

References

1. Aage, N., Andreassen, E., Lazarov, B.S.: Topology optimization using petsc: An easy-
to-use, fully parallel, open source topology optimization framework. Structural and
Multidisciplinary Optimization 51(3), 565-572 (2015)

2. Allaire, G., Jouve, F., Toader, A.M.: Structural optimization using sensitivity analysis
and a level-set method. Journal of Computational Physics 194(1), 363-393 (2004)

3. Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B.S., Sigmund, O.: Efficient topol-
ogy optimization in MATLAB using 88 lines of code. Structural and Multidisciplinary
Optimization 43(1), 1-16 (2011)

24

Hayoung Chung et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Antoine, L.: A level set-based structural optimization code using fenics. arXiv preprint

arXiv:1705.01442 (2017)

. Behnel, S., Bradshaw, R., Seljebotn, D.S., Ewing, G., et al.: Cython: C-extensions for

python (2008)

. Belytschko, T., Xiao, S., Parimi, C.: Topology optimization with implicit functions

and regularization. International Journal for Numerical Methods in Engineering 57(8),
1177-1196 (2003)

. Bendsge, M.P., Sigmund, O., Bendsge, M.P., Sigmund, O.: Topology optimization by

distribution of isotropic material. Springer (2004)

. van Dijk, N.P., Maute, K., Langelaar, M., Keulen, F.V.: Level-set methods for structural

topology optimization: a review. Structural and Multidisciplinary Optimization 48(3),
437-472 (2013)

. Dunning, P., Kim, H.: A new method for creating holes in level-set function based

topology optimisation. International Journal for Numerical Methods in Engineering
(2013)

Dunning, P.D., Kim, H.A.: Introducing the sequential linear programming level-set
method for topology optimization. Structural and Multidisciplinary Optimization 51(3),
631-643 (2015)

Dunning, P.D., Kim, H.A., Mullineux, G.: Investigation and improvement of sensitivity
computation using the area-fraction weighted fixed grid fem and structural optimization.
Finite Elements in Analysis and Design 47(8), 933-941 (2011)

Falck, R.D., Chin, J.C., Schnulo, S.L., Burt, J.M., Gray, J.S.: Trajectory optimization
of electric aircraft subject to subsystem thermal constraints. In: 18th ATAA/ISSMO
Multidisciplinary Analysis and Optimization Conference. Denver, CO (2017)

Gray, J.S., Hearn, T.A., Moore, K.T., Hwang, J., Martins, J., Ning, A.: Automatic
evaluation of multidisciplinary derivatives using a graph-based problem formulation
in openMDAO. In: 15th ATAA/ISSMO Multidisciplinary Analysis and Optimization
Conference. American Institute of Aeronautics and Astronautics (2014). DOI doi:10.
2514/6.2014-2042. URL http://dx.doi.org/10.2514/6.2014-2042

Gray, J.S., Moore, K.T., Naylor, B.A.: Openmdao: An open-source framework for multi-
disciplinary analysis and optimization. In: 13th ATAA/ISSMO Multidisciplinary Anal-
ysis and Optimization Conference, Fort Worth, TX, AIAA, ATAA-2010-9101. ATAA,
Fort Worth, Texas (2010). URL http://www.aric.or.kr/treatise/journal/content.
asp?idx=134451

Hedges, L.O., Kim, H.A., Jack, R.L.: Stochastic level-set method for shape optimisation.
Journal of Computational Physics 348, 82-107 (2017)

Hwang, J.T., Lee, D.Y., Cutler, JJW., Martins, J.R.R.A.: Large-scale multidisciplinary
optimization of a small satellite’s design and operation. Journal of Spacecraft and
Rockets 51(5), 1648-1663 (2014). DOI 10.2514/1.A32751

Hwang, J.T., Martins, J.R.R.A.: Allocation-mission-design optimization of next-
generation aircraft using a parallel computational framework. In: 57th
ATAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.
American Institute of Aeronautics and Astronautics (2016). DOI 10.2514/6.2016-1662
Hwang, J.T., Martins, J.R.R.A.: A computational architecture for coupling heteroge-
neous numerical models and computing coupled derivatives. ACM Transactions on
Mathematical Software (2018). (In press)

Kambampati, S., Jauregui, C., Museth, K., Kim, H.: Fast level set topology optimization
using a hierarchical data structure. In: ATAA Aviation and Aeronautics Forum and
Exposition 2018 (2018)

Lambe, A.B., Martins, J.R.: Extensions to the design structure matrix for the descrip-
tion of multidisciplinary design, analysis, and optimization processes. Structural and
Multidisciplinary Optimization 46(2), 273—284 (2012)

Liu, K., Tovar, A.: An efficient 3D topology optimization code written in matlab. Struc-
tural and Multidisciplinary Optimization 50(6), 1175-1196 (2014)

Otomori, M., Yamada, T., Izui, K., Nishiwaki, S.: Matlab code for a level set-based
topology optimization method using a reaction diffusion equation. Structural and Mul-
tidisciplinary Optimization 51(5), 1159-1172 (2015)

Topology optimization in OpenMDAO 25

23.

24.

25.

26.

27.

Pingen, G., Waidmann, M., Evgrafov, A., Maute, K.: A parametric level-set approach for
topology optimization of flow domains. Structural and Multidisciplinary Optimization
41(1), 117-131 (2010)

Sigmund, O.: A 99 line topology optimization code written in matlab. Structural and
multidisciplinary optimization 21(2), 120-127 (2001)

Sivapuram, R., Dunning, P.D., Kim, H.A.: Simultaneous material and structural op-
timization by multiscale topology optimization. Structural and multidisciplinary opti-
mization 54(5), 12671281 (2016)

Svanberg, K., Svard, H.: Density filters for topology optimization based on the geo-
metric harmonic means. In: 10th world congress on structural and multidisciplinary
optimization. Orlando (2013)

Wei, P., Li, Z., Li, X., Wang, M.Y.: An 88-line matlab code for the parameterized level
set method based topology optimization using radial basis functions. Structural and
Multidisciplinary Optimization pp. 1-19 (2018)

