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Abstract

In this study, the optimum design of load carrying battery packs that can also

exchange heat with a coolant is presented. The level set topology optimiza-

tion method is used as the design tool. The flow is modeled using the Darcy

potential flow, and the heat transfer is modeled using the convection-diffusion

equation. The displacement field is computed using a thermo-elasticity model.

A multi-objective optimization is used that minimizes a linear combination of

structural compliance, average temperature of the battery cells, and the pres-

sure drop across the coolant. As numerical examples, we present a design study

of a load carrying battery pack module that is placed inside an aircraft wing.

The efficiency of the optimized designs are demonstrated by showcasing their

multifunctional nature—they reduce the temperature in the battery cells by

exchanging the heat generated with a coolant all the while sustaining a given

load.
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1. Introduction

Multifunctional heat exchangers, such as battery packs that can carry loads

and dissipate heat are attractive in electric vehicle design. The battery pack

structures in high temperatures are prone to failure due to the high thermo-

mechanical loads. In addition, the battery cells can experience thermal runway

if the working temperature of the battery exceeds the limit. Improving the effi-

ciency of the designs of battery modules through optimization has been gaining

attention recently. Such efficient light weight battery pack modules can improve

the fuel efficiency of electric vehicles. The optimization study of air cooled bat-

tery packs is presented in [1]. The design was optimized for improving the av-

erage temperature and temperature difference, and the design variables are air

inlet/outlet angles and the width of the airflow channels between battery cells.

The cell spacing of a battery pack module was optimized for lower temperature

and more uniform temperature distribution in [2]. In [3], the optimization study

of the mechanical features of a battery pack enclosure is presented. A multi-

objective function considering a linear combination of mass, frequency, and dis-

placement was optimized using the wall thicknesses as the design variables. The

above studies focus on either thermal optimization (temperature based objec-

tive functions) or mechanical optimization (displacement or frequency based

objective functions). Considering both the mechanical and thermal considera-

tions in the design process can significantly improve the efficiency by yielding

multifunctional designs. Specifically, this can circumvent the need for having

two separate components: one designed for mechanical considerations such as

load bearing properties, and one designed for thermal considerations such as

heat dissipation properties. Instead, a single multifunctional component that

is designed considering both mechanical and thermal considerations can lead

to significant weight savings. The design of such multifunctional battery packs

that can exchange heat with a coolant and can carry a load, using level set

topology optimization is the focus of this paper.

Topology optimization is an innovative tool used in engineering design for

2



optimizing multifunctional structures. Topology optimization taking into ac-

count multiphysics considerations, particularly thermal properties is challeng-

ing owing to the design-dependent nature of the thermal loading. Rodrigues

and Fernandes [4] used a material distribution approach to optimize the topol-

ogy of a 2D solid subject to an increase in temperature. Xia and Wang [5]

optimized the topology of a structure subject to an increase in temperature by

minimizing the compliance subject to a volume constraint. Gao and Zhang [6]

penalized the thermal stress coefficient for topology optimization under thermo-

elastic stress loads for minimum compliance. Deaton and Grandhi presented a

study on stress-based design of thermal structures in [7], where they explored

different objective and constraint functions including mass minimization sub-

ject to a stress constraint. Takalloozadeh and Yoon [8] presented a study on a

topological derivative formulation for stress minimization problems considering

thermo-elastic loading. In these studies, the temperature was assumed to be

constant and independent of the design.

In reality, however, the temperature distribution of a structure is depen-

dent on the design, due to heat conduction inside the structure. Li et al. [9]

presented a study on the multi-objective optimization for uniform stress and

heat flux distributions of a structure. Kruijf et al. [10] studied the influence

of heat conduction in both structural and material designs by presenting a

multi-objective topology optimization formulation, where two conflicting design

criteria—the heat conduction and structural stiffness performances—were op-

timized. Gao et al. [11] presented a study on the topology optimization of a

structure with multiple materials under steady-state temperature and mechan-

ical loading by minimizing the compliance subject to a mass constraint. Kang

and James [12] presented multimaterial topology optimization with elastic and

thermal response considerations, where they conducted parallel uncoupled finite

element analyses to simulate the elastic and thermal response of the structure.

Zhu et al. [13] presented a study on topology optimization of coupled thermo-

mechanical problems by minimizing the compliance of a structure subject to

volume and temperature constraints. However, in the above studies, the heat
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flux due to convection is not considered.

Heat exchanger designs commonly incorporate a cooling fluid that flows

through the domain for exchanging heat with the solid through convection.

Typically, high fidelity turbulent models are used to compute fluid velocity and

pressure fields, and convective heat transfer simulation models based on the fluid

velocity are used to compute the temperature field. Such high fidelity turbulent

models involve solving for computationally expensive non-linearity. Therefore,

a lower fidelity model that can reasonably approximate the high fidelity model,

is attractive in early conceptual design studies using topology optimization.

Recently, a low fidelity flow model for topology optimization is proposed in [14]

based on the Darcy potential flow. In [15], the authors showed that the Darcy

flow model is a low-fidelity alternative to a turbulent flow model in the design

of well-performing cooling channels. Specifically, they showed that for certain

geometries, for Reynolds number value of up to 104, and when a maximum

length scale constraint is imposed on the channel width, the Darcy flow model

is a viable alternative for designing cooling channels. A comprehensive review

of topology optimization methods for flow based heat transfer problems can be

found in [16].

In this paper, we present the design study of multifunctional battery pack

structures using level set topology optimization under multiphysics consider-

ations. The topology of the structure is optimized to simultaneously carry a

load and to exchange heat with a coolant passing though the structure. The

flow is computed using Darcy potential flow, modeled using the finite element

method. With the resulting fluid flow, the temperature field is modeled by the

convection-diffusion equation using the finite element method. The tempera-

ture field is then used in a thermo-elastic model to compute the displacement

field. A multiobjective function that is a linear combination of structural com-

pliance, average temperature of the battery cells, and pressure drop across the

inlet and outlet of the coolant is minimized. As numerical examples, we present

a case study of a battery pack module that is designed to carry a load inside an

aircraft wing. To the best of our knowledge, studies on the topology optimiza-
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tion of battery packs taking into account coupled structural, thermal, and flow

considerations are not found in literature.

2. Optimization Method

Figure 1: A schematic of the structure subjected to mechanical and thermal loads. The

structure also exchanges heat with a coolant.

A schematic illustration of the design domain is shown in Figure 1. The

structure (topology is Ω) is subjected to structural loads f (shown in blue) and

fixed displacement boundary conditions (d = 0). The battery cells (shown in

red) are modeled as heat sources and the structure is attached to a heat sink

where a zero temperature boundary condition is applied (t = 0). A cooling fluid

enters the design domain (shown in green) that flows around the structure to

enhance the heat transfer. The topology Ω is described and iteratively updated

implicitly using the level set function (discussed in Section 2.1). The flow field u,

temperature field t, and displacement field d are computed using a flow model,

heat transfer model, and a thermo-elastic model (discussed in Section 2.2). The

optimization problem formulation is presented in Section 2.3 and the sensitivity

computation is discussed in Section 2.4.

2.1. Level Set Method

In this study, the level set method (LSM) is used for topology optimization.

The boundary of the structure is described by an implicit function φ(x), given

5



by

φ(x) ≥ 0, x ∈ Ω

φ(x) = 0, x ∈ Γ (1)

φ(x) < 0, x /∈ Ω

where Ω is the topology of the domain, Γ is the domain boundary. The boundary

of the structure is defined implicitly through φ(x), allowing the boundary to

change under a given velocity field Vn(x), using the level set equation given by

[17],
dφ(x)

dt
+ |∇φ(x)|Vn(x) = 0, (2)

which is discretized and solved numerically using the following equation [18],

φk+1
j = φkj −∆t|∇φkj |Vn,j (3)

where j is a discrete point in the domain, and |∇φj | is the norm of the gradient,

computed using the Hamilton-Jacobi weighted essentially non-oscillatory (HJ-

WENO) scheme [17]. We note that the level set equation defined in Eq. (2) can

modify topology by merging holes, but it cannot create holes in the interior of

the solid. However, the level set equation can be augmented with hole creation

algorithms [19] for seeding new holes during the topology optimization process.

For a given topology, the boundary is extracted as a set of boundary points,

and the fractions of the elemental volume cut by the level set for all the finite

elements are computed. This is followed by a finite element analysis and el-

ement centroid sensitivity computation. The boundary point sensitivities are

computed from the element centroid sensitivities using the least squares inter-

polation method. Using the sensitivities, the boundary point velocities are opti-

mized using mathematical programming. The level set function is then updated

using the boundary point velocity.

2.2. Multiphysics Model

A schematic of the multiphysics model is shown in Figure 2. The model

begins with the flow solver (the green box) computing the fluid velocity in the
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Figure 2: A modular description of the mathematical models developed in house in this study.

The flow solver computes the flow field, the heat transfer solver computes the temperature

considering convection, and the thermo-elasticity solver computes the displacement field.

domain. The heat transfer solver (the orange box) assembles the heat load

resulting from the heat sources and the convective heat flux from the velocity

field, and computes the temperature distribution in the domain. The thermo-

elasticity solver (the blue box) computes the displacement field in the domain

while taking into account the thermal strain caused by the temperature field.

The thermo-elasticity solver computes the adjoint state displacement, which is

passed to the temperature solver for computing the adjoint state temperature.

Finally, the sensitivities are computed using the state and adjoint state variables.

A detailed description of the flow, temperature, and thermo-elasticity models

are presented in the following sections.

2.2.1. Fluid Flow Model

A common model used to describe internal flows is the incompressible steady

state Navier-Stokes equations given by

ρu · ∇u = −∇p+ µ∇2u (4)
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∇ · u = 0 (5)

where ρ is the density, u is the velocity of the fluid, µ is the dynamic viscos-

ity, and p is the pressure . The Navier-Stokes equations are non-linear equa-

tions, and typically turbulence models such as Reynolds-Averaged Navier-Stokes

(RANS) simulations are used to model this flow. However, the computational

cost of simulating RANS equations is high. A low-fidelity alternative to the

RANS model is to use the Darcy potential flow [14], which assumes the velocity

to be proportional to the gradient of pressure as

u = −κ
µ
∇p (6)

where κ is the permeability of the fluid. Eq. (6) is substituted in the continuity

equation in Eq. (5) yielding

∇ · (κ
µ
∇p) = 0 (7)

The above equation is a linear partial differential equation, which is significantly

easier to compute than the RANS equations. The Darcy potential flow is a viable

low fidelity approximation to simulate the flow field when the channel width is

small [15]. The finite element method is used to model the Darcy potential flow

in Eq. (7), given by

Kpp = fp (8)

where Ne is the number of elements, Kp is the permeability matrix, given by

Kp =

Ne∑
i

Ke
p,i (9)

Ke
p,i = κi/µK

e
p,0 is the elemental permeability matrix, and

Ke
p,0 =

∫
Ωi

BTBdΩ (10)

is the homogeneous elemental permeability matrix, B = ∇N is the gradient of

the shape functions N , and

κi = κs + (κf − κs)xi (11)
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where xi is the fraction of the elemental volume cut by the level set, κs and

κf are the permeability values of the solid and fluid, respectively, and Ωi is the

domain of the element i. The right hand side of Eq. (8), fp is given by

fp =

∫
Γ

NT (n · uin)dΓ (12)

where uin is velocity of the flow at the inlet, and n is the normal vector to the

boundary.

2.2.2. Heat Transfer Model

Based on the fluid velocity u, the heat transfer can be modeled using the

following convection-diffusion equation

ρcpu · ∇t = k∇2t+ q (13)

where k is the conductivity coefficient, cp is the specific heat, t is temperature,

and q is the heat generation rate. The finite element analysis can be used to

model Eq. (13) as

(Kt + C)t = ft (14)

where Kt is the conductivity matrix, C is the convection matrix, and ft is the

thermal load. The conductivity matrix Kt is approximated by

Kt =

Ne∑
i

Ke
t,i =

Ne∑
i

(ks + (kf − ks)xi)Ke
t,0 (15)

where ks is the conductivity of the solid, kf is the conductivity of the fluid, and

Ke
t,0 is the homogeneous elemental conduction matrix is given by

Ke
t,0 =

∫
Ωi

BTBdΩ (16)

The convection matrix C is assembled using the following elemental convection

matrix Ce, given by

C =

Ne∑
i

Ce =

Ne∑
i

ρicp,iκiC
e
0 (17)

where cp,i and ρi are interpolated elemental density and specific heat coefficient,

given by

ρi = ρs + (ρf − ρs)xi (18)
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cp,i = cps + (cpf − cps)xi (19)

where ρs and ρf are the densities of solid and fluid, respectively, cps and cpf

are the specific heat coefficients of solid and fluid, respectively, and Ce
0 is the

homogeneous elemental convection matrix given by

Ce
0 =

∫
Ωi

−N̂T (
1

µ
Bpe)

TBdΩ (20)

where pe are the pressure values at the element nodes, and N̂ includes the

streamline upwind stabilization term given by

N̂ = N +
he
2

(
u

‖u‖

)
B (21)

where he is the width of an element.

2.2.3. Thermo-Elastic Model

A variation of temperature causes a structure to expand or contract, result-

ing in thermal strain εt. Specifically, the strain εt,i of an element i caused by

the temperature change is given by

εt,i = αiti (22)

where αi = xiα is the coefficient of the linear expansion of element i, α is the

coefficient of linear expansion of the solid material, and ti is the temperature

change of the element. The elemental strain is imposed on the element as a

thermo-elastic force feti, given by

feti = He
i t

e
i (23)

where tei is the temperature change at the nodes of an element i, and He
i is the

elemental thermo-elastic force generating matrix given by

He
i = xiH

e
0 (24)

where

He
0 =

∫
Ωi

αBT
s Cε

eNsdΩ (25)
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and Bs is the gradient of the displacement shape function matrix Ns, C is the

elasticity tensor, and εe is a unit principal strain. The elemental thermo-elastic

force is then assembled to form the global thermo-elastic force ft as

ft =

Ne∑
i=1

feti = Ht (26)

where H is the matrix that assembles the thermo-elastic force from a given

temperature distribution given by

H =

Ne∑
i

He
i (27)

The thermo-elastic force is added to the mechanical force fm, and used in the

following equation is used to compute the displacement d under mechanical and

thermal loads

Ksd = fm + ft = fm +Ht (28)

where Ks is the structural stiffness matrix of the structure, given by

Ks =

Ne∑
i=1

Ke
si =

Ne∑
i=1

EiK
e
s0 (29)

where Ke
si = EiK

e
s0 is the elemental stiffness matrix of element i, and Ke

s0 is

the homogeneous elemental stiffness matrix, given by

Ke
s0 =

∫
Ωi

BT
s CBsdΩ (30)

and Ei and E are the elasticity moduli of the element and the material, given

by

Ei = Emin + (E − Emin)xi (31)

where Emin is the elasticity modulus of the void region.
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2.3. Optimization problem formulation

The objective of this study is to solve the following multi-objective problem

min
Ω

J = kcC/C0 + ktTav/T0 + kpPd/P0

subject to Kpp = fp

(Kt + C)t = ft

Ksd = fm +Ht

V ≤ V0

max r ≤ rmax (32)

where C is the compliance, and Tav is the average temperature of the battery

cells, and Pd is the pressure drop. kc, kt, and kp are the weights for com-

pliance, average temperature, and pressure drop, respectively. C0, T0, P0 are

reference compliance, temperature, and pressure used to non-dimensionalize the

objective function. The volume of the topology and volume constraint used on

the topology are V and V0, respectively. r is the maximum radius of the flow

channels, and rmax is the maximum length scale constraint. The flow state

equations, temperature state equations, and the thermo-elasticity state equa-

tions are included as equality constraints in the optimization formulation in Eq.

(32). The objective and constraint functions are linearized using the boundary

point sensitivities. The optimization problem solved using the sequential linear

programming and the Simplex method, implemented using the GLPK library

(gnu.org/software/glpk/). Further details on our level set topology optimization

algorithm can be found in [20].

2.4. Sensitivity computation

In this section, the computations of the boundary point sensitivities for

compliance, average temperature, and pressure using the adjoint state method

are presented. First, the sensitivities are calculated at the centroids of all the

elements from which the boundary point sensitivities are determined using the

least squares interpolation [21]. The element centroid sensitivity of a function

of interest J is defined as dJ/dx, where x is the volume fraction of the element.
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2.4.1. Compliance sensitivities

The compliance of the structure under thermal and mechanical loads is given

by

C = dTKsd = fT d = (fm +Ht)T d (33)

The Lagrangian function L of the compliance is defined as

L = (fm +Ht)T d+ λTd (fm +Ht−Ksd) + λTt (ft −Ktt) + λTp (fp −Kpp) (34)

where λd, λt, and λp are the adjoint state variables corresponding to structural

displacement d, temperature t, and pressure p. λd is computed by solving

∂L
∂d = 0, which yields

fT − λTdKs = 0 (35)

The adjoint state variable λt is computed by solving ∂L
∂t = 0, which yields

(KT
t + CT )λt = −λdH − dTH (36)

The adjoint state variable λp is computed by solving ∂L
∂p = 0, resulting in

Kpλp = −tT ∂C
∂p

λt (37)

The Lagrangian function L is differentiated with respect to the volume frac-

tion xi of each element to compute the elemental centroid sensitivities of com-

pliance si, given by

si =
∂L
∂xi

=
∂

∂xi

(
(fm +Ht)T d+ λTd (fm +Ht−Ksd) + λTt (ft −Ktt) + λTp (fp −Kpp)

)
= tT

∂H

∂xi
d+ λTd

∂H

∂xi
t− λTd

∂Ks

∂xi
d− λTt

∂Ks

∂xi
t− λTp

∂Kp

∂xi
p

= teTi He
0d

e
i + λeTdi H

e
0 t

e
i − λeTdi Ke

s0d
e
i − λeTti Ke

t0t
e
i − λeTpi Ke

p0p
e
i (38)

where λedi, λ
e
ti, and λepi are the adjoint state variables of displacement, temper-

ature, and pressure at the element nodes, respectively, dei , t
e
i , and pei are the

displacement, temperature, and pressure values at the nodes, respectively.
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2.4.2. Average temperature sensitivities

The average temperature Tav is given by

Tav = fT1 t (39)

where f1 is a vector with all its elements set to 0, except for the nodes located

at the center of the battery cells, whose values are set to 1/Nc (where Nc is the

number of battery cells). The Lagrangian function L is given by

L = fT1 t− λTt ((Kt + C)t− ft)− λTp (Kpp− fp) (40)

where λt and λp are the adjoint state variables corresponding to the temperature

and flow variables. The adjoint state variable λt is computed by solving ∂L
∂t = 0,

which yields

(KT
t + CT )λt = f1 (41)

The adjoint state variable λp is computed by solving ∂L
∂p = 0, resulting in

Kpλp = f2 − tT
∂C

∂p
λt (42)

Note that the term ∂C
∂p appears in Eq. (42) because the convection matrix

depends on the flow velocity.

The Lagrangian function L can be differentiated with respect to the volume

fraction xi of an element i to compute the sensitivity at the centroid si as

following

si =
∂L
∂xi

=
∂

∂xi

(
fT1 t− λTt ((Kt + C)t− ft)− λTp (Kpp− fp)

)
= −λTt

(
∂Kt

∂xi
+
∂C

∂xi

)
t− λTp

∂Kp

∂xi
p

= −(kf − ks)λeTt,iKe
t,0t

eT
i

− [ρicp,i(κf − κs) + κicp,i(ρf − ρs) + ρiκi(cpf − cps)]λeTt,iC0t
eT
i

−(κf − κs)λeTp,iKe
p,0p

eT
i (43)
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2.4.3. Pressure drop sensitivities

The pressure drop Pd is given by

Pd = fT2 p (44)

where f2 is a vector with all its elements set to 0, except for the nodes located

at the outlets, whose values are set to 1/Np (where Np is the number of outlet

nodes). The Lagrangian function L is given by

L = fT2 p− λTp (Kpp− fp) (45)

where λp is the adjoint state variable for pressure, solving ∂L
∂p = 0, resulting in

KT
p λp = f2 (46)

The elemental centroid sensitivities of pressure si, the Lagrangian function L is

differentiated with respect to the volume fraction xi of each element, given by

si =
∂L
∂xi

= −(κf − κs)λeTp,iKe
p,0p

eT
i (47)

We note that the coupled multiphysics problem presented in this paper ex-

hibits a linear, one-way coupling. Specifically, the flow affects the temperature

distribution, and the temperature does not affect the flow. Similarly, the tem-

perature affects the displacement fields, while the displacement field does not

affect temperature. Considering the two-way coupled problem, where the flow,

temperature, and displacement fields affect each other is significantly challeng-

ing and beyond the scope of this paper.

3. Numerical Examples

In this section, the numerical examples for the design of a battery pack

module are presented. Such battery packs are commonly used in electric aircraft

such as the NASA’s X-57 “Maxwell” aircraft [22]. A schematic of the battery

pack module is shown in Figure 3. The battery modules are assumed to be
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Figure 3: A schematic of the battery modules placed between adjacent ribs and spars. Each

module consists of two rows of battery cells and cooling channels pass through the module

between the rows of battery cells.

stacked between adjacent ribs and spars of the wing as shown in Figure 3a. The

side walls of the battery pack modules can also act as spars. Each battery pack

module has two rows of battery cells on top and bottom, with each row having

a total of fifty battery cells as shown in Figure 3b. The battery module’s top

and bottom regions are attached to the wing skin. The topologies of the battery

module at the top and bottom that hold the battery cells in place (shown in

Figure 3c) are modeled as extruded 2D topologies (Ω1). The module has cooling

channels running through the mid plane, between the two rows of battery cells

as shown in Figure 3d. The cooling channels are modeled as extruded 2D

topologies (Ω2) as shown in Figure 3e. The design is modeled using extruded

2D topologies for ease of manufacturing.

3.1. Problem setting

In this section, the problem setting used for the topology optimization of

the battery module is presented. Specifically, we present the results for the

design of one battery module located at the root of wing. The dimensions of

the battery module are 0.4 m in the spanwise direction, 0.2 m in the chordwise

direction, and 0.16 m in the thickness direction (Figure 4). The battery module
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Figure 4: Dimensions of the battery module and boundary conditions.

material is made of aluminum. The wing is assumed to have same dimensions

as that of the Cessna 172 aircraft, which has a gross weight of 1.1× 103 kg

(2450 lbs) [23]. The module is designed for a 2.5g torsional load case. Assuming

the distance between the elastic axis and aerodynamic center of the wing to be

approximately 5% of the chord, the root torsional moment is computed to be

approximately 680 Nm. This torsion load is applied as shear loads along the

top and bottom of one side of the battery pack, and clamped on the other side,

as shown in Figure 4.

Each battery cell (diameter of 18 mm and height of 650 mm) produces a

heat load q = 0.5 W. The battery cell has a conductivity coefficient κr = 0.434

W/m/K in the radial direction and κa = 2.17 W/m/K in the axial direction

[24]. The coolant (water) enters the design domain at 20 oC at the inlets with

a velocity of 1 m/s (flow rate of 0.64 m3/s). The properties of all the materials

used in this study are shown in Table 1.

The objective is to minimize the multi-objective function J = kcC/C0 +

ktTav/T0 +kpPd/P0, where C, Tav, and Pd are the compliance, average temper-

ature, and pressure drop, respectively, and kc, kt, and kp are the corresponding

weights. The design variable is the topology Ω = Ω1 ∪ Ω2, where Ω1 is the

topology of the structure near the wing skin (Figure 3c) and Ω2 topology of the

cooling channels (Figure 3e). The volume constraint used is V0 = 50%, and the

maximum channel length scale constraint rmax = 0.02 m is used. A 3D finite
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element mesh comprising of 200 × 100 × 80 cubic elements in the chordwise,

spanwise, and thickness direction, respectively, is used for the analysis. The

extraction of the 2D boundary sensitivities of topologies Ω1 and Ω2 from the

3D sensitivity distribution is explained in Appendix-A.

Table 1: Material properties used in this study.

ine
Water Aluminum Battery

ine
Conductivity (k, W/m/K) 0.6 237.0 2.17 (axial)

0.434 (radial)

Density (ρ , kg/m3) 1000.0 2700.0 2700.0

Viscosity (µ, Pa s) 0.001 – –

Permeability (m2) 2.5 × 10−6 – –

Elastic modulus (GPa) – 69.0 –

Poisson’s ratio – 0.3 –

ine

3.2. Results

Figure 5: The optimized design of the battery module obtained for kp = kt = kc = 0.33.

18



In this section, the optimization results for different values of kc, kp, and kt

are presented. The reference values used are P0 = 2.0 Pa, T0 = 1.0 oC and C0 =

0.025 Nm. Figure 5 shows the results for kc = kp = kt = 0.33. In Figure 5a the

topology of the cooling channels (Ω2) is shown. We can see that the channels are

distributed in such a way that the fluid enters the domain, travels to different

regions drawing heat from the solid while it travels, and exits through the outlet.

The bottom half of the battery module is shown in Figure 5b for visualizing the

cooling channels that run through the module. The topology of the structure at

the top and bottom of the module (Ω1) is shown in Figure 5c and a 3D view is

shown in Figure 5d. The complete optimized battery module is shown in Figure

5e.

Figure 6: The temperature and stress distribution on the structure. The results show the

multi-functional nature of the battery pack module showing the structure can diffuse heat as

seen by the temperature gradients, and can also carry a load as seen by the stress distribution.

Figure 6 shows the optimized stress and temperature. Figure 6 illustrates

the multi-functional nature of the optimized design. The structure around the

battery pack diffuses the heat generated from the batteries via conduction, as

evidenced by the temperature gradient in Figures 6a and 6c. The structure also

carries load, as evidenced by the stress distribution in Figure 6b.
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Figure 7: The temperature distribution of the battery cells. A close-up view of the battery

cell in the corner shows that the battery cell is the coolest at its bottom where it is near the

coolant; and is hottest in the interior of the battery cell. (b) The cells towards the outer edges

are hotter than the cells in the interior.

The temperature distribution of the battery cells is shown in Figure 7. A 3D

view of the temperature in the cells is shown in Figure 7a. Examining the close-

up view of the battery cell in the corner, where we can see that the temperature

is high in the interior of the battery cell, and the temperature is the lowest at

the bottom where is it closest to the coolant. The top view of the temperature

distribution is shown in Figure 7b, where we can see that the temperatures of

the cells are high on the outer regions of the module and lower for cells in the

interior.

Figure 8: The initial topologies used in the optimization for (a) cooling channels and (b)

structure at the wing skin.

The initial topologies used in the optimization are generated using spatially

distributed holes for both the cooling channels and the structure, as shown in

Figure 8. The iteration history of the objective function J and the volume V is

shown in Figure 9. The optimization is run for a total of 160 iterations.
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Figure 9: The optimization history of the objective function J and the volume V .

Figure 10: The optimized topologies obtained for (kc = kt = 0.2, kp = 0.6) and (kc = kt =

0.1, kp = 0.8).

The optimization results for other values of the multi-objective weights kc,

kt, and kp are discussed here. In Figure 10, the optimization results when higher

values are used for weight for pressure (kp = 0.6 and 0.8) and lower weight values

for temperature and compliance (kc = kt = 0.2, and kc = kt = 0.1) are shown

in Figure 10. We can see from Figure 10 that as kp increases from 0.6 to 0.8, the

optimized topology of the cooling channels changes significantly at the region

close to outlet on the right—from oblique channels for kp = 0.6 to straight

horizontal channels for kp = 0.8.

In Figure 11, the optimization results obtained when higher values are used

for the weight for compliance (kc = 0.6 and 0.8) and lower weight values for

temperature and pressure (kp = kt = 0.2, and kp = kt = 0.1) are shown in

Figure 11. We can see that changing the weight for the compliance from kc
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Figure 11: The optimized topologies obtained for (kp = kt = 0.2, kc = 0.6) and (kp = kt =

0.1, kc = 0.8).

= 0.6 to 0.8 has a negligible effect on the optimized topology of the cooling

channels.

Figure 12: The optimized topologies obtained for (kc = kp = 0.2, kt = 0.6) and (kc = kp =

0.1, kt = 0.8).

Figure 12 shows the optimization results when the higher values are used

for the weight for temperature (kt = 0.6 and 0.8) and lower weight values for

compliance and pressure (kc = kp = 0.2, and kc = kp = 0.1) are shown in Figure

11. We can see that changing the weight for the temperature from kt = 0.6 to

0.8 has a significant effect on the optimized topology of the cooling channels –

with the flow being directed towards the corners on the right side before merging

at the outlet.
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Table 2: Optimized pressure, temperature, and compliance values for different values of kp,

kc, and kt.

ine
kc kt kp C/C0 Tav/T0 Pd/P0

ine
(a) 0.33 0.33 0.33 1.0 12.5 19.5

ine
(b)

0.2 0.2 0.6 2.4 12.7 6.5

0.1 0.1 0.8 5.7 13.4 1.8

ine
(c)

0.6 0.2 0.2 0.3 13.5 41.6

0.8 0.1 0.1 0.1 13.5 109.0

ine
(d)

0.2 0.6 0.2 1.1 11.1 26.9

0.1 0.8 0.1 1.5 8.1 44.8

ine ine

Table 2 shows the normalized optimum compliance, temperature, and pres-

sure values obtained for different values of kc. kt, and kp. In Table 2a the

results obtained when all the weights are the same, kt = kp = kc = 0.33 are

shown (topologies shown in Figure 5). For the sake of comparison, we refer to

the optimum normalized compliance, average temperature, and pressure drop

values in Table 2a as the baseline values.

Table 2b shows the results obtained when more weight is given to the pres-

sure than the baseline, with kp = 0.6, 0.8 (topologies shown in Figure 10). The

optimized pressure values are significantly reduced compared to the baseline

pressure (Pd/P0 = 6.5, 1.8). There is also a significant increase in the compli-

ance, (C/C0 = 2.4, 5.7), but only a modest increase in the temperature (T/Tav

= 12.7, 13.4).

Table 2c shows the results obtained the weight corresponding to compliance

is the highest, kc = 0.6, 0.8 (topologies shown in Figure 11). The correspond-

ing optimized normalized compliance values are significantly smaller than the

baseline (C/C0 = 0.3, 0.1) and the normalized pressure significantly increases
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(Pd/P0 = 41.6, 109.0) compared to the baseline. The average temperature in-

creases modestly to (T/Tav = 13.5, 13.5) compared to the baseline.

Table 2d shows the results obtained the weight corresponding to the aver-

age temperature is the highest, kt = 0.6, 0.8 (topologies shown in Figure 12).

The corresponding optimized normalized average temperature values reduce to

(Tav/T0 = 11.1, 8.1) compared to the baseline. The compliance and pressure

increase to (Pd/P0 = 26.9, 44.8) and (C/C0 = 1.1, 1.5) compared to the baseline.

We note from Table 2 that pressure drop values in the designs can range

from a low Pd/P0 = 1.8 to a high Pd/P0 = 109.0. Comparatively, the average

temperature only ranges from Tav/T0 = 8.1 to Tav/T0 = 13.5. The variation

(with respect to kp, kc, and kt) of pressure drop in the designs is observed to be

significantly higher compared to the average temperature. This observation can

be attributed to the multifunctional nature of the structure. The pressure drop

is completely dependent on the cooling channel design, while the temperature

is only partially dependent on the cooling channels. Specifically, the batteries

dissipate heat via conduction through the structure and via exchanging heat

with the flow. Therefore, even if the cooling channel design in inefficient for

heat dissipation, the batteries can still dissipate heat via conduction through

the solid structure—thus explaining the relatively lower variation in the average

temperature observed.

In conclusion, if a designer wants a structure with the most flow efficiency,

and is willing to sacrifice stiffness and thermal efficiency, the designs correspond-

ing to Table 2b are the best of the choices, as they have the lowest pressure drop

values. Similarly, if a designer wants a stiff structure, and is willing to sacrifice

thermal and flow efficiency, the designs corresponding to Table 2c are the best

of the choices, as they have the lowest compliance values. Furthermore, if a

designer wants a thermally efficient structure, and is willing to sacrifice stiff-

ness and flow efficiency, the designs corresponding to Table 2d are the best of

the choices, as they have the lowest temperature values. Finally, if a designer

wants a structure with efficient flow, structural, and thermal properties, then

the design corresponding to Table 2a offers the best compromise.
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4. Conclusion

In this paper, the optimum design study of multifunctional structures that

can withstand a load and also exchange heat with a coolant is presented. The

level set topology optimization method is used as the design tool. The flow is

computed using a Darcy potential flow model, which is used in a heat transfer

model to compute the temperature field. A thermo-elasticity model is used to

compute the displacement field. A multi-objective function is minimized that

is a combination of structural compliance, average temperature in battery cells,

and pressure drop across inlet and outlet of the cooling channel.

As numerical examples, we discuss the design of a battery pack module

that is placed inside an aircraft wing to carry loads. The optimized structure

efficiently reduces the temperature of the battery cells by exchanging the heat

generated by the cells with the coolant, while carrying a load. The optimized

cooling channels are distributed in such a way that the fluid enters the domain,

branches out into different smaller channels for efficient heat transfer at the cost

of higher pressure drops. The temperature distribution on the battery cells show

that the cells are the coolest near the regions that are closer to the coolant, and

are hottest near the regions that are closer to the center of the cell and away

from the coolant. The optimization results showcase the multifunctional nature

of the optimized designs in terms of efficient heat transfer and load carrying

capabilities.
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Figure 13: A schematic of a 2D topology and the corresponding extruded 3D topology.

Appendix A Extracting 2D boundary sensitivity

A schematic of a 2D topology in the x − y plane and its corresponding 3D

topology extruded in the z direction from z = z0 to z = z1 is shown in Figure 13.

The expression for the shape sensitivity for an objective function J(Ω) under a

perturbation field θ is given by [25]

J ′(Ω)(θ) =

∫
Γ

s3D(θ · n) dΓ3D (48)

where s3D is the sensitivity field and n is the boundary normal, and Γ3D is the

3D boundary. For an extruded 3D topology, we have

dΓ3D = dΓ2D dz (49)

where Γ2D is the boundary of the 2D topology and z is the extrusion direction.

Substituting Eq. (49) in Eq. (48), we get the following expression for shape

sensitivity

J ′(Ω)(θ) =

∫
Γ

s3D(θ · n) dΓ2D dz

=

∫
Γ

(∫ z1

z0

s3Ddz

)
(θ · n) dΓ2D

=

∫
Γ

s2D(θ · n) dΓ2D (50)
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where the 2D shape sensitivity is given as

s2D =

∫ z1

z0

s3Ddz (51)

We note that when the objective function J(Ω) is volume V , the sensitivity

s3D = 1 [25]. Therefore, the sensitivity for the volume is given by

s2D =

∫ z1

z0

dz (52)
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