Source code for openmdao.lib.drivers.genetic

"""A simple Pyevolve-based driver for OpenMDAO."""

import re

#pyevolve calls multiprocessing.cpu_count(), which can raise NotImplementedError
#so try to monkeypatch it here to return 1 if that's the case
    import multiprocessing
except ImportError:
except NotImplementedError:
    multiprocessing.cpu_count = lambda: 1
from pyevolve import G1DList, GAllele, GenomeBase, Scaling
from pyevolve import GSimpleGA, Selectors, Initializators, Mutators, Consts

# pylint: disable-msg=E0611,F0401
from openmdao.main.datatypes.api import Python, Enum, Float, Int, Bool, Slot

from openmdao.main.api import Driver 
from openmdao.main.hasparameters import HasParameters
from openmdao.main.hasobjective import HasObjective
from openmdao.main.hasevents import HasEvents
from openmdao.main.interfaces import IHasParameters, IHasObjective, \
                                     implements, IOptimizer
from openmdao.util.decorators import add_delegate
from openmdao.util.typegroups import real_types, int_types, iterable_types

array_test = re.compile("(\[[0-9]+\])+$")

@add_delegate(HasParameters, HasObjective, HasEvents)
[docs]class Genetic(Driver): """Genetic algorithm for the OpenMDAO framework, based on the Pyevolve Genetic algorithm module. """ implements(IHasParameters, IHasObjective, IOptimizer) # pylint: disable-msg=E1101 opt_type = Enum("minimize", values=["minimize", "maximize"], iotype="in", desc='Sets the optimization to either minimize or maximize ' 'the objective function.') generations = Int(Consts.CDefGAGenerations, iotype="in", desc="The maximum number of generations the algorithm " "will evolve to before stopping.") population_size = Int(Consts.CDefGAPopulationSize, iotype="in", desc = "The size of the population in each " "generation.") crossover_rate = Float(Consts.CDefGACrossoverRate, iotype="in", low=0.0, high=1.0, desc="The crossover rate used when two " "parent genomes reproduce to form a child genome.") mutation_rate = Float(Consts.CDefGAMutationRate, iotype="in", low=0.0, high=1.0, desc="The mutation rate applied to " "population members.") selection_method = Enum("roulette_wheel", ("roulette_wheel", #"tournament", #this seems to be broken "rank", "uniform"), desc="The selection method used to pick population " "members who will survive for " "breeding into the next generation.", iotype="in") _selection_mapping = {"roulette_wheel":Selectors.GRouletteWheel, #"tournament":Selectors.GTournamentSelector, #this does not seem to function right for pyevolve "rank":Selectors.GRankSelector, "uniform":Selectors.GUniformSelector} elitism = Bool(False, iotype="in", desc="Controls the use of elitism in " "the creation of new generations.") best_individual = Slot(klass = GenomeBase.GenomeBase, iotype="out", desc="The genome with the " "best score from the optimization.") seed = Int(None, iotype="in", desc="Random seed for the optimizer. Set to a specific value " "for repeatable results; otherwise leave as None for truly " "random seeding.") def _make_alleles(self): """ Returns a GAllelle.Galleles instance with alleles corresponding to the parameters specified by the user""" alleles = GAllele.GAlleles() count = 0 for param in self.get_parameters().values(): allele = None count += 1 val = param.evaluate() #now grab the value low = param.low high = param.high metadata = param.get_metadata()[1] #then it's a float or an int, or a member of an array if ('low' in metadata or 'high' in metadata) or[0]): if isinstance(val, real_types): #some kind of float allele = GAllele.GAlleleRange(begin=low, end=high, real=True) #some kind of int if isinstance(val, int_types): allele = GAllele.GAlleleRange(begin=low, end=high, real=False) elif "values" in metadata and isinstance(metadata['values'], iterable_types): allele = GAllele.GAlleleList(metadata['values']) if allele: alleles.add(allele) else: self.raise_exception("%s is not a float, int, or enumerated \ datatype. Only these 3 types are allowed"%(param.targets[0]),ValueError) self.count = count return alleles
[docs] def execute(self): """Perform the optimization""" self.set_events() alleles = self._make_alleles() genome = G1DList.G1DList(len(alleles)) genome.setParams(allele=alleles) genome.evaluator.set(self._run_model) genome.mutator.set(Mutators.G1DListMutatorAllele) genome.initializator.set(Initializators.G1DListInitializatorAllele) #TODO: fix tournament size settings #genome.setParams(tournamentPool=self.tournament_size) # Genetic Algorithm Instance #print self.seed #configuring the options ga = GSimpleGA.GSimpleGA(genome, interactiveMode = False, seed=self.seed) pop = ga.getPopulation() pop = pop.scaleMethod.set(Scaling.SigmaTruncScaling) ga.setMinimax(Consts.minimaxType[self.opt_type]) ga.setGenerations(self.generations) ga.setMutationRate(self.mutation_rate) if self.count > 1: ga.setCrossoverRate(self.crossover_rate) else: ga.setCrossoverRate(0) ga.setPopulationSize(self.population_size) ga.setElitism(self.elitism) #setting the selector for the algorithm ga.selector.set(self._selection_mapping[self.selection_method]) #GO ga.evolve(freq_stats=0) self.best_individual = ga.bestIndividual() #run it once to get the model into the optimal state self._run_model(self.best_individual) # TODO - We really need to be able to record the best candidate from each # generation, but that will only be possible if we let OpenMDAO drive # the optimization. For now, just print out the final best individual state. self.record_case()
def _run_model(self, chromosome): self.set_parameters([val for val in chromosome]) self.run_iteration() return self.eval_objective()
OpenMDAO Home