
Structrual and Multidisciplinary Optimization

A Graph Theoretic
Approach to Problem
Formulation for
Multidisciplinary Design
Analysis and Optimization

David J. Pate,

Justin Gray, and

Brian J. German

Abstract The formulation of multidisciplinary design,

analysis, and optimization (MDAO) problems has be-

come increasingly complex as the number of analysis

tools and design variables included in typical studies

has grown. This growth in the scale and scope of MDAO

problems has been motivated by the need to incorpo-

rate additional design disciplines and to expand the

parametric design space to enable the exploration of

unconventional design concepts. In this context, given

a large set of disciplinary analysis tools, the problem

of determining a feasible data flow between tools to

produce a specified set of system-level outputs is com-

binatorically challenging. The difficulty is compounded

in multi-fidelity problems, which are of increasing in-

terest to the MDAO community. In this paper, we pro-

pose an approach for addressing this problem based on

the formalism of graph theory. The approach begins by

constructing the maximal connectivity graph (MCG)

describing all possible interconnections between a set

of analysis tools. Graph operations are then conducted

to reduce the MCG to a fundamental problem graph

(FPG) that describes the connectivity of analysis tools

needed to solve a specified system-level design prob-

lem. The FPG does not predispose a particular solu-

tion procedure; any relevant MDO solution architecture
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could be selected to implement the optimization. The

approach is applied to an example problem to formulate

an FPG for a commercial aircraft MDAO study.

1 Introduction

The number of analysis tools required in multidisci-

plinary design optimization (MDO) studies is growing

in parallel with the increasing scope of typical prob-

lems. An example can be observed in the historical evo-

lution of the disciplines involved in MDO problems in

aircraft design. Multidisciplinary optimization emerged

as a separate field from structural optimization through

the need to introduce formal techniques for managing

the coupling of aerodynamic loads and structural de-

formations, through the linking of aerodynamic vortex

lattice or panel methods with structural finite element

models [1]. Subsequently, flight performance and life cy-

cle economics tools were integrated into MDO analysis

workflows for conceptual and preliminary design stud-

ies [2]. Currently, MDO problems for aircraft design

also often include tools for aircraft noise and emissions.

In sum, it is now commonplace for 5–10 analysis tools

to be employed for typical aircraft design optimization

studies.

The number of analysis tools is expected to grow

in the future as the scope of MDO problems contin-

ues to evolve, and as computing is increasingly com-

moditized. This expansion of scope will be driven, in

part, by consideration of additional disciplines. Current

trends on the horizon for aircraft MDO studies include

incorporation of manufacturing analyses [3], subsystem

performance [4,5], and models of emissions, noise, or

economics [6–8].

The time and expense for setting up analysis models

is growing in conjunction with the increasing scope of

MDO problems. Multidisciplinary Design Analysis and

Optimization (MDAO) frameworks such as iSight R©,

ModelCenter R©, ModeFrontier R©, and OpenMDAO[9] and

have enabled a new level of analysis tool integration

and have paved the way for models with more anal-

yses and increasing numbers of interdisciplinary cou-

plings. This new capability has created a new challenge.

Even models with tens of analyses could include hun-

dreds or thousands of variables that are interdependent

and must be linked in the framework. A common situ-

ation is that different analyses provide differing values

for the same physical quantity, often in different data

formats, and these conflicts need to be resolved. These

occurrences are particularly acute in situations in which

analysis tools have differing fidelities. For example, an

abstracted aerodynamic analysis such as an empirical

drag buildup model may return only integrated drag,



whereas a CFD tool may return pressure and shear

stress distributions across the entire surface grid. If an

analysis downstream of the aerodynamics tool needs

only integrated drag as an input, then the designer has

a free choice of which of the two possible aerodynam-

ics analysis tools to select to provide the drag estimate

(presuming that drag can be computed from surface dis-

tributions by a simple integration algorithm). On the

other hand, if a downstream analysis needs a pressure

distribution in order to compute pitching moment, for

example, then any feasible MDO problem formulation

must include CFD or similar analysis in the data flow,

regardless of whether the empirical drag buildup model

is also included.

With the added complexity from larger models, it

is plausible that the task of combining all the analyses

into a consistent system model capable of solving a rel-

evant engineering design problem could approach the

cost and time requirements of creating any of the dis-

cipline analyses themselves. For these large scale MDO

problems, the couplings between the analyses begin to

dominate the effort required in setting up the model.

It is this problem of determining sets of analysis tools

and their inter-connectivities to form realistic multidis-

ciplinary problems that is the subject of this paper.

We are motivated by the following notional but realis-

tic problem of organizing an MDO study for a complex

system:

A new system is being designed for which there

is little or no historical precedent. The system is

complex, as measured by the number of coupled

disciplines and/or components involved in the

analysis. A general optimization problem state-

ment has been formulated based on system-level

objectives and constraints; however, it is unclear

which engineering analysis tools should be in-

terconnected in order to solve the optimization

problem. A team of disciplinary and/or compo-

nent design engineers has been formed in which

each engineer has expertise in a particular analy-

sis tool or component model. The engineers meet

to discuss the approach to interconnecting their

tools to achieve the required system-level MDO

model.

Our goal is to develop formalism for expressing anal-

ysis interconnectivity and for determining feasible anal-

ysis tool sets to assist an engineering team conduct-

ing this task. Because the problem deals with inter-

connectivity, we base our approach on the represen-

tations and techniques of graph theory. The approach

begins by constructing the maximal connectivity graph

(MCG) describing all possible interconnections between

the analysis tools proposed by the engineers. Graph op-

erations are then conducted to reduce the MCG to a

fundamental problem graph (FPG) that describes the

set of analysis tools needed to solve the specified system-

level design problem. The concept of the FPG and the

identification of feasible FPGs from an MCG are the

main contributions of the paper.

This information in an FPG represents the engineer-

ing design problem that needs to be solved, but it is not

itself sufficient to actually run a design optimization. It

does not provide information about how to solve the

problem. Even after the problem is defined an integra-

tion platform or framework needs to be selected and

appropriate optimization methods identified. This last

step essentially involves taking the FPG and turning it

into a usable model. We briefly consider methods to fur-

ther manipulate the FPG into a problem solution graph

(PSG) which could be useful in this task, but that is

not the focus of this paper. The work is primarily con-

cerned with applying graph theory to the creation of an

FPG and the benefits to the design process by doing so.

The paper is organized as follows. First, we describe

the differences between a fundamental problem formu-

lation, which is based only on the system-level opti-

mization problem statement that the engineers desire

to solve and on the available analysis tools, and a spe-

cific problem formulation, which additionally presumes

a specific MDO solution approach to the problem. Next,

we survey the literature related to graph theoretic and

formal language approaches to multidisciplinary design

problem formulation. We then discuss our graph syn-

tax and representation of MDO problems and describe

the procedures for determining the MCG and FPG. Fi-

nally, we present an example problem based on an MDO

analysis of a commercial aircraft.

2 Background

2.1 Specific vs Fundamental Problem Formulation

The Fundamental Problem Formulation (FPF) is our

terminology for a statement of the overall system-level

optimization problem that contains only information

about analysis tools, design variables, objectives, and

constraints without reference to a solution approach.

In particular, the FPF does not depend on the choice

of solution-specific elements such as the MDAO frame-

work, optimization algorithm, iterative solver, or exe-

cution sequence. This description represents the prob-

lem from the point of view of an engineer specifying

the design problem that he/she desires to solve with-

out specifying how the problem should be solved. The

lack of solution information in the FPF contrasts with



optimization problem statements that are written with

reference to a specific solution strategy or with implica-

tion of a specific execution sequence. For example, con-

sider the Sellar test problem [10], with an FPF given as

follows:

given y1 = D1(x1, y2, z1, z2)

y2 = D2(y1, z1, z2)

min. F (x1, y1, y2, z2)

w.r.t. x1, y1, y2, z1, z2

s.t. G1(y1) ≥ 0

G2(y2) ≥ 0 (1)

In Eq. 1, y1 is an output of D1 as well as an input

to D2. Similarly, y2 is an output of D2 as well as an

input to D1. This implies that D1 and D2 are coupled

together by means of their mutual dependence. How-

ever no information is given as to whether D1 or D2

should be run before the other. Given Eq. 1, it would

be equally valid to run D1 first, D2 first, or both simul-

taneously. Any MDAO root finding method or compat-

ibility constraint formulation could be implemented to

achieve consistency between D1 and D2.

The Sellar problem is simple, with only a single cou-

pling interaction between the two disciplines and a very

limited set of variables. However, for larger and more

complex problems, it is much more difficult to identify

the fundamental problem formulation. Interdisciplinary

couplings are not always apparent and the set of anal-

ysis tools and variables are much larger.

An example of a more specific problem statement

for the Sellar problem is presented in Eq. 2. In this

formulation, the implication is that D1 must be run

first. A new variable, ŷ2, is introduced to break the

direct dependence of D1 on D2, and a new coupling

constraint, H, is added to enforce consistency. Equation

2 is an equally valid expression of the Sellar problem

that could be generated based on a preferred solution

approach.

given y1 = D1(x1, ŷ2, z1, z2)

y2 = D2(y1, z1, z2)

min. F (x1, y1, y2, z2)

w.r.t. x1, y1, ŷ2, z1, z2

s.t. H(y2, ŷ2) = 0

G1(y1) ≥ 0

G2(y2) ≥ 0 (2)

2.2 Background in Graph-Based Descriptions of

MDAO Problems

As indicated in the examples in Sec. 2.1, the mathemat-

ical language for specifying optimization problem for-

mulations is very general and can be used both for fun-

damental and specific problem formulations. Tedford

and Martins used this syntax to specify the FPF for a

set of test problems and also to describe specific formu-

lations for solving them with a number of optimization

architectures [11]. By solving different specific prob-

lem statements corresponding to the same FPF, they

were able to benchmark the performance of different

optimization architectures against a fixed set of prob-

lems. Gray et al. also benchmarked the performance of

a set of MDAO architectures with a similar approach

[12]. This work examined a larger set of architectures

and proposed the use of OpenMDAO as a platform to

build a larger community-developed set of test prob-

lems and architectures. Both of these benchmarking ef-

forts demonstrate how multiple specific problem for-

mulations can relate to a common FPF and indicate

the value of a common problem description. The chal-

lenge with this traditional syntax is that it is not easily

manipulated or analyzed with automatic procedures to

explore alternate problem formulations.

A number of graph-based methods have been used

successfully to translate the mathematical syntax into

a more useful computational form. Steward’s Design

Structure Matrix (DSM) is a square adjacency matrix

which captures the relationship between analysis tools.

Off-diagonal elements of the matrix indicate coupling

[13]. Since a DSM describes a square adjacency matrix,

it can be represented in an equivalent directed graph in

which nodes represent analysis tools and edges repre-

sent information dependence between those tools. The

ordering of elements in a DSM can be used to indicate

execution order. For more complex problems, choosing

the proper order to run analysis tools is a challenging

task. Rogers et al. developed DeMAID to manipulate a

DSM to find an ordering for analysis tools that reduces

the cost of solving highly coupled systems [14,15]. This

re-ordering is done through operations on the DSM ma-

trix and yields multiple specific problem formulations

which all solve the same FPF.

A DSM itself is insufficient to describe complete

optimization problem formulations because it captures

only information about data dependency between anal-

yses; objective and constraint information is missing

from the DSM description of the problem. An alterna-

tive matrix-based syntax, called a Functional Depen-

dency Table (FDT), was proposed by Wagner and Pa-

palambros. The FDT represents the relationship be-



tween functions, including objectives and constraints,

and specific variables that affect them [16]. Similar to

DSM, FDT also describes an adjacency matrix of a

graph. Unlike the DSM graph, however, the FDT graph

is undirected and nodes can represent analysis tools,

objectives, or constraints. Edges between nodes repre-

sent a dependence on the same variable. Michelena and

Papalambros made use of the FDT to solve a graph par-

titioning problem that yielded more efficient optimiza-

tion problem decompositions [17]. Allison extended this

work to incorporate adjacency matrix information with

the FDT to account for system coupling in an auto-

mated partitioning scheme [18].

While FDT succeeds at capturing the information

about objectives and constraints, its lack of directed

edges implies that it cannot describe the coupled data

dependency that a DSM captures. Figure 1 shows the

FDT for the Sellar problem described by Eq. 1. The

FDT shows that D1 is dependent on y2 and that D2 is

dependent on y1, but the coupled dependence cannot be

inferred from that information alone. This missing in-

formation implies that, although FDT is very useful for

partitioning problems, it is not sufficient to completely

describe the data flows in a problem formulation.

x1 y1 y2 z1 z2
D1 1 1 1 1

D2 1 1 1

F 1 1 1 1

G1 1

G2 1

Fig. 1: Functional Dependency Table (FDT) for Eq. 1

Alexandrov and Lewis introduced a graph based

syntax called Reconfigurability in MDO Problem Syn-

thesis (REMS) which incorporates objectives and con-

straints into a graph, effectively combining FDT and

DSM [19]. REMS retains the square adjacency matrix

form from DSM, but by adding the objectives and con-

straints, it partially combines a traditional DSM with

an FDT. This formulation allows REMS to represent

data dependency between multiple analysis tools as well

as between analysis tools and objective/constraint func-

tions. Additionally, REMS addresses the need to tran-

sition between multiple solution strategies while main-

taining a single consistent graph representation of the

fundamental problem formulation. However REMS does

not provide a mechanism for inclusion of solvers or op-

timizers in the graph. This fundamentally limits REMS

from describing the specifics of a different solution strate-

gies as applied to a specific problem.

x
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(0)
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(0)
2 ŷ2

(0)

x∗
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2:
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y∗2
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D2

4 : y2 6 : y2

5 : h
4:
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6:
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Fig. 2: XDSM for Eq. 2, with a Gauss-Seidel iteration

and MDF solution architecture.

Lamb and Martins also included objectives and con-

straint functions as nodes in an Extended DSM (XDSM)

in order to capture a more complete description of solu-

tion strategies for MDAO problems [20]. Unlike REMS,

XDSM also includes nodes for solvers and optimizers

to enable complete definition of MDAO architectures.

Martins uses XDSM to describe 13 different optimiza-

tion architectures in a survey paper that provides a

novel classification of the different techniques [21]. With

the additional information included in an XDSM, Lu

and Martins applied both ordering and partitioning al-

gorithms to an MDAO test problem termed the Scalable

Problem [22].

Although XDSM captures many of the functional

aspects of FDT, it requires the use of solver and opti-

mizer blocks to represent the relationship between de-

sign variables and objectives/constraints. By introduc-

ing solver or optimizer blocks, XDSM automatically im-

plies a solution strategy. The XDSM for Eq. 2 is given

in Figure 2. This diagram is shown with an assumed

Gauss-Seidel iteration scheme and an MDF solution ar-

chitecture.

In this paper, we propose a new graph syntax that

combines certain features of REMS and XDSM. De-

spite sharing some features with both of these other

graph based approaches, the syntax proposed here has

a fundamentally different goal which is complimentary

to both of them. REMS and XDSM provide excellent

human readable formats for an MDAO problem descrip-

tion. This syntax is designed to provide a more effective

machine readable format for MDAO problem definition.

In the interest of making it easier to algorithmically op-

erate on the graphs, the specified format is both more

verbose and less visually informative. The benefit is a



more consistent and easily utilized graph from a algo-

rithm perspective.

2.3 Requirements for a New Graph Syntax

The goal of the graph-based syntax presented here is to

enable the general structure of an MDAO problem to

be described independently of any solution information,

while still being able to accommodate the more specific

case when a solution strategy is applied. In order to

achieve this goal, the graph syntax needs to accommo-

date a number of MDAO problem constructs:

– Analysis tools and their interconnections

– Design variables, objectives, and constraints

– Coupling between analyses

– Multi-fidelity analyses

The syntax is intended to represent three phases

of the design problem formulation process. In the ini-

tial problem definition phase, the specific analysis tools

and design goals are identified. Next, a single formal

problem formulation is identified that specifies design

variables, constraints, objectives, analysis tools, and all

other elements required to represent the overall MDAO

problem. Lastly, a specific procedure for solving the

problem is selected, e.g. selecting an MDAO optimiza-

tion architecture. Using the proposed graph syntax, the

outcome of these phases can be represented with the

following graphs:

– Maximal Connectivity Graph (MCG)

– Fundamental Problem Graph (FPG)

– Problem Solution Graph (PSG)

The maximal connectivity graph represents the first

phase of the problem formulation with all analysis tools

being considered and all possible connections between

them also present. The second phase of problem formu-

lation results in the fundamental problem graph, which

comprises only the analysis tools, objectives, constraints,

and variables to solve the problem. The final phase re-

sults in a problem solution graph which includes addi-

tional edges and nodes to represent the solution strat-

egy being employed to solve the problem. This paper

focuses on the MCG and FPG and does not describe

the PSG in detail.

Comparisons of the number and size of each of these

graphs are depicted in Figs. 3(a) and 3(b). The tree

diagram illustrates that it is generally possible to ob-

tain multiple FPGs from a single maximal connectivity

graph. The multiple FPGs may correspond to different

down-selections of analysis tools, different connections

between the tools, or both. Each down-selection reduces

the number of possible FPGs that could be reached un-

til only one remains. For a given FPG, however, dif-

ferent PSGs may be obtained by implementing differ-

ent solution strategies. Considering the size of a graph

to be the sum of all of its edges and nodes, the hour-

glass shape in Fig. 3(b) qualitatively illustrates how the

FPG is obtained from the MCG by removing nodes and

edges, and the PSG is obtained from the FPG by adding

nodes and edges. These additions correspond to opti-

mizers, solvers, and compatibility constraints required

in particular MDAO solution architectures.

maximal connectivity graph

fundamental
problem graph

problem solution graph

(a) number of possible graphs

maximal connectivity graph

fundamental
problem graph

problem solution graph

(b) graph size

Fig. 3: The relationship between the MCG, FPG, and
PSG.

2.4 Potential Applications

The syntax proposed here for defining graphs is par-

tially motivated by the unique needs of working with

very large problems that have thousands of design vari-

ables. Such problems are large enough that many tradi-

tional design methods stumble simply because the prob-

lems are so large that one person can not maintain a

complete view of the problem. Hence as problems grow

to that size, software tools become needed to manage

the complexity of the problem itself.

Even for small problems, algorithmic exploration

of problem structure can yield deeper understanding

of problems and more effective solution methods, as



demonstrated by the work with the FDT. The syn-

tax described here along with the rules for applying

that syntax to the three phases of the design process

provides a strong foundation to begin developing new

algorithms for analyzing and modifying problem struc-

ture. This foundation makes it much easier to incorpo-

rate a standard view of problem definition into MDAO

frameworks and by extension to implement any new

algorithms inside those frameworks.

3 Graph-Based Syntax Definition and

Formalisms

In this section we present our graph-based syntax, be-

ginning with the necessary graph theoretic fundamen-

tals to construct the graphs discussed in Sec. 2.3. The

notation used in this paper is adapted from Diestel

[23]. A graph is a pair G = (V,E) of sets such that

E ⊆ V × V , which means that the elements of E are

2-element subsets of V . The set V contains the vertices

or nodes and the set E contains the edges. For a directed

graph (or digraph) we construct E as a set of ordered

pairs instead of a set of sets. Each ordered pair repre-

sents an edge starting at the node indicated by the first

entry and directed to the node indicated by the second

entry. An edge e = (x, y) may simply be referred to as

xy. The edges directed out from node v are denoted

by E(v) and the edges directed into v are denoted by

E−1(v). E(v) may be the empty set, a single edge, or

a set of edges, and likewise for E−1(v). As an example,

1
2

3
4

5

Fig. 4: Example directed graph.

for the directed graph shown in Fig. 4 we have

V = {1, 2, 3, 4, 5},
E =

{
(2, 1), (3, 2), (1, 3), (3, 4)

}
.

A path P = (V,E) from x0 to xk in graph G is

a subgraph of G with V = {x0, x1, . . . , xk} and E =

{(x0, x1), (x1, x2), . . . , (xk−1, xk)}. Path P is a cycle if

x0 = xk. A reverse path PR in graph G is a path on R,

where R is the reverse graph of G obtained by switching

the orientation of every edge.

Let I be a nonempty set such that for each i ∈ I

there is a corresponding set Ai. The set of sets A =

{Ai | i ∈ I} is called an indexed family of sets with

index i and indexing set I [24]. The union over this

family of sets can be described in a few different ways:⋃
i∈I

Ai =
⋃
A∈A

A = {x | x ∈ A for some A ∈ A}. (3)

Lastly, the cardinality of a set B is the number of

elements in B and is denoted as |B|.

3.1 Node and Edge Types

We categorize nodes and edges into distinct types in or-

der to provide an intuitive approach to MDAO problem

formulation. The three node types are

variable node: represents scalar or array data, inputs

and outputs,

function node: represents the computation performed

by analysis tools,

driver node: represents control logic capable of man-

aging iterations (present only in a PSG),

and the three edge types are

connection edge: represents exchange of information

external to analysis tools,

function edge: represents exchange of information in-

ternal to analysis tools,

driven edge: represents passing of information from

a driver node to a variable node (present only in a

PSG).

Figure 5 demonstrates the usage of these node and edge

types via the Sellar problem. In this figure, function

nodes are indicated by squares, variable nodes are in-

dicated by circles, connection edges are indicated by

dotted lines, and function edges are indicated by solid

lines.

y1

z2

z1 D2 D2 y2

x1

y1

y2

z2

FF f

x1

y2

z2

z1
D1 D1 y1

y1 G1 G1 g1

y2 G2 G2 g2

1

1

2

x

z

z

Fig. 5: Sellar problem represented as a graph.

A rule set is provided for the usage of these node

and edge types to provide a structure to the graph-

based representation. The driver node and the driven



edge are allowed only in PSGs, whereas the other node

and edge types can be present in any of the three graph

types, subject to the following restrictions:

1. A function node may have only one edge directed to

or from another function node.

2. A function node may have only function edges di-

rected in or out.

3. A function node must have at least one edge directed

in and at least one edge directed out.

4. If a variable node has an outgoing function edge,

then it may not have other outgoing edges.

5. If a variable node has an incoming function edge,

then it may not have any additional incoming edges.

Alexandrov and Lewis’s REMS syntax includes only

two node types (variable and function) and one edge

type [19]. The present work adds one additional node

type and two additional edge types to the syntax to al-

low descriptive graphs for all three phases of the design

problem formulation process discussed in Sec. 2.3.

3.2 Analysis Blocks

Analysis tools take in a set of input variables and cal-

culate the values for their respective outputs. We repre-

sent this process by a digraph called an analysis block ;

a notional analysis block is shown in Fig. 6. As indi-

cated in this figure, analysis blocks comprise three sets

of nodes representing the distinct local inputs, the anal-

ysis (computation), and the distinct local outputs. The

local input and local output nodes are variable nodes,

while the nodes representing the analysis are function

nodes. All of the edges within the analysis block are

function edges, and are considered fixed to the analysis

block. This graph structure demonstrated by Fig. 6 sat-

isfies the rules listed in Sec. 3.1. Conversely, the rules

ensure that analysis tools are represented via this anal-

ysis block structure.

analysis block
variable variable

variable

functionfunction

...

......

...

variable

analysis local
outputs

local
inputs

Fig. 6: Example analysis block with node types la-
beled.

The function edge connecting the two function nodes

represents the necessary calculations to map the in-

puts to the outputs of the analysis. This edge also pro-

vides the opportunity to encode computational cost or

other characteristics of the analysis code as a weight

in a weighted graph formulation. Because all the edges

within analysis blocks are fixed, the blocks themselves

are fixed sub-graphs within the overall MDAO prob-

lem graph. The connectivity of nodes and edges in an

analysis block cannot be altered for the purposes of

MDAO problem formulation; however, analysis block

sub-graphs can be added or removed from the MDAO

problem graph as needed. Variable nodes in an anal-

ysis block can be distinguished as either an input or

an output by the manner in which they are connected.

As shown in Fig. 6, inputs are represented as variable

nodes that have an outgoing edge into a function node,

and outputs are represented as variable nodes that have

an incoming edge from a function node.

3.3 Objectives, Constraints, and Inputs

Along with analysis tools, objectives, constraints, and

inputs also need to be represented. In the case of ob-

jective functions, a single output value generated by an

analysis block could be selected, but commonly, multi-

ple output values from different analysis tools are aggre-

gated together to form a composite objective function.

Generally, both objective and constraint functions ac-

cept a set of inputs and map them to an output value

of significance to the overall design problem.

The operations of implementing composite objective

and constraint functions, although typically simple, are

effectively identical to the task performed by an analy-

sis block. A composite constraint or objective function

can therefore be represented as an analysis block within

the graph with its own input and output variable nodes.

Although fundamentally no different than an analysis

block, for clarity and convenience, it is useful to distin-

guish between analysis blocks corresponding to analysis

codes and those that arise from the addition of objec-

tives or constraints to the graph. Therefore, we use an

expression block to represent an objective or constraint.

These expression block graphs follow the same structure

as analysis blocks presented in Sec. 3.2.

Finally, inputs to the problem formulation are rep-

resented in the graph by individual variable nodes with

connection edges directed out to corresponding local in-

puts of analysis blocks, and they are referred to simply

as inputs. These nodes serve to indicate that the vari-

able nodes within analysis or expression blocks to which

they are connected represent the same variable in the

problem formulation.



Figure 7 demonstrates the use of inputs (black cir-

cles), analysis blocks (dotted boxes), and expression

blocks (dashed boxes), for the Sellar problem graph.
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Fig. 7: Sellar problem graph indicating inputs (black

circles), analysis blocks (dotted boxes), and expression
blocks (dashed boxes).

3.4 Indegree and Outdegree Limits

To address the MDAO notion of design variables, we

first introduce the concept of the degree of a node. In

a digraph, indegree of a node is the number of edges

directed in and is denoted as deg−(v), and the outdegree

is the number of edges directed out and it is denoted as

deg+(v) [23].

We may now define the upper indegree limit

deg−u (v) : V → N (4)

and the lower indegree limit as

deg−l (v) : V → N. (5)

These user-specified limits govern the number of con-

nection edges that may be directed into a node for a

valid graph; of course, the specification must satisfy

deg−l (v) ≤ deg−u (v). For example, consider a variable

node v with deg−u (v) = deg−l (v) = 1. In this case, v

must have exactly one incoming connection edge or the

graph is deemed an invalid problem formulation.

3.5 Driver Nodes and Driven Edges

Within this syntax, all iterative processes are repre-

sented with Driver nodes. The driver node shares some

basic qualities with the model node. It can have in-

coming and outgoing function edges to and from vari-

able nodes. For example, many optimizers take conver-

gence tolerance as input and output iteration counts

and final objective value. With respect to variable nodes

and function edges, drivers behave exactly the same as

model nodes and are subject to the same rules govern-

ing their use in the graph. In this context, driver nodes

can be part of driver blocks which behave just like anal-

ysis blocks.

Driven edges are the distinguishing characteristic

associated with driver nodes and driver blocks. Driven

edges don’t follow the same rules as other edges. Driven

edges will always connect a driver node to a variable

node (in either direction), but they are not consid-

ered when counting the indegree or outdegree of the

variable node. Hence a single variable node could have

multiple incoming driven edges from different driver

blocks, e.g. in a sequential optimization strategy, both

drivers would at different times, pick values for the same

variable. Figure 8 shows a notional example where a

driver block represents and optimizer solving an un-

constrained minimization problem.

analysis block
variable variable

variable

functionfunction

...

......

...

variable

analysis local
outputs

local
inputs

Fig. 8: Example driver block with node types labeled.

4 MDAO Constructs Derived from the

Graph-Based Syntax

In Sec. 3, we presented the structure of the graph-based

representation. We now discuss how these formalisms

provide the remaining MDAO problem constructs iden-

tified in Sec. 2.3.

4.1 Design Variables, Holes, and Collisions

Design variables are input variables whose values are

free to be changed by the designer or by an optimizer

in an MDAO study. In the graph-based syntax, a node

corresponds to a design variable if the indegree limits

of the node are prescribed as zero.

If the indegree limits are violated by the number of

incoming connection edges (the indegree of the node),

then the graph is regarded as an invalid problem formu-

lation. There are two classifications for these violations:



hole: The number of incoming edges is less than the

lower indegree limit:

deg−(v) < deg−l (v). (6)

A hole represents a lack of information being sup-

plied to the variable node. This implies that the

analysis tool being represented by the analysis block

would not be capable of producing outputs.

collision: The number of incoming edges is greater

than the upper indegree limit:

deg−(v) > deg−u (v). (7)

A collision represents redundant information being

supplied to the variable node from two or more sources.

This conflict implies an ambiguity as to which in-

formation is to be used as an input for the analy-

sis tool. In multifidelity problems (discussed subse-

quently), the upper indegree limit could be specified

as deg−u > 2, which implies that a collision is not

noted in the case of multiple inputs.

The presence of holes and collisions in a graph rep-

resent conflicts that will give rise to an invalid problem

formulation. The process of obtaining an FPG from an

MCG will reveal these conflicts.

4.2 Coupling Between Analyses

In MDAO, coupling is the mutual dependence between

two or more analysis tools and their respective outputs.

In this graph-based syntax, coupling is described by the

presence of a cycle between two or more analysis blocks.

In the Sellar problem from Eq. 1 a mutual dependence

between D1 and D2 exists through the variables y1 and

y2. The edges belonging to a cycle in the Sellar problem

are highlighted in Fig. 9. These edges collectively form

a closed path between analysis blocks D1 and D2.
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Fig. 9: Sellar problem graph with dashed edges indi-
cating participation in a cycle.

Coupling cycles do not contain driver node or driven

edgess since these are not allowed in the MCG or FPG

representations. Solvers, optimizers, and other iterative

processes are not invovled in the coupling definition;

however, one or more solvers will be required to build a

valid PSG from a given FPG that includes cycles. Ad-

ditionally, a coupling cycle has no inherent start or end

point. It would be acceptable to select a node in the

cycle as a starting point and proceed around the loop

until the starting point is reached again. For the Sel-

lar Problem, selecting D1 as the starting point would

yield a problem as given in Eq. 2. Larger problems can

involve more complex cycles in their FPG, indicating

more complex coupling between analyses. For exam-

ple, a cycle can involve more than two analysis blocks.

Multiple independent cycles could also exist, indicat-

ing independent coupling relationships. Cycles can also

overlap, meaning that the same analysis blocks are in-

volved in multiple different coupling cycles. All of these

situations arise naturally as the size of problems grows,

and managing this coupling may become difficult. In

the present work, Sec. 6 demonstrates how building an

FPG from an MCG provides an opportunity to identify

and potentially reduce the number of cycles in a graph.

If many couplings are present, convergence rates can

be improved by searching for an effective ordering for

the execution of analyses. Rogers’ DeMAID tool uses

a genetic algorithm to find an ordering that minimizes

the overall coupling of the system by separating inde-

pendent cycles in the graph [14,15]. Rogers work fo-

cused on the matrix form of the DSM for ordering op-

timization. Lu and Martins more recently leveraged a

weighted form of the DSM and used an iterative clus-

tering approach to perform a similar task to DeMAID

[22].

4.3 Multi-fidelity Problems

A multi-fidelity MDAO problem can be characterized

by a formulation in which two or more different analy-

ses each calculate the same data. Multi-fidelity is repre-

sented in a graph by a variable node having an indegree

greater than one, which means that multiple connection

edges are directed into it. When the upper indegree

limit of a variable node is set above one, then the node

is implied to allow multiple fidelity instances of the vari-

able. When the lower indegree limit of a variable node

is set above one, then multiple fidelity instances are re-

quired.

In a multi-fidelity problem, a given variable node

may have multiple incoming edges without implying a

collision as defined by Eq. 7. Figure 10 shows a modified

version of the Sellar problem with a new analysis, D0,

representing a low fidelity version of D1. In this modi-

fied version, the variable nodes with an upper indegree
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Fig. 10: Graph of the modified Sellar problem with

multi-fidelity nodes highlighted in gray.

limit of two are highlighted in gray, and changing the

upper indegree limits for the variable nodes represent-

ing y1 in D2, F , and G1 avoids a collision. In Sec. 5.3

we present an algorithm for locating conflicts within a

given MCG such that a designer can make the necessary

decisions about each one in turn.

Multi-fidelity problems are always characterized by

graphs in which at least some of the variable nodes that

have an deg−u (v) > 1. These problems require special

techniques for resolving the conflicting edges by intro-

ducing some mechanism to manage when each of the

different fidelity analyses are run [25–27]. The specifics

of this mechanism are not represented within an MCG

or FPG. Instead, the multi-fidelity mechanism specifics

would be represented as a driver in a PSG derived from

a multi-fidelity FPG.

Table 1 summarizes the classification of a variable

node as a hole, design variable, single valid input (nom-

inal), collision, or multi-fidelity node.

Table 1: Variable Node Classification

deg−l (v) deg−u (v) deg−(v) valid classification

0 0 0 yes design variable
0 0 1 yes collision

0 1 0 yes design variable
0 1 1 yes single input

1 1 0 no hole
1 1 1 yes single input
1 1 > 1 no collision

1 2 1 yes supplied input

1 2 2 yes multi-fidelity
2 2 < 2 no hole

2 2 2 yes multi-fidelity
2 2 > 2 no collision

4.4 Iterative Control: Drivers

There are many iterative processes that are used to

help solve MDAO problems such as solvers, optimizers,

and Design of Experiment (DOE). Abstractly, even a

human picking values guided by experience and trend

could be viewed as an iterative process. These processes

represent the control structures that govern how a de-

sign problem marches toward a solution but they do

not fundamentally impact the definition of the problem

to be solved. e.g. which optimizer you choose does not

change the problem you are solving but will change the

path you follow to solve it. Hence, as a rule, driver nodes

and driven edges are excluded from both the MCG and

FPG which deal exclusively with problem formulation.

They only come into play with in the PSG where the

issue of how to solve a specific problem is addressed. In

fact, at least one driver block is required to be present

in any PSG in order to select values for the design vari-

ables.

5 The MCG, FPG, and PSG

We now discuss how the graph-based syntax defined in

Secs. 3 and 4 is used to represent an MDAO problem in

its entirety. This discussion is based on the MCG and

the FPG.

5.1 Maximal Connectivity Graph

For a specified MDAO problem, the maximal connec-
tivity graph represents every analysis tool, objective,

constraint, and input being considered, as well as every

possible interconnection among them. The definition of

the MCG is given via construction. To construct the

maximal connectivity graph, we presume that a set of

analysis tools, inputs, objectives, and constraints are

provided. Each of the m analysis codes correspond to

an index i ∈ IA, IA = {1, 2, . . . ,m}, and are repre-

sented by an analysis block graph GAi
= (VAi

, EAi
).

Each of the n expression blocks correspond to an index

i ∈ IE , IE = {1, 2, . . . , n}, and is represented by expres-

sion block graph GEi
= (VEi

, EEi
). Finally, the inputs

are represented as a set of variable nodes Vin. We pre-

sume that Vin, each GAi , and each GEi are given, and

that any potential connection between variables is spec-

ified in the form of connection edges in the set EM,con.

One method for defining these connections is to use a

consistant variable naming convention.

We may then construct the maximal connectivity

graph M = (VM , EM ). VM is the union of the sets of



variable nodes from the inputs, analysis blocks, and ex-

pression blocks.

VM = Vin ∪
( ⋃

i∈IA
VAi

)
∪
( ⋃

i∈IE
VEi

)
(8)

EM is the union of all connection and fixed edges from

the all the analysis blocks and expression blocks.

EM = EM,con ∪
( ⋃

i∈IA
EAi

)
∪
( ⋃

i∈IE
EEi

)
(9)

The MCG M is uniquely determined by the given set

of analysis blocks, inputs, and expression blocks. In the

cases where the set of inputs is not known a priori, the

process of obtaining the FPG will reveal the required

inputs, as discussed subsequently.

The nodes and edges in M can be partioned in sets

according to their type:

VM = VM,var ∪ VM,fun, VM,var ∩ VM,fun = ∅, (10)

where VM,var and VM,mod are the sets of variable nodes

and function nodes, respectively;

EM = EM,con ∪ EM,fun, EM,con ∩ EM,fun = ∅, (11)

where EM,con and EM,fun are the sets of connection

edges and function edges, respectively. These sets will

be referenced in the process for obtaining an FPG.

5.2 Fundamental Problem Graph (FPG)

We now define the fundamental problem graph F =

(VF , EF ) as a directed graph meeting the following con-

ditions:

(1) F ⊂M and GEi
⊂ F ∀i ∈ IE

(2) ∀i ∈ IA, if F ∩GAi 6= ∅ then GAi ⊂ F
(3) ∀v ∈ VF with v ∈ VM,var and

deg−l (v) ≤ deg−(v) ≤ deg−u (v)

(4) ∀v ∈ VF there exists a reverse path P ⊂ RF

from x to v with x ∈ VEi

Condition (1) asserts that only the nodes and edges

provided by the maximal connectivity graph can be

used in the fundamental problem graph and that ev-

ery expression block must be included. Condition (2)

requires that analysis blocks must be included or ex-

cluded in their entirety. Condition (3) stipulates that

the number of edges directed into each variable node

must be within the lower and upper in-degree limits; if

deg−(v) < deg−l (v) the node is the location of a hole,

and if deg−(v) > deg−u (v) the node is the location of

a collision. Lastly, condition (4) ensures that only the

nodes that are used in the MDAO problem formulation

are included in the FPG by requiring that for every

node a reverse path exists from at least one expression

block to that node. The reverse graph RF is obtained

from F by simply switching the orientation of every

edge in EF .

5.3 Algorithm for Obtaining the Fundamental

Problem Graph from the MCG

In general, there may be zero, one, or many graphs that

satisfy the FPG conditions in Sec. 5.2. Here, we de-

scribe an algorithm for obtaining an FPG from a given

MCG by starting with the MCG and disconnecting con-

nection edges until the FPG conditions are met. With

this approach, the problem is reduced to deciding which

connection edges to remove.

Step 1: Holes The first step is to detect holes and dis-

connect the first set of connection edges downstream

of them, as indicated in Fig. 11.

To begin the process, an initial graph is created as

a copy of the MCG

F0 = M, (12)

where F0 = (VF0 , EF0), and CF0,con is the set of

connection edges. The set of variable nodes that are

holes is identified as

H = {v ∈ VF0 | v ∈ VM,var and deg−(v) < deg−l (v)},
(13)

which is the set of variable nodes with fewer incom-

ing edges than are allowed by the lower indegree

limit. An updated set of edges is then created by re-

moving the connection edges preceding or succeed-

ing the analysis block:

EF1 = EF0\{(x, y) ∈ EF0,con | x ∈ VAi

or y ∈ VAi , and H ∩ VAi 6= ∅},

and the graph is updated as

F1 = (VF0 , EF1). (14)

Because removing these edges can create new holes,

this step must be repeated until no additional holes

are found. If the hole identification step identifies a

variable node in an expression block as hole, mean-

ing VEi
∩H 6= ∅ for some i ∈ IE , then the algorithm

terminates because an FPG cannot be obtained.

If this step terminates without identifying a hole in

an expression block, it is guaranteed that an FPG

can be obtained because F1 now satisfies all con-

ditions from Sec. 5.2 except for (3), which requires



that no holes or collisions be present in the graph.

Since the graph is free of holes, and collisions can

always be resolved without producing a hole, (see

Table 1), then it is guaranteed than an FPG can be

obtained.

hole

analysis block
...

...

...

remove these edges
Fig. 11: Example variable node indicating a hole.

Step 2: Collisions The second step is to detect col-

lisions and to disconnect precisely the number of

connection edges required such that all collisions are

resolved without introducting holes. The set of vari-

able nodes at which collisions occur is

Snodes = {v ∈ VM,var | deg−(v) > deg−u (v)}, (15)

where the degree is now calculated with respect to

F1. For each collision node we can construct a set

containing the edges directed into the node. The set

containing all of these sets is constructed as

Sedges =
{
{(x, y) ∈ EM}

∣∣ y ∈ Snodes

}
(16)

Let J = {1, 2, . . . , |Sedges|} be an indexing set for

Sedges such that each Sedges,j corresponds to a set

in Sedges for j ∈ J . An example collision is shown

in Fig. 12 to exemplify the definition of Sedges,j . J

also indexes Snodes because there is a one–to–one

correspondence between the elements in Snodes and

the elements in Sedges (which are sets). We may then

construct sets of edges as

Bj =
{
ek ∈ Sedges,j | k ∈ {1, 2, . . . ,K}
with deg−u (vj) ≤ K ≤ deg−u (vj)

}
, j ∈ J,

which means that each set Bj is constructed from

the set Sedges,j by taking only as many edges as are

allowed by the upper and lower indegree limits of vj .

The construction of each Bj corresponds to making

a decision about which edges to include and which

edges not to include. Let the new set of connection

edges be denoted

EF2,con = {e ∈ EF1,con | e ∈ Bj for some j ∈ J}.
(17)

The set of all edges is created by removing the con-

nection edges not in EF2,con:

EF,2 = EF0
\ (EM,con \ EF2,con), (18)

which gives

F2 = (VF0
, EF2

). (19)

v  (collision)j

analysis block
...

...

...

...

...

...

Sedges, j

Fig. 12: Example variable node indicating a collision.

Step 3: Finalize The third and final step is to prune

the graph to exclude any analysis blocks that be-

came unneeded after the collisions were resolved.

This is accomplished by first creating the reverse

graph of F2, R = (VR, ER), where

ER = {(x, y) | (y, x) ∈ EF2
}, VR = VF2

(20)

Next, a new node b is added to VR and edges di-

rected from this node to each of the expression blocks

are added:

∀i ∈ IE ,∀v ∈ VEi
, if deg−(v) = 0 then (b, v) ∈ ER.

(21)

The set of nodes that may be reached from b is then

constructed as

U = {v ∈ VR | ∃P a path from b to v, P ⊂ R}.
(22)

Because b is directed into only the expression blocks,

any path from b necessarily provides a path from at

least one expression block, which means the node is

being used in the problem formulation.

The list of analysis blocks with at least one node in

U is constructed as

IF = {i ∈ IA | VAi
∩ U 6= ∅} (23)

Any analysis block not in IF should be removed

from the graph because none of its outputs con-

tribute to the problem. Inputs that are not being



used are also removed. The set of nodes to remove

is then

N = (Vin \ U) ∪

 ⋃
i/∈IF

VAi

 , (24)

and the new set of nodes is created as

VF = VF2
\N. (25)

Edges involving the removed nodes are also deleted

as

EF = EF2
\ {(x, y) | x ∈ N or y ∈ N}. (26)

The fundamental problem graph is then

F = (VF , EF ). (27)

If desired, the set of connection edges can be ex-

tracted by considering only edges whose endpoints

are not in the same analysis block:

EF,con ={(x, y) ∈ EF | ∼ (x ∈ VAi
and y ∈ VAi

for some i ∈ IF )}.

This algorithm will always provide an FPG if one

exists. If an FPG does not exist, the implementation

reveals the limiting factors that prevent a valid FPG

from being achieved.

5.4 Suggested Process for Appyling the FPG

Algorithm

Section 5.3 provided an algorithm for obtaining an FPG

from the given MCG. The algorithm can be applied as

part of a broader process in which the designer changes

the problem formulation or the supplied analysis tools

to attempt to obtain an FPG. The following steps detail

the suggested procedure for obtaining an FPG:

(A) Begin with a set of inputs, analysis tools, objectives,

and constraints.

(B) Build the MCG as described in Sec. 5.1.

(C) Set indegree limits for variable nodes representing

local inputs as described in Sec. 3.4 and Table 1.

(D) Run the FPG algorithm described in Sec. 5.3. If a

valid FPG is unattainable:

(a) Change the MCG by adding analysis blocks and/or

inputs, which means identifying new analysis tools

to include in a potential MDAO workflow.

(b) Change indegree limits (see Table 1).

(E) Repeat from step (A) until an FPG is obtained.

This process illustrates how the algorithm for obtaining

a valid FPG can be applied. However, the process also

serves to illustrate how a designer may revist the MCG

after an FPG has already been produced. For example,

if a designer desires to change an input to be multi-

fidelity, new analysis blocks can be added to the original

MCG, the indegree limits can be modified accordingly,

and the algorithm can be applied again.

5.5 Problem Solution Graph

Once a suitable FPG has been obtained the issue of

how to structure a solution strategy can be addressed.

Similar to the way an MCG can be manipulated into a

FPG, an FPG can be further manipulated into a PSG.

To get from an MCG to an FPG you eliminated analy-

sis blocks and connection edges to reduce the problem

to something solvable, but to get from an FPG to a

PSG you add in driver blocks, driven edges to describe

the structure of the solution strategy being applied to

the problem. For example, Figure 13 shows the PSG

that solves the Sellar problem with an MDF solution

strategy. There are two driver blocks in this PSG, one

for the solver that ensures compatibility and another

for the optimizer that picks the design variables.

analysis block
variable variable

variable

functionfunction

...

......

...

variable

analysis local
outputs

local
inputs

Fig. 13: Example PSG for solving the Sellar problem

with MDF strategy

The PSG in figure 13 can be compared to the XDSM

for the same situation in Fig. 2. While the two diagrams

contain much of the same information there is a signif-

icant difference. The PSG describes the data passing

that happens between the drivers and the rest of the

problem, but it does not describe when that data pass-

ing will occur (the execution order of the blocks). In

the proposed graph syntax edges describe the passing

of data between one node an another, but they do not

define when that communication happens.

XDSM diagrams do contain information about data

passing as well as when that data should be passed.



XDSM essentially represents two related, but indepen-

dent graphs simultaneously. This is accomplished by

including two distinct sets of edges, one for data con-

nections and a second indicating execution sequence. As

seen in Fig. 2 data connections are bold-gray edges and

execution connections are numbered-black edges. The

execution edges, the back edges, in XDSM represent

and additional graph that follows a completely differ-

ent set of rules and behaviors from the data connec-

tions graph. On the other hand the data described by

the gray edges, the data passing information, is equiv-

alent to the information in the PSG. XDSM presents

this information in a more compact and human read-

able manner by aggregating groups of related variables

into combined nodes. The more verbose form presented

in a PSG is less human readable, but more easily ma-

chine readable as a consequence of a more consistent

structure.

6 Example Problem

This section presents an example problem to demon-

strate the process of obtaining the FPG and the ad-

vantages of doing so. The example task is to create an

FPG for the conceptual sizing of a single-aisle subsonic

transport aircraft using a set of analysis tools with ob-

jectives including performance and gross weight for a

required mission. The full set of analysis codes avail-

able for use is provided in Table 2. Each analysis tool

Table 2: Analysis tools for subsonic transport sizing

analysis tool description

VSP parametric vehicle geometry

PDCYL wing and fuselage weight estimation

NPSS engine sizing and performance
VORLAX vortex lattice method aerodynamics

PMARC low-order panel method aerodynamics

WATE engine weight estimation
FLOPSa mission performance

engine sizing and weight estimation
FLOPSb mission performance only

contributes individual disciplinary analysis capability,

but the outputs of the tools are not mutually exclusive.

For example, VORLAX and PMARC are both aerody-

namics codes that predict induced drag but with differ-

ent levels of fidelity. The Flight Optimization System

(FLOPS) is included twice to represent two different

configurations corresponding to different uses. FLOPSa

denotes FLOPS implemented to execute both mission

performance and engine analysis, while FLOPSb in-

dicates FLOPS implemented to execute only mission

performance analysis. This representation is useful for

“supercodes” that are capable of being implemented

in different ways and with different sets of inputs and

outputs. The enumeration of these analysis tools and

objectives concludes step (A) in Sec. 5.4.

Step (B) is the production of the MCG. In this ex-

ample, the MCG is formed by using a consistent vari-

able naming convention and then connecting all vari-

ables with the same name with connection edges. Table

3 presents the full list of variables in the leftmost col-

umn and indicates whether the variable is an input or

an output of each analysis tool. Some variables, such

as geometry and performance, represent groups of vari-

ables that are passed as arrays or other data structures

due to their similarity. This bundling of variables is not

fundamental and does not limit the generality of this

example; rather, it simplifies the presentation.

In this example, the MCG M is formed in four steps:

1. An analysis block is created for each analysis code

using the information in each column of Table 3.

Each analysis block is formed by first creating vari-

able nodes for each input and adding directed edges

into a single function node. A function edge is cre-

ated from this function node into a second function

node, which is then directed into variable nodes cor-

responding to each output. A sample analysis block

is shown for analysis code FLOPSa in Fig. 14.

number of engines
mission

geometry
wetted area

fuselage weight
wing weight

engine weight
performance
total weight
engine performance
drag

Fig. 14: Sample analysis block for analysis code
FLOPSa using Table 3

2. Expression blocks are created to represent the ob-

jectives for performance and total weight.

3. A variable node is created to represent the geometry

variable as an input. Any inputs incorrectly omitted

will be identified in step (D).

4. Connection edges are created that connect each vari-

able node to every other variable node representing

variables with the same name. The direction is de-

termined by whether the variable node has an edge

directed into or out of a function node, i.e. whether

it is a local input or a local output.

The resulting MCG is shown in Fig. 15. Cycles are

shown as dashed lines. FPGs formed from this MCG

may or may not retain these cycles, depending on user

choices.



Table 3: Analysis code input and output description

variable analysis code

VSP PDCYL NPSS VORLAX PMARC WATE FLOPSa FLOPSb
geometry in in in in in in in

number of engines in in in

mission in in
fuselage weight out in in

wing weight out in in

engine weight out out in
wetted area out in in

inviscid drag out out in

drag in out out
engine performance out in out in

performance out out

total weight in out out

VSP

PDCYL

NPSS

VORLAX

PMARC

WATE

FLOPSa

FLOPSb

Total weight

Performance

Geometry

Model node
Variable node
Variable node (0 incoming edges)
Variable node (more than one 
   incoming edge)
Connection edge
Connection edge (part of a cycle)

Fig. 15: Maximal connectivity graph for the subsonic transport example problem

To implement step (C) in Sec. 5.4, the indegree of

every variable node is set to unity to reflect a single

fidelity analysis for which the design variables have not

yet been selected.

Step (D) now proceeds by executing the FPG algo-

rithm. An FPG cannot be obtained because the vari-

able nodes representing the number of engines are holes

for NPSS, FLOPSa, and FLOPSb, and the variable

nodes representing the mission definition are holes for

FLOPSa and FLOPSb. These holes are propagated up-

stream by the FPG algorithm and create holes in the

objectives, thereby preventing a valid FPG.

Step (D)(a) begins to resolve this conflict by creat-

ing an input for the number of engines. In this exam-



VSP

PDCYL

NPSS

VORLAX

PMARC

WATE

FLOPSa

FLOPSb

Total weight

Performance

Geometry

Number
of engines

Model node
Variable node
Variable node (0 incoming edges)
Variable node (more than one 
   incoming edge)
Connection edge
Connection edge (part of a cycle)

Fig. 16: The updated MCG with a new input.

ple, the number of engines was not originally included

as an input to demonstrate how the process can reveal

the need to select a variable as an input. Step (D)(b)

then reduces the lower and upper indegree limits for

the variable node representing the mission definition to

zero, implying that these nodes must be specified as de-

sign variables (see Table 1). The new MCG is shown in

Fig. 16.

Although an FPG may now be obtained, this pro-

cess has not provided a method to decide which edges

to retain when resolving a collision, and these decisions

will likely determine which analysis tools are included

in the FPG. These decisions are left to the discretion

of the designer in the context of the specific implemen-

tation. However, the graph-based approach presented

in this paper enables standard graph algorithms to be

employed to automate these decisions based on consid-

erations of metrics related to the graph or other data

related to the analysis. An example is a metric to obtain

an FPG with the fewest possible number of cycles. In

this example, the FPG with the fewest cycles is shown

in Fig. 17, in which the edges belonging to a cycle are

inticated by dashed lines. For this example problem, the

cycles were detected using the implementation of John-

son’s algorithm [28] in the Python package NetworkX.

There are two cycles which arise from each local out-

put from PDCYL being directed into FLOPSa and then

back into PDCYL.

Similar alternatives would be to minimize the num-

ber of analysis blocks involved in cycles, counting mul-

tiplicity, or to minimize the length of the longest cycle

(called the circumference of the graph). It is beyond the

scope of this work to explore efficient methods for find-

ing the FPGs meeting these criteria. However, as dis-

cussed by Gabow [29], graph algorithms typically scale

well with the size of the graph. This suggests that the

computation cost of finding an FPG should be small

even for large problems.

Alternatively, it may be desirable to resolve colli-

sions by preferentially choosing analysis tools with fa-

vorable properties, such as higher accuracy or minimal

run time, whenever possible. One method to implement

an FPG in this paradigm is to use a ranking system.

Each analysis block is assigned a value by the designer



VSP

PDCYL

FLOPSa

Total weight

Performance
Geometry

Number
of engines

Fig. 17: FPG with the fewest number of cycles.

VSP

PDCYL

NPSS

PMARC

WATE

FLOPSb

Total weight

Performance

Geometry

Number
of engines

Model node
Variable node
Variable node (0 incoming edges)
Variable node (more than one 
   incoming edge)
Connection edge
Connection edge (part of a cycle)

Fig. 18: FPG obtained using a ranking system.

describing how desirable it is for this block to be present

in the FPG. The connection edges directed out of each

analysis block are then assigned a weight equal to the

value assigned to the analysis block. Finally, each colli-

sion is resolved by selecting the edges with the highest

weights. For the current example problem, consider the

rankings for each analysis code given in Table 4. The

resulting FPG has four cycles and is shown in Fig. 18.

Finally, consider a case in which the induced drag

input into FLOPSb is a multi-fidelity input, meaning

that multiple analysis codes calculate the same variable.

This multi-fidelity formulation is implemented by set-

ting the upper indegree limit for this node as two and

then repeating the (automated) process. In this case,

Table 4: Example ranking of importance

analysis code rank

VSP 5
PDCYL 5

NPSS 4
PMARC 4

FLOPSb 4
VORLAX 3

WATE 3
FLOPSa 2

both VORLAX and PMARC are retained, resulting in

an FPG that omits only FLOPSa.



Conclusions

In this paper, we have presented an approach for de-

scribing MDAO problems with constructs and syntax

from graph theory. Our graph description shares sim-

ilarities to other approaches such as REMS, Ψ , FDT,

DSM, and XDSM, but it provides new constructs tai-

lored to algorithmic analysis and manipulation. The

proposed syntax has applications in early phases of

MDAO problem formulation, especially for problems

with large numbers of variables and analyses. In partic-

ular, we introduce the concepts of the Maximally Con-

nected Graph (MCG) and the Fundamental Problem

Graph (FPG).

The MCG addresses the question, “Given a set of

analysis tools, what are all of the variable interconnec-

tions between them that could be established?” The

MCG provides a structured formalism to identify holes

and collisions in interconnections between the set of

analysis tools. In order to achieve a valid problem for-

mulation, all of the holes and collisions must be re-

solved. We present an algorithm to perform this res-

olution which gurantees that you will find an FPG if

one exists. In some cases this algorithm still relies on

some input from the designers to make decisions. One

benefit of a graph theoretic approach is the standard

algorithms which can be used to inform the user’s deci-

sions, such as cycle detection, minimum spanning trees,

and shortest path algorithms.

The FPG is a graph that describes a data connection

structure corresponding to an MDAO problem formu-

lation free of collisions and holes. An FPG is the re-

sult of user choices to fill holes and resolve collisions in
the initial MCG. Typically, many different FPGs could

be attained from a given MCG, depending on the user

choices. The number of possible FPGs that can be at-

tained by selecting different design variables or intro-

ducing additional analysis tools to fill holes and/or re-

solve collisions can be viewed as a measure of the free-

dom available to the user in implementing the available

analysis tools to formulate valid MDAO problems. In

Sec. 6, we provide an example application of formu-

lating multiple FPGs from an MCG for a commercial

aircraft design problem.

For simple problems with few analysis tools and

variables, the formulation of a valid problem description

is straightforward. However, MDAO problems continue

to grow in scale and complexity. As the numbers of anal-

ysis tools and variables have increased, it has become

increasingly challenging and time consuming for engi-

neering teams to determine how the multiple analysis

tools can be interconnected to produce valid problem

formulations, to know when other tools must be intro-

duced, and to determine the number of free variables

in the problem that can or should be varied by the de-

signer or an optimizer. The graph formalism presented

in this paper is intended to offer value in this context

of increasing problem complexity by providing a formal

approach to programatically identify and resolve miss-

ing and redundant data in order to create valid MDAO

problem formulations.
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