
Automatic Evaluation of Multidisciplinary Derivatives

Using a Graph-Based Problem Formulation in

OpenMDAO

Justin Gray∗, Tristan A. Hearn,† Kenneth T. Moore,‡

NASA Glenn Research Center, Cleveland, OH

John T. Hwang,§ Joaquim R. R. A. Martins¶

University of Michigan, Ann Arbor, MI

Andrew Ning ‖

National Renewable Energy Laboratory, Golden, CO

The optimization of multidisciplinary systems with respect to large numbers of design
variables is best pursued using a gradient-based optimization together with a method that
efficiently evaluates coupled derivatives, such as the coupled adjoint method. However,
implementing such a method in a problem with more than a few disciplines is time con-
suming and error prone. To address this issue, we develop an automated procedure for
assembling and solving the coupled derivative equations that takes into account the disci-
plinary couplings using the interdisciplinary dependency graph of the problem. The coupled
derivatives can be computed completely analytically, if analytic derivatives are available for
all disciplines; otherwise, the coupled derivatives are computed semi-analytically. The pro-
cedure determines the disciplinary analyses execution order, detects iterative cycles, and
uses this information to converge the coupled analysis, and evaluate the coupled derivatives
as efficiently as possible by exploiting sparsity. Sparsity can occur at two levels within a
multidisciplinary problem: between disciplines, when certain analyses do not affect all out-
puts, and within a discipline when, the Jacobian of that discipline is sparse. The numerical
procedures are implemented in NASA’s OpenMDAO framework, providing a flexible API
for declaring discipline-level derivatives that can handle sparsity within a discipline. The
tool is demonstrated in two MDO problems: the design of a small satellite and its opera-
tion with the objective of maximizing downloaded data to a ground station, and the design
of a horizontal-axis wind turbine with the objective of minimizing the cost of energy. In
both cases, the method demonstrated improved efficiency by taking advantage of analytic
gradients considering sparsity. This new capability in OpenMDAO greatly facilitates the
implementation of system-level direct and adjoint coupled derivative evaluations, and is
applicable for general problems.

I. Introduction

Gradient-based optimization with analytic gradients is an effective tool for solving problems with large
dimensionality design spaces, and has been applied to a wide variety of design optimization problems,
including aerodynamic shape optimization1–3 and structural optimization.4–6 To apply these methods to
multidisciplinary problems, system-level derivatives must be constructed by combining the partial derivatives
from each discipline to form the coupled derivative equations. Sobiesky7 first formulated two versions of

∗Aerospace Engineer, MDAO Branch, Mail Stop 5-11, AIAA Member
†Aerospace Engineer, MDAO Branch, Mail Stop 5-10, AIAA Member
‡Senior Systems Engineer, MDAO Branch, Mail Stop 5-11, AIAA Senior Member
§Ph.D. Candidate, Department of Aerospace Engineering, AIAA Student Member
¶Associate Professor, Department of Aerospace Engineering, AIAA Associate Fellow
‖Senior Engineer, National Wind Technology Center, AIAA Member

1 of 21

American Institute of Aeronautics and Astronautics

a direct coupled approach: the residual approach, which is based on the discipline governing equations
residuals, and the functional approach, which is based on the coupling variables. Martins et al.8,9 proposed
an adjoint approach to computing system-level derivatives, and used it to perform coupled aerostructural
design optimization of aircraft wings.10,11 The approach is also applicable to other multidisciplinary design
problems, such as aero-acoustic design.12 Extending these gradient-based techniques to problems with more
disciplines has proved to be difficult. When design problems grow to include tens of disciplines, it becomes
increasingly challenging to construct the necessary derivatives. Even assuming all of the disciplines provide
analytic partial derivatives, constructing the system-level derivatives depends heavily on the structure of
the data connections between disciplines. Manual implementations for these problems are time consuming
and discourage modifications to the problem formulation in the future. To overcome these issues, Moore13

developed a method for automatically assembling the system level derivatives based on the data-dependency
graph of a given problem formulation. This work represented the first implementation of the unified approach
to computing system-level derivatives by Martins and Hwang9 which combined forward- and adjoint-based
derivatives into a single theoretical framework. An early attempt to the automatic implementation of coupled
derivatives had also been achieved by Marriage and Martins,14 but they did not use a graph to identify
sparsity.. In addition to allowing greater flexibility in the problem formulation, a key feature of Moore’s
graph-based approach was the efficient handling of sparse problem formulations. By traversing the graph
from design variables to quantities of interest, it was possible to consider only the subset of variables that
were relevant to a specific system-level gradient, thus making gradient computations more efficient.

Although Moore’s work demonstrated that a framework could compute system-level derivatives for arbi-
trary problem setups, the implementation assembled and inverted a complete system-level Jacobian for all
derivative solutions. This approach made it unsuitable for larger problems involving high-fidelity tools, since
enumerating a full Jacobian would be inefficient (if possible at all).

Hwang et al.15 developed an alternative, graph-free method for computing automatic system level sen-
sitivities that used a global design variable vector. Their method addressed the scalability challenges with
Moore’s work by using a matrix-free approach with components providing partial derivatives via a linear op-
erator. They demonstrated the effectiveness of their method on a design optimization of a small satellite with
over 25,000 design variables and over 1 million state variables. Despite its success, the global-vector-based
approach required that all the variables from the system model be included when solving for system-level
derivatives. This prevented the method from taking advantage of sparsity in the problem formulation and
resulted in a less efficient gradient solving step.

The present work combines the graph-based approach with the matrix-free solution algorithm to effi-
ciently compute derivatives for a wide range of sparse, large-scale engineering design problems. This new
implementation is tested on the same small satellite design problem used in Hwang et. al’s original work,
showing a dramatic reduction in computational cost. In addition, the new method is applied to a wind
turbine design study that has a more complex structure with stronger multidisciplinary couplings, as well
as a mixture of analytic and finite-difference gradients. Comparisons between finite-difference and analytic
gradient performance are made, demonstrating faster and tighter convergence with analytic gradients.

II. Unified Derivatives Computations

There are several methods for computing system-level derivatives that differ in accuracy, efficiency, and
ease of implementation. The black-box finite-difference approximations involve the least amount of imple-
mentation effort, but they suffer from accuracy limitations caused by the combination of truncation and
subtractive cancellation error that become worse with increasing nonlinearity in the model. Furthermore,
the cost is at best equal to the cost of evaluating the full multidisciplinary model times the number of design
variables. The complex-step method16 eliminates the accuracy issue at the cost of increased implementation
complexity, but it is typically two to three times slower than finite difference, which is already relatively
inefficient.

The complex-step method can be somewhat invasive, but the remaining methods typically require an
even greater level of source code access and modification. Algorithmic differentiation (AD) uses automated
tools to symbolically differentiate at the line-of-code level, and combines the resulting partial derivatives to
obtain numerically exact values for the system-level derivatives. AD operates in the forward and reverse
modes, where the cost of the former is proportional to the number of design variables, and the cost of the
latter is proportional to the number of output functions. Analytic methods have the same two modes of

2 of 21

American Institute of Aeronautics and Astronautics

operation and have the added advantage that only a linear system needs to be solved to obtain a vector of
derivatives, which is cheaper than an evaluation of the model in some cases.

When implementing multidisciplinary problems, derivatives for each individual discipline are typically
available and must be combined to compute system-level derivatives. The manner in which the derivatives
are combined is highly problem-dependent. If there is no feedback among the disciplines and they are explicit
functions, one can simply use the chain rule at the discipline-level. If all of the disciplines have residuals
from the discretization of governing equations, the coupled adjoint or coupled direct method would be the
most appropriate for computing system-level derivatives. If the disciplines are explicit but there is coupling
among disciplines, the functional approach for the coupled derivative equations must be used.7,9

A framework that automatically computes system-level total derivatives from user-provided partial deriva-
tives for each discipline must be able to apply the most appropriate method for the situation (explicit/im-
plicit, coupled/sequential, direct/adjoint, etc.). This is greatly facilitated by a unification of derivative
computation methods using a single equation from which all methods can be derived:9

∂C

∂v

dv

dc
= I =

∂C

∂v

T dv

dc

T

(1)

where C represents the vector of functions that constrain the variables v to their appropriate values.
By appropriately choosing v and C, chain rule, black-box methods, analytic methods, coupled derivative

equations, and algorithmic differentiation can be derived. For instance, including only the design variables
and output variables in v yields a black-box method because all intermediate variables involved in computing
the output variables are ignored in this situation. The significance of the above equation is that it enables
a much simpler implementation of the derivative computation algorithm in a computational framework.
Regardless of the specifics of a given problem, computing derivatives reduces to solving a linear system in
the left (the forward or direct mode), or right equality (the reverse or adjoint mode) of the above equation.

III. Dependency Graph

In Moore’s original work on computing derivatives from a dependency graph, he employed a discipline-
based dependency graph, with a node for each discipline and edges describing dependency between the
nodes.13 A path-finding algorithm, from the NetworkX library,17 computed the relevant set of disciplines
for a given derivative. Although the dependency-based graph took advantage of sparsity at one level, by
excluding any disciplines that did not directly contribute, it did not handle a second level of sparsity within
disciplines. Even if a given discipline is relevant, some of its variables still may not directly affect the
quantities of interest. To handle this problem, Moore utilized a secondary source of information outside the
dependency graph. Pate et al.18 proposed an alternative dependency graph structure that addressed this
problem. Each discipline and each of its variables are represented by separate nodes with directed edges
between them describing their dependencies on each other. Figure 1 shows a sample graph for a notional
problem formulation.

A.w0 A A.x0

F.y0 F.z1

E.y0 E.z0

B.w1

B.x1

C.x0

C.y0

C.x1

B.w2 C.x2

C.y0[2]

C.y1

D.x2 D.y1

A

A A

C C

D D

E E

F F

C.y0C.y0

E.y0E.y0

Figure 1: Dependency graph for a notional problem, using Pate et. al’s proposed structure

In Pate et al.’s graph syntax, a single node is given for every variable, and two nodes are given for
each discipline analysis. The dual discipline nodes were prescribed in order to create an edge that could be

3 of 21

American Institute of Aeronautics and Astronautics

assigned a weight in case weighted graph traversal algorithms were desired. However, they acknowledged
that the dual nodes are often unnecessary and could be avoided for the sake of simplicity. Figure 2 shows
the same notional problem, with the simplification of using only single model nodes made.

A.w0 A.x0

F.y0 F F.z1

E.y0 E E.z0

B.w1

B.x1

C.x0

C

C.y0

C.x1

D

B.w2 C.x2

C.y0[2]

C.y1

D.x2 D.y1

B

A

C.y0C.y0

E.y0E.y0

Figure 2: Dependency graph for a notional problem, using Pate et. al’s proposed structure with a
only one model node

This graph contains all the information needed to take full advantage of problem sparsity but suffers
from one potential weakness. For a problem with millions of variables, such as the small satellite design
problem, the graph would get very large and would be inefficient to operate on. To address this issue, related
variables (i.e., arrays) can be aggregated into a single node to represent the overall variable. For problems
with large arrays, this modification results in a significant reduction in the overall size of the graph. If any
specific subvariable is referenced (e.g., some slice of an array) then a new node is added to represent that
relationship. In Fig. 2 variable nodes C.y0 and E.y0 are both arrays and are directly connected. However,
F.y0 is a scalar variable, which depends on a single entry form C.y0, so a subvariable node, C.y0[2], is added
to the graph in between C.y0 and F.y0. By using the subvariable nodes, the computational advantages of
problem sparsity are retained. Consider ∂F.z1

∂C.y0 . Given the graph, we know that this gradient will be sparse,

with only the element relating to C.y0[2] having nonzero values as in Eq. (2).

∂F.z1

∂C.y0
=

0

0
∂F.z1

∂C.y0[2]

...

0

 (2)

Because of the variable aggregation, solving for derivatives without the subvariable node would require
all the elements of the C.y0 array to be included in the linear system. With the subvariable node, only the
single relevant value from the array needs to be included. By representing hierarchical data as a single node
the overall size of the graph remains manageable and the subvariable nodes are used to preserve the benefits
of sparsity.

A. Graph Traversal Determining Relevance

OpenMDAO can calculate a Jacobian between any set of input and output nodes in a model by setting up
the appropriate linear system. The size of the linear system is determined by the number of variables being
considered, which means that the linear system can get very large. Although the matrix-free approach to
solving this system can handle larger problems well, it is still desirable to minimize the size of the problem as
much as possible. OpenMDAO was able to achieve significant reductions in the size of the linear system by
traversing the dependency graph to find the subset of relevant variables. Consider solving for the derivative
of ∂F.z1

∂A.w0 , given Fig. 2. Figure 3 highlights the relevant path through thre graph between A.w0 and F.z1.
Only components A, C, D, and F are needed. Furthermore, only C.x0 and C.x2 are needed from C, because

4 of 21

American Institute of Aeronautics and Astronautics

of component-level sparsity. This means that only seven variables are needed to solve for the derivatives,
instead of eleven if the graph is not reduced.

A.w0 A.x0

F.y0 F F.z1

E.y0 E E.z0

B.w1

B.x1

C.x0

C

C.y0

C.x1

D

B.w2 C.x2

C.y0[2]

C.y1

D.x2 D.y1

B

A

C.y0C.y0

E.y0E.y0

Only the relevant variables are
considered, which keeps the size of
the linear system for derivatives as
small as possible

Figure 3: The reduced graph for the derivatives calculation includes components 1, 3, and 5 with
their interconnecting variables.

A traversal from parameter to quantity of interest, as shown in Fig. 3, is used when solving for forward
derivatives. In forward mode, the traversal searches for all of the variables that could be affected by a change
in the parameter. One traversal is necessary for each design variable in the problem formulation. To solve
for the derivatives using the adjoint method, a traversal must be made in the opposite direction. To do this,
reverse all of the edges in the dependency graph and perform one traversal from each quantity of interest to
all possible parameters.

B. Cycle Detection and Usage

Pate et al.18 stated that within a dependency graph, the presence of cycles indicates coupling between the
components in the cycle. Cycles can be induced by connections where data is passed directly from an output
to an input, or implicitly where an input needs to be varied in order to drive a residual equation to zero. In
Fig. 2 there is a cycle between components C and D. The presence of cycles has an impact on how models
are solved. First, during normal execution, these cycles need to be converged with a numerical solver such as
Gauss–Seidel or a Newton-based solver. In addition, these cycles need to be accounted for when solving for
the derivatives. The unified gradient method by Martins and Hwang9 allows for this situation, but requires
the resulting residual equations be handled in a slightly different manner from explicit variable relationships
(ones without cycles). Hence it is important to be able to efficiently identify all cycles in the graph. In formal
terms, cycles exist in a graph when a group of nodes are strongly connected. Tarjan’s algorithm provides an
efficient means of finding the sets of strongly connected components.19,20

IV. API for Specifying Discipline Derivatives

All of the discussion up to this point has dealt with disciplines as if they were black boxes that are
assumed to provide analytic derivatives of their outputs with respect to their inputs to the framework. This
section describes the API for components to declare and provide said derivatives. The API is broken up into
two parts: one that is mandatory for all components that declare derivatives, and another that is optional
for components that wish to take full advantage of the graph-based sparse approach.

A. Mandatory API Methods

There are two mandatory methods that all components supporting derivatives must provide. The first is
list deriv vars(). This method specifies the input and output variables that make up the columns and
rows of its Jacobian, respectively. list deriv vars() returns a 2-tuple of inputs and outputs that have
derivatives. A component is allowed to declare derivatives support for an arbitrary subset of all its variables.

5 of 21

American Institute of Aeronautics and Astronautics

The second method is provideJ(). This method serves two purposes. First, it provides the opportunity
to perform any one-time work needed for linearization around the current point. Second, the method can
optionally return the actual Jacobian, in the form of a n×m vector, where n is the number of outputs and
m is the number of inputs. The ordering of the rows and columns of the Jacobian must match the order of
the variables returned for list deriv vars(). When a Jacobian is returned from provideJ(), OpenMDAO
will cache it and use it for all derivative computations around the current point for both forward and
adjoint derivatives. This makes the provideJ() API the most straightforward and easiest to use in many
cases. Figure 4 shows an example of an OpenMDAO component with user-specified derivatives, using the
provideJ()method. This component has two input variables, x and y, and two output variables, f and g,
where

f (x, y) = x2 + sin(y) (3)

g (x, y) = x3

from openmdao.main.api import Component
from openmdao.main.datatypes.api import Float
from math import sin , cos
from numpy import array

class ExampleComp(Component):

Inputs
x = Float(0., iotype="in")
y = Float(0., iotype="in")

Outputs
f = Float(0., iotype="out")
g = Float(0., iotype="out")

def list_deriv_vars(self):
return ((’x’, ’y’,), (’f’, ’g’))

def provideJ(self):
return array ([[2 * self.x, cos(self.y)],

[3 * self.x ** 2, 0.0]])

def execute(self):
self.f = self.x ** 2 + sin(self.y)
self.g = self.x ** 3

Figure 4: Example of an OpenMDAO component with user-specified Jacobian.

Although the provideJ() method is easy to implement, it has a few minor downsides. First, it requires
that the component Jacobian be assembled in memory. In most cases, with tens or even hundreds of
variables, this is reasonable, but if the Jacobian has a sparse structure, it may still be wasteful to allocate
memory for a full matrix. Furthermore, for applications such as Computational Fluid Dynamics, where
there are millions of variables partitioned across many CPUs, assembling the full Jacobian is simply not
feasible. Lastly, depending on how the problem is configured, it is possible that not all of the variables will
be needed for a given problem, as in Fig. 3. With provideJ(), the full Jacobian will still need to be provided
though some of it will be irrelevant. So in effect, using the provideJ() method can partially negate some
of the benefits of problem sparsity. In general, these inefficiencies are small and outweighed by the ease of
implementation. However, in cases where these downsides become a significant concern, the provideJ()

method should return nothing, and instead the optional API methods should be implemented for improved
efficiency.

B. Optional API Methods

To overcome some of the downsides of constructing the full Jacobian, the components can provide a linear
operator that computes the effect of multiplying the Jacobian with a given vector. This provides more
freedom in how derivatives are implemented. It also enables the computing of only relevant quantities. The
only significant downside is a small amount of added implementation complexity. Two different methods,
apply deriv(arg, result) and apply derivT(arg, result), must be implemented for forward and ad-
joint derivatives respectively. In each case, arg and result are dictionaries with relevant input and output

6 of 21

American Institute of Aeronautics and Astronautics

variable names as keys. If only forward or adjoint derivatives will be used, then only the necessary method
needs to be implemented. Figure 5 provides an example of the apply deriv and apply derivT methods;
using the same component shown above in Fig. 4.

class ExampleComp(Component):

Inputs
x = Float(0., iotype="in")
y = Float(0., iotype="in")

Outputs
f = Float(0., iotype="out")
g = Float(0., iotype="out")

def list_deriv_vars(self):
return ((’x’, ’y’,), (’f’, ’g’))

def provideJ(self):
pass

def apply_deriv(self , arg , result):
if "x" in arg:

result["f"] += 2 * self.x * arg["x"]
result["g"] += 3 * self.x ** 2 * arg["x"]

if "y" in arg:
result["f"] += cos(self.y) * arg["y"]

def apply_derivT(self , arg , result):
if "f" in arg:

result["x"] += 2 * self.x * arg["f"]
result["y"] += cos(self.y) * arg["f"]

if "g" in arg:
result["x"] += 3 * self.x ** 2 * arg["g"]

def execute(self):
self.f = self.x ** 2 + sin(self.y)
self.g = self.x ** 3

Figure 5: Example of an OpenMDAO component with apply deriv and apply derivT methods
implemented.

The if conditions in the sample implementation from Fig. 5 provide the mechanism for taking full
advantage of sparsity. The usefulness of this feature can be readily demonstrated with a notional optimization
using the Multidisciplinary Feasible (MDF) architecture.21

Optimizer x

Solver y2 y1

y1 A

z y2 B

Figure 6: Notional design problem with MDF problem formulation

In Fig. 6, the optimizer varies the design variable A.x, a large vector. The solver converges variables y1
and y2 from disciplines A and B. Applying a Newton-based method requires ∂A.y1

∂A.y2
and ∂B.y2

∂B.y1
to converge,

but ∂A.y1

∂A.x is not relevant. By using the linear operator derivatives method, the cost of multiplying by ∂A.y1

∂A.x
can be avoided, while converging the solver and only computed as part of the outer optimization loop.

7 of 21

American Institute of Aeronautics and Astronautics

V. Small Satellite Design Problem

Cubesat investigating Atmospheric Density Response to Extreme driving (CADRE) is a mission funded
by the National Science Foundation to study the response of the thermosphere to auroral phenomena.22 The
small satellite design problem optimizes the design of a cubesat for the CADRE mission. This problem was
originally implemented and solved by Hwang et al.15 using a matrix-free coupled derivative strategy. The
analysis models the orbit of a cubesat as it performs a mission over the course of one year. The full mission
is represented by 6 half-days of operation, computed at conditions 1, 3, 5, 7, 9, and 11 months after launch.

Table 1: Small satellite design problem formulation

Variable/Function Description Quantity

maximize
∑6

i=1Di Data downloaded

with respect to 0 ≤ Isetpt ≤ 0.4 Solar panel current 300× 12× 6

0 ≤ γ ≤ π/2 Roll-angle profile 300× 6

0 ≤ Pcomm ≤ 25 Communication power 300× 6

0 ≤ cellInstd ≤ 1 Cell vs. radiator 84

0 ≤ finAngle ≤ π/2 Fin angle 1

0 ≤ antAngle ≤ π Antenna angle 1

0.2 ≤ iSOC ≤ 1 Initial state of charge 6

Total 25292

subject to Ibat − 5 ≤ 0 Battery charge constraint 6

−10− Ibat ≤ 0 Battery discharge constraint 6

0.2− SOC ≤ 0 Battery capacity constraint 6

SOC − 1 ≤ 0 Battery capacity constraint 6

fSOC − iSOC = 0 SOC periodicity constraint 6

Total 30

The objective of the optimization was to maximize the total amount of data transmitted to the ground
station over these six design points. In their original work, Hwang et al. located the ground station for
receiving data in Ann Arbor, Michigan. Because the satellite was launched into a polar orbit moving the
ground station closer to one of the poles would increase the amount of data collected. McMurdo Station,
Antarctica is located close to the South Pole and is an existing scientific research facility. So for this work,
the McMurdo was selected as the ground station location.

There are seven design variables listed in Tab. 1. Three of them, γ, Isetpt, and Pcomm, are arrays of
time-varying schedules for the attitude, solar panel current, and communications power, respectively. The
remaining four, cellInstd, finAngle, antAngle, and iSOC, are all physical design variables of the satellite.
All together there are 25,292 design variables. The five constraints for the problem relate to the battery
charge rate, battery discharge rate, minimum battery capacity, maximum battery capacity, and a battery
state-of-charge (SOC) periodicity constraint. Each constraint was a length 6 vector with a value representing
each of the 6 different orbits, yielding a total of 30 constraints. Since the problem has significantly more
design variables than objectives and constraints, it the gradients are computed using the coupled adjoint
method.

Overall, the problem can be broken down into seven distinct disciplines: orbit dynamics, attitude dy-
namics, cell illumination, temperature, solar power, energy storage, and communication. Figure 7 shows
how each of the disciplines relate to each other in the optimization problem. The actual implementation of
the problem further subdivided most of the disciplines into smaller subdisciplines. The true component-level
dependency graph, given in Fig. 8, has 39 different components. The full graph, including all variable and
subvariable nodes, is omitted for visual clarity.

From a problem structure standpoint, this problem has three significant features. First, the large number
of disciplines, design variables, and the complex connections between them make assembling the linear system

8 of 21

American Institute of Aeronautics and Astronautics

Optimizer Roll angle Comm power Panel current Comm power Comm power

Orbit Dynamics Position Position

Attitude Dynamics Attitude Actuator power Attitude

Cell Illumination Exp. area Exp. area

Temperature Temperature Temperature

Solar Power Solar power

Constraints Energy Storage

Data downloaded Communication

Figure 7: Extended Design Structure Matrix (XDSM)23 showing the structure of the small satellite
design problem

to solve for gradients challenging to do by hand. Second, although the problem does not have any explicit
interdisciplinary coupling, there is coupling from the SOC periodicity constraint, fSOC − iSOC = 0, which
is dependent on many of the disciplines. Third, all disciplines are implemented with analytic derivatives, so
that no finite differencing is necessary.

Power_CellVoltage

Power_SolarPower

Power_Total

BatterySOC

BatteryPower

BatteryConstraints

Comm_EarthsSpin

Comm_EarthsSpinMtx

Comm_GSposECI

Comm_VectorECI

Comm_LOSComm_VectorBody

Comm_BitRate

Comm_VectorAnt

Comm_DataDownloaded

Comm_GainPatternComm_Distance

Comm_VectorSpherical

ReactionWheel_Torque

ReactionWheel_Dynamics

ReactionWheel_Power

Sun_PositionSpherical

Solar_ExposedArea

ThermalTemperature

Attitude_RotationMtx

Attitude_RotationMtxRatesSun_PositionBody

Attitude_Angular

Attitude_AngularRates

Attitude_Torque

BsplineParameters

Attitude_Roll

Sun_PositionECI

Sun_LOS

Comm_GSposEarth

Comm_AntRotation

Comm_AntRotationMtx

Orbit_Dynamics

Attitude_Attitude

Figure 8: Dependency graph for the satellite problem.

9 of 21

American Institute of Aeronautics and Astronautics

A. Optimization Results

The final optimal design yielded 80 GigaBytes (GB) total data downloaded over the 6 time points considered.
Figure 9 shows ground trace for the satellite colored by communications bit rate for all 6 time points
combined. Bit rate can be correlated directly with the communications power in Fig. 10, where large spikes in
communications bit rate correspond to passes over the ground station requiring power to the communication
system for transmission. Figure 10 shows key design and performance data for the design problem over the
course of the optimization for all six points in time considered. Data is shown for the initial condition, at 100
function evaluations, and for the final optimum solution. At the initial condition the roll angle is a constant
45 degrees, the communication power is uniformly 0, and battery state of charge drops quickly below 0.
This design is obviously terrible and indicates clearly why the optimizer had to work hard to find a feasible
solution. By the 100th function evaluation, the optimizer found a reasonable design which refined smoothly
for the rest of the optimization.

Figure 9: Ground trace of the satellite trajectories for all the design points colored by communica-
tions bit rate.

The roll angle variation in Fig. 10 roughly approximates a sine function with a period of 90 minutes (the
approximate orbital period of the satellite), with short-term perturbations during the time periods, where
line of sight is achieved with the ground station. That is, the optimizer converged to a solution with the
satellite continuously turned to maximize exposure to the sun, except when turning to point its antenna
towards the ground station. This dynamic is also reflected in the SOC data plotting in the bottom row,
with the battery losing charge quickly during communication with the ground station but recharging while
tracking with the sun.

10 of 21

American Institute of Aeronautics and Astronautics

Sun LOS

GS LOS

0

4

8

12

16

20

24

T
ot
al

d
at
a
[G

b
]

0

10

20

30

C
om

m
.
p
ow

er
[W

]

0

0.3

0.6

0.9

1.2

T
ra
n
sm

it
te
r
ga
in

0

30

60

90

R
ol
l
an

gl
e
[◦
]

0

20

40

60

80

100

S
ta
te

of
ch
ar
ge

[%
]

0 3 6 9 12
Time [hr]
(month 1)

0 3 6 9 12
Time [hr]
(month 3)

0 3 6 9 12
Time [hr]
(month 5)

0 3 6 9 12
Time [hr]
(month 7)

0 3 6 9 12
Time [hr]
(month 9)

0 3 6 9 12
Time [hr]
(month 11)

Initial 100 Evals Final Design

Figure 10: Plots of the SOC, roll angle, transmitter gain, communications power, and total data
downloaded for each of the 6 time periods analyzed. Data is presented for the initial condition
(black), at 100 function evaluations (red), and at the final optimal point (blue).

11 of 21

American Institute of Aeronautics and Astronautics

B. Performance Results

The OpenMDAO implementation of the satellite problem was executed on a Macbook Pro (2.6 GHz Core
i7 processor, 16 GB 1600 MHz DDR3 memory, running OSX 10.8.5). The problem was converged to a
termination tolerance of 10−4 using the SNOPT24 optimizer. The problem was run twice, once with a full
problem graph including all variables regardless of relevance, and a second where the graph was reduced
based on the algorithms discussed in Section A. The effects of the graph reduction are shown in Table 2.
The number of variables in the graph, and hence the size of the linear system that needs to be solved, was
reduced by 18%. This reduction yielded a drop in runtime of about 21%.

Table 2: Effects of relevance-based graph reduction on optimization performance. Run times are
quoted as time to 325 function evaluations

Full Graph Reduced Graph % Reduction

Variables 2.15e6 1.76e6 18%

Components 39 29 25.6%

Derivative Solve Time (sec) 126 87 31%

Total Run Time (hours) 22.39 17.33 21.3%

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
ig

a
b
it

s

1e5 Total Data

Full-graph

Reduced-graph

0 50 100 150 200 250 300 350
Iteration #

10-4

10-3

10-2

10-1

100

101

102 Max Constraint Violation

Figure 11: Iteration history for the full-graph and reduced-graph cases of the satellite problem.

Figure 11 compares function evaluation history over the course of the optimization between the full-graph
and reduced-graph cases. The top plot shows the value of the objective function, the total data downloaded.
The bottom plot shows the maximum constraint violation. In both cases the objective function oscillated
greatly early in the optimization while the optimizer sought a feasible solution. The saw-tooth pattern in
the results occurs when the optimizer performs large jumps during a line search. When the line search
moves too far, the objective and convergence can both get worse, causing the optimizer to backtrack. The
reduced-graph case shows significantly improved convergence, stabilizing to a feasible solution in around 80
iterations verses 200 for the full-graph case. The reduced-graph version also found a better optimum data

12 of 21

American Institute of Aeronautics and Astronautics

downloaded of 10343 GB versus 9718 GB for the full-graph case, a 6% improvement.

Table 3: Comparison between the full and reduced problem graphs for different-sized small satellite
design problems

Full Graph Reduced Graph Reduction

1.08e6 8.8e5 18%

2.15e6 1.76e6 18%

4.30e6 3.52e6 18%

8.60e6 7.05e6 18%

1.72e7 1.41e7 18%

1e+06 1e+07
Number of Variables

102

103

T
im

e
 (

se
c)

Full

Reduced

Figure 12: Adjoint solution cost as a function of number of variables in the problem formulation.

Figure 12 shows a log-log plot of computational cost for 31 adjoint solves (30 constraints + 1 objective)
versus the number of variables in the full problem. The trend shows linear growth for both the full and
reduced versions of the graph, with a constant ratio between them. This problem is scaled by refining the
time discretization for the integration of ordinary differential equations. Although increasing the number
of time steps taken does increase the sparsity of the individual discipline Jacobians, it does not have an
impact on the sparsity of the problem formulation. In other words, although the size of the variable arrays
grows, the structure of the dependency graph remains constant. Table 3 demonstrates the consequence of
the constant problem formulation sparsity, which yields a fixed ratio between the full and reduced problem
size.

Although the overall reduction in optimization cost was 21%, reduction of dependency graph provided
a 30% reduction in the cost to compute adjoint derivatives.The reduction in computational cost for solving
the gradients did not directly translate into equivalent savings in the overall optimization cost because of
the computational cost of the optimizer. This problem requires a large number of minor iterations, where
SNOPT solves a quadratic subproblem. The cost of solving these subproblems is not directly affected by the
cost of computing the derivatives, and hence reduces the overall computational savings. This characteristic
is highly problem-dependent, and is not expected to be so significant for all problems. Also, the overhead
from the optimizer would get less significant as the computational cost of the analyses and derivative solves
increased. Thus, the efficiency gain from the graph reduction would be more significant for larger, more
expensive problems.

VI. Wind Turbine Design Problem

The goal of this design problem was to optimize a horizontal-axis wind turbine for minimum cost of
energy. The problem includes the design of the rotor blades with a coupled aerostructural analysis as well as
the structural design of the hub, nacelle, and tower. Cost models for the turbine and wind plant are included

13 of 21

American Institute of Aeronautics and Astronautics

to assess trade-offs in energy capture and capital and operational costs. The analyses for this model are part
of the Wind-Plant Integrated Systems Design & Engineering Model (WISDEM) developed at the National
Renewable Energy Laboratory (NREL) as part of a larger effort to develop a physics- and cost-based design
optimization framework for wind turbines.25–28

Wind turbine design involves a large number of structural constraints specified by various standards. This
optimization problem utilizes a subset of the design requirements specified by the International Electrotech-
nical Commission for land-based designs.29 Structural considerations include maximum deflections, stress
and strain limits, resonance, buckling, and manufacturing considerations. A typical problem formulation is
given in Table 4. Bound constraints are chosen to be large enough to not be active, except for those that
must be restricted because of manufacturing or transportation reasons. For simplicity, safety factors are not
included in the list of constraints.

Table 4: Horizontal-axis wind turbine optimization problem description

Variable/function Description Quantity

minimize COE Cost of energy

with respect to 0.4 ≤ c ≤ 20 Chord distribution 5

−10 ≤ θ ≤ 30 Twist distribution 4

0.005 ≤ tsc ≤ 0.2 Spar-cap thickness distribution 5

0.005 ≤ tte ≤ 0.2 Trailing-edge panel distribution 5

3 ≤ λ ≤ 14 Tip-speed ratio in Region 2 1

0.1 ≤ Lshaft ≤ 10 Low-speed-shaft lengths 2

0.01 ≤ hbeam ≤ 10 Bedplate I-beam sizing 2

3.87 ≤ d ≤ 6.3 Tower diameter 3

0.005 ≤ t ≤ 0.2 Tower wall thickness 3

0.25 ≤ zwaist ≤ 0.75 Tower waist location 1

50 ≤ H ≤ 200 Tower height 1

Total 32

subject to δtip ≤ δmax Blade tower strike 1

δground ≥ δmin Blade ground clearance 1

fblade ≥ 3Ω Blade resonance avoidance 2

ε ≤ εult Ultimate strain in blades 30

ε ≤ εcr Panel buckling in blades 15

δlss ≤ δmax Deflection limits in low-speed shaft 4

δbdp ≤ δmax Deflection limits in bedplate 2

σbdp ≤ σult Ultimate stress in bedplate 2

σtwr ≤ σult Ultimate stress in tower 12

σtwr ≤ σshell Shell buckling in tower 14

σtwr ≤ σglobal Global buckling in tower 14

ftower ≥ Ωrotor Tower resonance avoidance 1

d/t ≥ 120 Weldability 3

dtop/dbase > 0.4 Manufacturability 1

Total 102

There are 32 design variables, 1 objective, and 102 constraints. An additional maximum tip-speed
constraint of 80 m/s is imposed directly in the analysis. Because there are fewer design variables than
quantities of interest, the problem was solved with forward derivatives. In addition, the relatively small
number of design variables enabled a comparison between the use of analytic and finite-difference gradients.
There were 10 disciplines involved in the top level of the model, as seen in Fig. 13. Half of these disciplines

14 of 21

American Institute of Aeronautics and Astronautics

represented the physics of the problem, aerodynamic and structural models of the turbine components, while
the other half encapsulated the various cost components. The aerostructural coupling is achieved through
a fixed point iteration around the rotor discipline, converging the deflected blade shape to a tolerance of
1× 10−8. OpenMDAO automatically computes the coupled derivatives around this convergence loop.

Similar to the small satellite design problem, many of the disciplines are further subdivided into more
than one component for implementation. In the satellite problem, all components were left at the same
level in the model, but for this problem actual subassemblies of components were made (e.g., Rotor, Hub,
Nacelle, Tower, Turbine Capital Cost, and Balance of Station). This highly nested structure is designed to
provide modularity, to allow a wide range of researchers to build discipline models that can be swapped in
and out. It also greatly simplifies the complexity of the top level model. The presence of these subassemblies
is relevant to how the derivatives are computed. They are treated as single discipline components from
the perspective of the top level model, meaning that when derivatives are requested from the assembly, it
will internally solve for its own boundary derivatives and report them to the top level assembly. Table 5
summarizes number of subassemblies and components in those subassemblies for the overall model. There
are a total of 104 components spread out between 12 different subassemblies.

Table 5: Component and subassembly counts for the wind turbine design problem at different levels
of the model

Components # Subassemblies

Top level 1 9

Rotor 33 0

Hub 4 0

Nacelle 10 0

Tower 16 0

Tower Strike 1 0

Annual Energy Production 1 0

Turbine Capital Cost 1 3

Nacelle Capital Cost 8 0

Tower Capital Cost 2 0

Rotor Capital Cost 6 0

Operational Expenses 1 0

Balance of Station 19 0

Financial 1 0

Total 104 12

The Rotor discipline in particular has an important internal feature with regard to computing derivatives.
The rotor subassembly is responsible for modeling aerodynamics, using CCBlade,30 a blade element momen-
tum (BEM) tool specifically tailored to optimization. It includes an internal convergence on the PowerCurve
discipline, with a Brent solver,31 to find the rated speed, Vrated, for the wind turbine. This convergence loop
requires the Rotor subassembly to compute coupled derivatives. Figure 14 shows the complete dependency
graph for just the Rotor discipline, which has 33 components in total. The internal solver used to find rated
speed is highlighted with a box in the figure.

The structures discipline for the blades is modeled with pBEAM,32 a beam finite element code, Pre-
Comp,33 a structural property tool for composite blades, and additional structural modules for panel buck-
ling, load and mass transfer, and geometric modeling. In the Tower subassembly, aerodynamics is modeled
with power-law wind profiles and cylinder drag theory. Tower structures is modeled with pBEAM and addi-
tional modules for hoop stress, shell buckling, and global buckling. Some drivetrain components are modeled
with scaling relationships (bearings, yaw system, generator), while others used bottom-up physics models
(bedplate, gearbox, low-speed shaft).

Analytic gradients are derived for all aerodynamic components, cost components, and many of the struc-
tural components using a mixture of hand-derivation and automatic differentiation. Some of the remaining
structural components (pBEAM and PreComp) do not yet provide analytic gradients. For these components,
the output was still continuously differentiable, and their Jacobians were estimated with finite differencing.

15 of 21

American Institute of Aeronautics and Astronautics

O
p
tim

izer
c,✓,t

s
c ,t

te ,�
2

�
m

a
x
,H

L
s
h

a
f

t ,h
b
e
a
m

d
,t,z

w
a
is

t

S
olver

L
b
la

d
e ,p

recu
rv

e

�
r
o
to

r ,✏,⌦
,✏ ⇤r

o
to

r
�

L
,�

p
r
e
c
u

r
v
e

R
otor

m
b
la

d
e ,

d
r
o
to

r ,
M

r
o
o
t

m
b
la

d
e ,P

r
a
te

d

d
r
o
to

r ,Q
r
o
to

r

T
r
o
to

r ,⌦
r
a
te

d

V
r
a
te

d ,V
e
x
tr

e
m

e

H
,tilt,m

r
o
to

r ,
I
r
o
to

r ,Q
r
o
to

r ,T
r
o
to

r

L
b
la

d
e ,p

recon
e,tilt

A
E

P
P

r
a
te

d
m

b
la

d
e ,

P
r
a
te

d
m

b
la

d
e ,

P
r
a
te

d

d
r
o
to

r

H
u
b

m
h

u
b ,I

h
u

b
m

h
u

b

�
n

a
c
e
lle ,✏,✓

ls
s

N
acelle

m
n

a
c
e
lle ,I

n
a
c
e
lle

L
n

a
c ,H

n
a
c

m
n

a
c
e
lle

d
to

p ,d
b
a
s
e ,

�
to

w
e
r ,�

⇤to
w

e
r

T
ow

er
z
w

a
is

t ,d
to

w
e
r

m
to

w
e
r

�
m

a
x

T
ow

er
S
trike

A
E

P
A

E
P

n
e
t

A
E

P

O
p
.

E
x
p
.

$
o
p
e
x

C
ap

.
C

ost
$

tc
c

$
tc

c

B
O

S
$

b
o
s

C
O

E
F
in

.

Figure 13: XDSM23 diagram of the top level wind turbine design optimization problem

16 of 21

American Institute of Aeronautics and Astronautics

brentpowercurve

cdf

aep

curvefem

aero_rated

setuppc gust

loads_strain

struc

blade_defl tipmass

aero_extrm

aero_defl_powercurve

loads_pc_defl

spline

loads_defldamage

analysis

beam

geom

curvature

aero_extrm_forces

root_moment

resize

dt

setup

extreme

spline0

turbineclass

wind

grid

gridsetup

Figure 14: Rotor subassembly dependency graph

This led to a mixed derivative scenario where analytic Jacobians and the finite difference Jacobians were
used together to solve for system-level derivatives.

This problem has one additional interesting characteristic in its problem formulation: a number of data
connections throughout the dependency graph were never relevant to the derivatives calculations. These
nonrelevant variables were used for various settings and initialization values throughout the model, such as
the number of blades on the rotor or the density of air. For convenience and consistency, the variables still
have connections so that the right values can be set in one place and passed to all necessary components
automatically. Such variables, especially when they are integers (or otherwise nondifferentiable) necessitate
the graph-based approach to identify irrelevant variables. Without that capability, these variables would
be included in the linear systems for computing derivatives. At best, the continuous nonrelevant variables
would only make the linear solve a bit slower. At worst, the discrete nonrelevant variables would prevent
the derivatives computation from working properly at all.

A. Optimization Results

The baseline design for this problem is the NREL 5-MW reference model,34 with a blade structural layup
definition from Sandia National Laboratories.35 The baseline model was not designed to be optimal in any
sense, but is instead useful as a nominal reference configuration.

A high-level summary of wind turbine component masses, energy production, and plant costs are sum-
marized in Table 6. The energy capture is quantified by the annual energy production (AEP). Plant costs
include turbine capital costs (TCC), balance-of-station costs (BOS), and operating expenses (OPEX). The
cost of energy is computed as

COE =
FR(TCC +BOS) + (1− T)OPEX

AEP
(4)

where FR is the financing rate, and T is the tax deduction rate on operating expenses.
The baseline design has significant structural margins in both the blade and the tower. In this case

the optimization pushes towards a lower solidity blade, saving mass, and correspondingly operates at a

17 of 21

American Institute of Aeronautics and Astronautics

Table 6: Comparison between component masses, energy production, and plant costs for the baseline
design and a minimum cost of energy design.

Baseline Optimized

blade mass (kg) 17,303 13,226

hub mass (kg) 42,126 38,482

nacelle mass (kg) 208,748 208,364

tower mass (kg) 349,649 333,492

AEP (MWh/turbine) 19,579 20,093

TCC ($
kW) 1,698 1,587

BOS ($
kW) 558 561

OPEX (c|
kWh) 1.22 1.21

COE (c|
kWh) 6.20 5.80

higher tip-speed ratio (tip-speed ratio increased from 7.55 to 8.52). The solidity and spar-cap stiffness was
sized primarily by the out-of-plane tower strike requirement. Trailing-edge panels were sized primarily by
maximum strain and buckling requirements at 50-year survival load conditions.

While the final tower design has a similar mass to the baseline, it is significantly taller in order to increase
power capture (hub height increase from 90 m to 107 m). Because of the large design margins for the baseline
design, the tower is able to increase in height without large mass penalties by using a larger base diameter
and thinner shell sections. The tower design is sized primarily by shell buckling at maximum thrust load
conditions.

The changes in the drivetrain and nacelle are more subtle, resulting in a similar mass. Overall, the mass
reductions allow for over 9% savings in turbine capital costs. Simultaneously, the larger hub height, and
more efficient blades increase the AEP by almost 3%. The net effect is a reduction in cost of energy of
approximately 6.5%.

B. Performance Results

This optimization was run with both finite-difference and mixed analytic/finite-difference gradients. The
problem was converged to a termination tolerance of 5×10−5 using SNOPT. For this problem, finite-difference
achieved almost the same optimum design that the analytic gradients case found, and had the same level
of feasibility. The major advantage of the analytic gradients was a 5X reduction in computational time,
although a minor improvement in the objective function was achieved as well. Figure 15 shows optimization
history for every function evaluation of the top level model. This outcome is significant in two ways. First,
it demonstrates the value obtained by applying the extra effort to derive derivatives for discipline analyses.
Second, it proves that it is possible to achieve some benefits without defining derivatives for every single
analysis. While outside the scope of this paper, a wide range of variations on this optimization problem have
been performed, and the use of the analytic gradients has shown to also be beneficial not only in terms of
speed, but also in terms of solution robustness and quality.

Table 7: Comparison of the results between the finite-difference and analytic derivatives

Finite-Difference Analytic

Objective (COE in c|/kWh) 5.8045 5.8042

Max Constraint Violation 2.62× 10−6 1.81× 10−6

Major Iterations 143 113

Total Run Time (hours) 5.43 1.11

18 of 21

American Institute of Aeronautics and Astronautics

0 20 40 60 80 100 120 140
Iteration #

5.75

5.80

5.85

5.90

5.95

6.00

C
o
st

 o
f

E
n
e
rg

y
 (¢
k
W
h

) Objective Value

FD
Analytic

0 20 40 60 80 100 120 140
Iteration #

10-6
10-5
10-4
10-3
10-2
10-1
100
101
102 Max Constraint Violation

Figure 15: Comparison between optimization performance and finite-difference and analytic gradi-
ents.

VII. Conclusion

Multidisciplinary design problems can exhibit different types of sparsity. Certain disciplines may not
be relevant to all objectives and constraints, not all variables within a discipline will be relevant, and the
Jacobians for any given discipline may be sparse. We implemented a graph-based approach to identify the
sparsity in any given formulation using a graph structure designed to allow for efficient usage even with
millions of variables. We further developed a flexible API that allowed disciplines to declare their partial
derivatives to OpenMDAO in a manner that takes full advantage of any sparsity within its Jacobian. Through
the combination of the graph based method to find the minimum set of relevant variables, and the flexible
API provided by OpenMDAO, we were able to take full advantage of the sparsity at all levels in a problem
formulation.

The approach was applied to two different design problems, each with unique characteristics that tested
different aspects of the method. The small satellite design problem had millions of variables and used analytic
adjoint derivatives. This problem would have been very difficult to solve without analytic derivatives because
of its large dimensionality design space. Assembling the system-level derivatives would have been challenging
to do by hand due to the large number of components involved. The results from the optimization of the small
satellite reveal that the implementation scales well with increasing number of variables, and a significant
computational cost benefit was obtained by taking advantage of sparsity in the problem formulation. The
wind turbine design problem had a design space with lower dimensionality, a significantly more complex
problem formulation, and used a combination of finite-difference and analytic gradients. The problem was
solved with forward gradients because it had more constraints than design variables. The optimization results
demonstrated OpenMDAO’s ability to solve highly nested problems with coupled derivatives. In addition,
they showed a gain in computational efficiency by applying analytic derivatives, even though some major
analyses still required finite differencing.

The combined results from the two design problems clearly demonstrate the value of the approach pre-
sented here: efficient and automatic computation of system-level derivatives, given partial derivatives from

19 of 21

American Institute of Aeronautics and Astronautics

the discipline analyses, even for very large problems. It also allows analyses with and without analytic
derivatives to be used effectively within the same model.

VIII. Acknowledgments

This work was supported by the NASA Fundamental Aeronautics Program, Aeronautical Sciences Project.
The authors would like to thank Dae Young Lee and Prof. James W. Cutler from the University of Michigan
for contributing to the development of the analyses used in the small satellite design problem. The authors
also gratefully acknowledge the contributions of Katherine Dykes, Yi Guo, and Ryan King from the National
Renewable Energy Laboratory for their development efforts on the wind turbine nacelle and cost models.

References

1Lee, B. J., Liou, M.-S., and Kim, C., “Optimizing a Boundary-Layer-Ingestion Offset Inlet by Discrete Adjoint Approach,”
AIAA Journal , Vol. 48, No. 9, 2014/04/16 2010, pp. 2008–2016.

2Palacios, F., Alonso, J. J., Colonno, M., Hicken, J., and Lukaczyk, T., “Adjoint-based method for supersonic aircraft
design using equivalent area distributions,” 50th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and
Astronautics, Nashville, TN , Vol. 4, 2012.

3Lyu, Z., Kenway, G. K., and Martins, J. R. R. A., “Aerodynamic Shape Optimization Studies on the Common Research
Model Wing Benchmark,” AIAA Journal , 2014, (Accepted subject to revisions).

4Kennedy, G. J. and Martins, J. R. R. A., “A Parallel Finite-Element Framework for Large-Scale Gradient-Based Design
Optimization of High-Performance Structures,” Finite Elements in Analysis and Design, 2014, (In press).

5Venkataraman, S. and Haftka, R., “Structural optimization complexity: What has Moore’s law done for us?” Structural
and Multidisciplinary Optimization, Vol. 28, 2004, pp. 375–387.

6Adelman, H. M. and Haftka, R. T., “Sensitivity Analysis of Discrete Structural Systems,” AIAA Journal , Vol. 24, May
1986, pp. 823–832.

7Sobieszczanski-Sobieski, J., “Sensitivity of complex, internally coupled systems,” AIAA Journal , Vol. 28, No. 1, 04 1990,
pp. 153–160.

8Martins, J. R. R. A., Alonso, J. J., and Reuther, J. J., “A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity
Aero-Structural Design,” Optimization and Engineering, Vol. 6, No. 1, March 2005, pp. 33–62.

9Martins, J. R. R. A. and Hwang, J. T., “Review and Unification of Methods for Computing Derivatives of Multidisciplinary
Computational Models,” AIAA Journal , Vol. 51, No. 11, November 2013, pp. 2582–2599.

10Kenway, G. K. W., Kennedy, G. J., and Martins, J. R. R. A., “Scalable Parallel Approach for High-Fidelity Steady-State
Aeroelastic Analysis and Derivative Computations,” AIAA Journal , Vol. 52, No. 5, May 2014, pp. 935–951.

11Kenway, G. K. W. and Martins, J. R. R. A., “Multi-Point High-Fidelity Aerostructural Optimization of a Transport
Aircraft Configuration,” Journal of Aircraft , Vol. 51, No. 1, January 2014, pp. 144–160.

12Economon, T. D., Palacios, F., and Alonso, J. J., “A coupled-adjoint method for aerodynamic and aeroacoustic opti-
mization,” 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSM Multidis-
ciplinary Analysis and Optimization Conference, Indianapolis, IN, September 2012, AIAA 2012-5598.

13Moore, K. T., “Calculation of Sensitivity Derivatives in an MDAO Framework,” 14th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, AIAA, Indianapolis, IN, September 2012.

14Marriage, C. J. and Martins, J. R. R. A., “Reconfigurable Semi-Analytic Sensitivity Methods and MDO Architectures
Within the πMDO Framework,” 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, BC,
September 2008, AIAA 2008-5956.

15Hwang, J. T., Lee, D. Y., Cutler, J. W., and Martins, J. R. R. A., “Large-Scale Multidisciplinary Optimization of a Small
Satellite’s Design and Operation,” Journal of Spacecraft and Rockets, 2014, (In press).

16Martins, J. R. R. A., Sturdza, P., and Alonso, J. J., “The Complex-Step Derivative Approximation,” ACM Transactions
on Mathematical Software, Vol. 29, No. 3, 2003, pp. 245–262.

17Hagberg, A. A., Schult, D. A., and Swart, P. J., “Exploring network structure, dynamics, and function using NetworkX,”
Proceedings of the 7th Python in Science Conference (SciPy2008), Pasadena, CA USA, Aug. 2008, pp. 11–15.

18Pate, D., Gray, J., and German, B., “A graph theoretic approach to problem formulation for multidisciplinary design
analysis and optimization,” Structural and Multidisciplinary Optimization, 2013, pp. 1–18.

19Tarjan, R., “Depth-first search and linear graph algorithms,” SIAM journal on computing, Vol. 1, No. 2, 1972, pp. 146–
160.

20Nuutila, E. and Soisalon-Soininen, E., “On finding the strongly connected components in a directed graph,” Information
Processing Letters, Vol. 49, No. 1, 1994, pp. 9–14.

21Martins, J. R. R. A. and Lambe, A. B., “Multidisciplinary Design Optimization: A Survey of Architectures,” AIAA
Journal , Vol. 51, 2013, pp. 2049–2075.

22Cutler, J., Ridley, A., and Nicholas, A., “Cubesat Investigating Atmospheric Density Response to Extreme Driving
(CADRE),” Proceedings of the AIAA/USU Small Satellite Conference, 2011.

23Lambe, A. B. and Martins, J. R. R. A., “Extensions to the Design Structure Matrix for the Description of Multidisciplinary
Design, Analysis, and Optimization Processes,” Structural and Multidisciplinary Optimization, Vol. 46, August 2012, pp. 273–
284.

20 of 21

American Institute of Aeronautics and Astronautics

24Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP algorithm for large-scale constrained optimization,”
SIAM review , Vol. 47, No. 1, 2005, pp. 99–131.

25Dykes, K., Ning, A., King, R., Graf, P., Scott, G., and Veers, P., “Sensitivity Analysis of Wind Plant Performance to
Key Turbine Design Parameters: A Systems Engineering Approach,” Tech. Rep. NREL/CP-5000-60920, National Renewable
Energy Laboratory, Golden, CO, 2014.

26Ning, A., Damiani, R., and Moriarty, P., “Objectives and Constraints for Wind Turbine Optimization,” Journal of Solar
Energy Engineering, 2014, (In press).

27Ning, A. and Petch, D., “Design Optimization of Downwind Wind Turbines,” Wind Energy, 2014, (Forthcoming).
28Ning, A. and Dykes, K., “Understanding the Benefits and Limitations of Increasing Maximum Rotor Tip Speed for

Utility-Scale Wind Turbines,” Journal of Physics: Conference Series, 2014, (In press).
29“Wind Turbines Part 1: Design requirements,” Tech. Rep. IEC 61400-1, International Electrotechnical Commission, 2005.
30Ning, A., “A simple solution method for the blade element momentum equations with guaranteed convergence,” Wind

Energy, 2013.
31Brent, R. P., “An Algorithm with Guaranteed Convergence for Finding a Zero of a Function,” The Computer Journal ,

Vol. 14, No. 4, 1971, pp. 422–425.
32Ning, A., “pBEAM Documentation,” Tech. Rep. TP-5000-58818, National Renewable Energy Laboratory, September

2013.
33Bir, G., “User’s Guide to PreComp (Pre-Processor for Computing Composite Blade Properties),” Tech. Rep. TP-500-

38929, National Renewable Energy Laboratory, January 2006.
34Jonkman, J., Butterfield, S., Musial, W., and Scott, G., “Definition of a 5-MW Reference Wind Turbine for Offshore

System Development,” NREL/TP-500-38060, National Renewable Energy Laboratory, Golden, CO, Feb 2009.
35Resor, B. R., “Definition of a 5MW/61.5m Wind Turbine Blade Reference Model,” SAND2013-2569, Sandia National

Laboratories, April 2013.

21 of 21

American Institute of Aeronautics and Astronautics

	Introduction
	Unified Derivatives Computations
	Dependency Graph
	Graph Traversal Determining Relevance
	Cycle Detection and Usage

	API for Specifying Discipline Derivatives
	Mandatory API Methods
	Optional API Methods

	Small Satellite Design Problem
	Optimization Results
	Performance Results

	Wind Turbine Design Problem
	Optimization Results
	Performance Results

	Conclusion
	Acknowledgments

