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Kona is a Python library targeting partial-differential-equation (PDE) governed opti-
mization problems. To address the high computational cost of such problems, Kona permits
parallel execution of linear algebra and optimization operations while remaining agnostic to
the implementation details of the underlying PDE solver. To accomplish this, Kona adopts
a reverse-communication-inspired interface where the optimization algorithm requests the
PDE solver to perform a predetermined set of tasks on solver-generated memory. Con-
sequently, the optimization itself is parallelized as long as the user defines parallel data
structures within an abstract vector interface and performs the requested tasks in parallel.
This abstraction layer also facilitates the rapid development of new optimization algorithms
independently from the underlying PDE solvers. In this paper we describe Kona’s software
design in detail, and demonstrate its use on test cases, ranging from analytical verification
problems to a PDE-constrained engineering system.

I. Introduction

Systems governed by partial-differential-equations (PDEs) are prevalent in engineering applications, and
numerical optimization of these systems has become common in aerospace engineering. There are a number of
factors that distinguish these problems from other optimization problems. The analysis of these engineering
systems has a significant computational cost, necessitating the use of parallelized PDE solvers. Furthermore,
existing legacy PDE solvers are usually specialized to their domains, making it challenging to implement
efficient one-shot optimization approaches.

To the best of our knowledge, there are no optimization frameworks tailored to the unique character-
istics of PDE-governed design optimization problems. The state-of-the-art approach has been to use serial
libraries based on matrix-explicit sequential quadratic optimization (SQO) algorithms with quasi-Newton
approximations. However, these problems can sometimes have thousands of design variables and state-based
constraints, particularly for structural design, making matrix-explicit serial algorithms ill-suited. In response,
practitioners often develop their own optimization libraries, but these libraries often lack the features and
robustness of general-purpose libraries and are not appropriate for widespread use.

Our goal in this paper is to introduce a new optimization framework, named Kona, that parallelizes
optimization tasks via a reverse-communication abstraction layer between optimization algorithms and par-
allelized PDE solvers. Development of Kona originally began in 2012 as a C++ library for full-space opti-
mization1 that was subsequently extended to provide reduced-space algorithms.2 The present work stems
from a Python re-write of Kona involving a redesign of the abstraction layer with simplified syntax focused
on reduced-space optimization. We hope that our optimization framework and its reduced-space Newton-
Krylov (RSNK) algorithms will help practitioners perform efficient optimization of PDE-governed systems,
and allow researchers to rapidly develop and test new optimization algorithms. To that end, we have made
Kona available on GitHuba for public use under GNU Lesser General Public License.
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As part of this work, Kona was also integrated into NASA Glenn Research Center’s OpenMDAO frame-
work3 b, a platform for development of coupled multidisciplinary models with analytic derivatives. Open-
MDAO provides a unified interface for a number of optimizers, including several SQP algorithms. Kona’s
integration links our algorithms to a range of problems implemented as part of OpenMDAO, and allows easy
comparison against other SQP methods without having to re-implement a given problem for each optimizer.

We will begin by discussing Kona’s high-level software design in Section II. We will then introduce
implementation examples for a solver and an optimization algorithm in Sections III and IV respectively,
present test cases in Section V and finish with closing remarks in Section VI.

II. Library Design

The high-level design of Kona can be thought of in three blocks: the solver interface, the optimization
algorithm interface, and an abstraction layer that bridges the two together. In this section, we will refer to
these as “solver side”, “optimization side” and “abstraction layer” respectively.

It is important to stress that the optimization side never directly interacts with the solver side and vice
versa, instead going through the abstraction layer. Our motivation for such a separation is to allow the
development of new optimization algorithms and the integration of new PDE solvers independently from
one another.

Figure 1 shows a minimal UML diagram for Kona. Here, ISolver, IAllocator and IVector define the
solver side interfaces. IAlgorithm and IHessian define the optimization side interfaces. Optimizer is the
top level optimization controller users are intended to interact with. Finally, KonaMemory, VectorFactory,
KonaVector and KonaMatrix form the reverse-communication abstraction layer.

Below we will describe the design of each block individually, explaining in detail the components listed in
the UML diagram. To facilitate this discussion, we introduce a generic equality-constrained, PDE-governed
optimization problem statement.

min
x

f(x, u)

subject to c(x, u) ≥ 0

governed by R(x, u) = 0

(1)

where x ∈ Rn are the design variables and u ∈ Rs are the state variables. The objective function, f :
Rn × Rs → R, and constraints, c : Rn × Rs → Rm, are assumed to be C2 continuous functions. In this
work, we focus on reduced-space PDE-governed optimization algorithms. Consequently, we define the state
variables as implicit functions of the design variables via a discretized set of PDEs, denoted here by R(x, u).

While this sample problem is formulated with only one residual, it should be noted that this residual can
also represent a set of coupled PDEs, a multi-point set of uncoupled PDEs, or in general, a set of non-linear
algebraic equations for u. Kona is agnostic to all these combinations, as long as the user formulates appro-
priate operations for this composite residual. Consequently, our references to a “PDE solver” throughout
this discussion is generic and interchangeable with multiple PDE solvers or algebraic equations.

II.A. Solver-side Interface

Kona’s interaction with a PDE solver is inspired by a “reverse communication” feature first proposed by
Ashby and Seager4 in the context of iterative linear system solvers. The goal of reverse communication, as
stated by Ashby and Seager, is to perform algebraic operations while avoiding data-structures entirely, such
that the user has the freedom to implement the data storage in whatever architecture they prefer, and adopt
any parallelization scheme. Consequently, an algorithm using reverse communication never interacts with
data directly. Instead, it sends requests to the user to perform certain linear algebra tasks on data stored in
particular locations. This ensures the algorithm’s operability with both MPI- and GPGPU-style parallelism,
with no scheme-specific modifications to the optimization algorithms.

Kona adopts this reverse communication model by requiring users to create three solver-side objects that
follow a predetermined interface.

• IVector – A vector object implementing ten basic algebra tasks on the underlying data set.

bhttp://openmdao.org/
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multiply dRdU T(IVector)
eval constraints(IVector)
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Figure 1: Minimal UML diagram for Kona, showing only high-level associations.

• IAllocator – A memory allocation tool that will initialize a requested number of IVector objects in
a given vector space.

• ISolver – A solver wrapper with a predetermined set of member functions performing function eval-
uations, partial-derivative evaluations, Jacobian-vector products, and linear and non-linear system
solutions on IVector objects.

II.A.1. Abstract Vectors

User-created vectors are required to be an implementation of the IVector interface shown in the UML
diagram in Figure 1. Depending on the type of problem the user aims to solve, three versions of this abstract
vector may have to be implemented, one for each vector space, namely design variables, state variables and
dual variables.

The IVector interface consists of eight specific algebra operations on the underlying data structure
referenced within the abstract vector. These operations are:

• plus(IVector) – In-place summation with the given vector.

• times scalar(float) – In-place multiplication with a scalar.

• times vector(IVector) – In-place element-wise multiplication with the given vector.

• equals vector(IVector) – Value assignment to the given vector.

• equals value(float) – Value assignment to a scalar.

• equals ax p by(a, IVector, b, IVector) – Value assignment to the scaled sum of two given vectors.

• exp(IVector) – In-place element-wise exponential operation on the given vector.

• inner(IVector) – In-place inner product with the given vector.
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By default, the Kona library provides a basic serial implementation of these operations based on NumPy

ndarray data storage. Source code for this standard implementation is given in Appendix C.
For high-performance applications, the choice of data structure within the abstract-vector object is left

up to the user. However, it is strongly recommended to store and manipulate the data with a compiled
language, in a parallelized environment, consistent with the PDE solver’s data structure. This is facilitated
by Python’s interoperability with other languages; for example, Python can leverage compiled Fortran code
using F2Py,5 or it can be extended to C/C++ using the native Python C API, Cython,6 or external libraries
such as SWIG7 and Boost.Python.8

II.A.2. Vector Allocator

Once the abstract vector object is defined, Kona then requires a way to allocate the underlying data structure
in bulk. This is achieved using an IAllocator interface with three member functions, one for each vector
space, that produce standard Python arrays containing the requested number of user vectors.

As before, Kona provides a basic serial implementation of this called BaseAllocator that produces
BaseVectors sized according to the requested vector space. The source code for this implementation is
provided in Appendix D.

II.A.3. Solver Wrapper

The ISolver wrapper interface defines most of Kona’s reverse communication scheme with the PDE solver.
It contains a reference to the IAllocator implementation, and a set of predetermined member functions
that perform various linear algebra tasks on IVector implementations.

Table 1 outlines all ISolver operations that must be implemented by the user. These methods are called
upon by Kona’s reverse-communication abstraction layer to perform various optimization tasks. For instance,
when an algorithm needs to evaluate the total design derivative of the objective function, the abstraction
layer will first evaluate the partial state derivative using eval dFdU and then use this as the negative right-
hand-side vector in a solve adjoint call in order to calculate adjoint variables. The matrix-vector product

between the adjoint variables and ∂R
∂x

T
, evaluated using multiply dRdX T, will then be added to the partial

design derivative of the objective function, evaluated using eval dFdX. The vector summations are performed
via the algebra tools, also defined by the user, under the IVector implementation.

Kona provides an empty base class implementation of this interface, relying on the aforementioned base
implementations for vector and allocator objects, intended to assist in the rapid development of simple test
problems. The example problem outlined in Section III inherits from this base class in its implementation.
Other example “solvers”, many of which will be used in this work as verification problems, are available
under the kona.examples module for testing.

II.B. Reverse-Communication Abstraction

The core functionality of Kona revolves around the idea of wrapping the user-provided ISolver and IVector

implementations into abstract vectors and matrices, which are then used to write optimization algorithms
with a simple, easy-to-read syntax. In order to accomplish this, the reverse-communication abstraction layer
implements a memory manager that contains a “stack” of user-defined vector objects and factories that wrap
these user-vectors into linear algebra objects used by optimization algorithms.

A very similar abstraction layer, named Thyra, has been developed as part of the Trilinos framework.9

Thrya implements abstract vectors in different vector spaces and provides vector factories for their construc-
tion just as Kona does. In place of abstract matrices, however, Thrya opts to implement linear operators
that define matrix-related operations instead. This choice makes no significant difference in practice. Kona’s
abstract matrix objects do not contain any actual matrix data. They only house matrix-vector operations
such as products and solutions (inverse products) which are ideally implemented matrix-free on the solver
side.

II.B.1. Kona Memory Manager

KonaMemory is a memory manager object that contains a reference to the user-provided ISolver implemen-
tation, and it uses the IAllocator implementation within the solver to create a stack of IVector instances.
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Table 1: Operations defined by the ISolver interface.

Operation Interface Calls

Function evaluations: evaluate the objective function, discrete
PDE residual, and constraints at the design-state pair (x, u)

f = f(x, u) f ∈ R
R = R(x, u) R ∈ Rs

c = c(x, u) c ∈ Rm

eval obj,
eval residual,
eval constraints

Objective derivatives: evaluate the objective function partial
derivatives at the design-state pair (x, u)

y = ∂f
∂x

y ∈ Rn

v = ∂f
∂u

v ∈ Rs

eval dFdX,
eval dFdU

Matrix-vector products: evaluate Jacobian-vector products,
linearized about (x, u)

v = ∂R
∂x
y, y =

(
∂R
∂x

)T
v, y ∈ Rn, v ∈ Rs

v = ∂R
∂u
w, w =

(
∂R
∂u

)T
v, v, w ∈ Rs

µ = ∂c
∂x
y, y =

(
∂c
∂x

)T
µ, y ∈ Rn, µ ∈ Rm

µ = ∂c
∂u
w, w =

(
∂c
∂u

)T
µ, w ∈ Rs, µ ∈ Rm

multiply dRdX, multiply dRdX T,
multiply dRdU, multiply dRdU T,
multiply dCdX, multiply dCdX T,
multiply dCdU, multiply dCdU T

PDE solves: solve the following systems for u, w, and φ

R(x, u) = 0,
(
∂R
∂u

)
w = u,

(
∂R
∂u

)T
φ = v

v, w, u, φ ∈ Rs

solve nonlinear,
solve linear,
solve adjoint

These preallocated user-defined vectors are then wrapped into specialized Kona vectors and served to the
optimization algorithms as needed. Neither the solver-side nor the optimization side are intended to interact
with this memory manager. It is instantiated by the top level optimization controller, and entirely hidden
from the users on either side of the abstraction layer.

KonaMemory implements three functions used to manage the stack:

• push vector(vec type, IVector) – Pushes the given user-defined IVector object onto the stack
associated with the given vector space.

• pop vector(vec type) – Pops and returns a user-defined IVector object from the stack associated
with the requested vector space.

• allocate memory() – Uses the IAllocator implementation provided by the user to populate the
vector stacks with a predetermined number of IVector objects.

It could be said that the memory manager simulates dynamic memory allocation for the optimization
side, while still using preallocated solver memory in practice. Whenever a new KonaVector is created, a
user-defined vector of the appropriate vector space is popped off the memory stack and embedded into the
Kona vector. Conversely, whenever an existing Kona vector is destroyed, the embedded user-defined vector
is pushed onto the memory stack for later use. This scheme emerges from the motivation of making the
optimization algorithm syntax appear like pseudo-code, while also respecting good HPC coding practices by
avoiding a large number of unnecessary allocations and deallocations.

However, this design choice introduces a difficulty in counting the number of user-defined vectors that
need to be preallocated ahead of the optimization. To solve this problem, we implement vector factories.
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II.B.2. Vector Factories

Kona’s vector factories are objects that serve two purposes: 1) tallying up vector allocation requirements
for each vector space, and 2) generating specialized Kona vectors on-demand using preallocated user-defined
vectors from the memory stack. Kona’s memory manager creates three factories in total, one for each vector
space – design (henceforth referred to as “primal”), state and dual. These factories are then passed onto
the optimization algorithm, allowing the algorithm and all its components to report their total data space
requirements to the memory manager during initialization. The same factories are later used by the algorithm
to “dynamically” produce Kona vectors as needed. The RSNK algorithm described in Section IV offers a
thorough use-case example of these factories.

II.B.3. Kona Vectors

Kona internally implements a generalized vector object, KonaVector, that is used as a base class for all spe-
cialized vectors. This class contains fundamental algebra methods such as vector summation and subtraction,
scalar multiplication and division, and inner products, common to all user-vector spaces. Each KonaVector

produced by a vector factory also contains a unique IVector object taken off the internal memory stack.
The algebra operations are then linked to the algebra implementation provided by the user as part of the
IVector interface, allowing all KonaVector objects to perform vector operations without direct access to the
underlying data, or any awareness of the storage and parallelization scheme adopted by the user.

A KonaVector by itself is not sufficient to perform optimization tasks. Three other classes, PrimalVector,
StateVector and DualVector, inherit from KonaVector and add specialized methods for their respective
vector spaces. These specialized methods go through the memory manager and call upon solver methods,
implemented by the user as part of the ISolver interface, to perform various optimization tasks. Conse-
quently, these three vectors are the common vector objects used by all optimization algorithms implemented
in Kona.

Within the abstract vector module, Kona also introduces the concept of a composite vector. As the name
suggests, these objects are composites of the three core vector objects described above. Unlike core vectors,
composite vectors do not possess their own unique data space. Instead, they contain references to component
vectors that make up the composite. For instance, a ReducedKKTVector in Kona is defined by the composite
of a PrimalVector and a DualVector. Any operations defined on this composite vector modifies the data
space of the underlying core vectors.

II.B.4. Kona Matrices

In addition to abstract vectors, Kona also implements abstract matrices that allow optimization algorithms
to use Jacobian-vector products and linear solves. As with vectors, Kona defines a base matrix object called
KonaMatrix that the core set of matrices all inherit from. These core matrices are the residual Jacobians,
dRdX and dRdU, and the constraint Jacobians, dCdX and dCdU.

Unlike vectors, however, the base KonaMatrix object does not implement any useful methods on its own.
Instead, it is used to define an interface that all matrix objects in Kona must adhere to. This interface
requires, at minimum, a transpose attribute .T, as well as linearize() and product() member functions.
The state-Jacobian of the residual, dRdU, additionally implements a solve() method as well. These methods
are all connected to the appropriate Jacobian-vector products and linear solves defined in the ISolver

interface, implemented by the user.
It is important to note here that the Jacobian matrices defined in this module do not possess any

data. They are containers for ISolver methods, which in turn are recommended to be implemented in a
matrix-free fashion. The linearize() method does not actually perform an expensive matrix linearization.
Instead, it simply updates references to the design and state vectors about which linear solves and matrix-
vector products should be performed. These references are used when calling the appropriate Jacobian-vector
product or linear solve method in ISolver. The user is responsible for performing the matrix-linearization
on the solver side, should they choose to perform these operations using assembled matrices.

II.C. Optimization-side Tools and Interfaces

All data manipulation required by optimization algorithms in Kona is provided by the reverse-communication
abstraction layer described above. However, we still need additional tools that build on this abstraction layer
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in order to be able to perform numerical optimization. Consequently, the algorithm layer of Kona has two
purposes: provide basic optimization utilities used by most optimization algorithms, and then build on top
of these tools a common interface for performing the optimization.

In this paper, we will not go into the details of the optimization utilities. These tools are simply Kona-
specific versions of well-known algorithms, adapted to operate on KonaVector and KonaMatrix objects.
Instead, we provide a brief list of what the library has currently implemented:

• Merit Functions – Three types: the objective function, l2 merit function, and the augmented La-
grangian merit function.

• Line-Search Algorithms – Two methods: a back-tracking line search and a line search satisfying the
strong Wolfe conditions.

• Krylov Solvers – Four iterative system solvers: Steihaug-Toint Conjugate Gradient (STCG),10 Flexible
Generalized Minimum Residual (FGMRES),11 Flexible Generalized Conjugate Residual with Outer Trun-
cation (GCROT),12 and a novel variation of FGMRES for equality-constrained quadratic subproblems
called the Flexible Equality-Constrained Subproblem (FLECS) solver.13

The optimization interface, which we will describe in detail, is separated into two complementary com-
ponents: IHessian, a KonaMatrix-like interface defining a Hessian matrix, and IAlgorithm, an algorithm
interface that builds on the Hessian definition to perform the optimization. This separation grants one op-
timization algorithm the flexibility to operate with different Hessian approximations and contributes to the
symbolic math syntax of the library.

II.C.1. Optimization Algorithms

Optimization algorithms in Kona implement the outer/nonlinear optimization iterations within which
KonaVector, KonaMatrix and IHessian objects are used to perform various optimization steps. The
IAlgorithm interface that defines these objects has very few requirements: they must be initialized using
vector factories, and they must implement a solve() method that triggers the optimization.

One of the important functions of these algorithm objects, besides performing the outer optimization
iterations, is to use the vector factories to initialize all the underlying tools required for optimization. At min-
imum this involves initializing the Hessian approximation, but it could also include setting up line searches,
merit functions and Krylov solvers. Performing the initializations using the same vector factories allows the
memory manager to correctly determine the solver-side memory requirements of the entire optimization
process.

Kona currently implements several gradient-based optimization algorithms: unconstrained reduced-space
quasi-Newton, unconstrained STCG-based reduced-space Newton-CG, and two constrained reduced-space
Newton-Krylov (RSNK) algorithms (composite-step14 and FLECS-based). The constrained RSNK algo-
rithms can solve both equality and inequality constrained problems through the use of a novel exponential
slack term that will be described in a future paper by the authors.

II.C.2. Hessian Approximations

Kona’s IHessian interface is modeled after the KonaMatrix objects described before as part of the reverse-
communication abstraction layer. This Hessian interface requires mandatory product() and solve() meth-
ods that operate on various KonaVector objects. Here, the solve() method is equivalent to a product with
the approximate inverse Hessian. Optionally, some approximations might require a linearize() method as
well.

Kona currently implements several Hessian approximations: LimitedMemoryBFGS, LimitedMemorySR1,
ReducedHessian, TotalConstraintJacobian, ReducedKKTMatrix, LagrangianHessian, and
AugmentedKKTMatrix. Our reduced-space quasi-Newton algorithm implementation can operate interchange-
ably with either the L-BFGS or the L-SR1 quasi-Newton approximations, while the remaining five matrices
represent reduced-space systems used in our RSNK methods.
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III. Solver Example: Spiral System

The Spiral system is an unconstrained non-linear optimization problem intended to illustrate how the
ISolver interface operates in practice. The problem has one design variable and two state variables, and is
defined as

min
x

f(x, u(x)) =
1

2
(x2 + u21 + u22)

governed by R(x, u(x)) =

[
cos θ sin θ

− sin θ cos θ

][
u1

u2

]
−

[
x2 cosα

x2 sinα

]
=

[
0

0

]
,

θ =
1

2
(x+ π) and α =

1

2
(x− π),

where the design variable is x ∈ R, and the state variables are u(x) =
[
u1 u2

]T
∈ R2.

With the problem defined, we can now easily derive all the Jacobians and partial derivatives listed in
Table 1.

∂f

∂x
= x,

∂f

∂u
=

[
u1

u2

]
= u,

∂R

∂x
=

1

2

[
− sin θu1 + cos θu2 − 4x cosα+ x2 sinα

− cos θu1 − sin θu2 − 4x sinα− x2 cosα

]
.

∂R

∂u
=

[
cos θ sin θ

− sin θ cos θ

]

In this simple example, explicit Jacobians are very small matrices that can be derived analytically, which
is not representative of large-scale PDE governed optimization problems. When dealing with such solvers,
we have had significant success relying on algorithmic differentiation to generate matrix-free Jacobian-vector
products and partial derivatives.15 We recommend that any large, parallelized solver used with Kona adopt
a similar approach for implementing linearized Jacobian-vector products.

Appendix E includes the Python source code for a class implementing this problem as a standalone
“PDE” solver. This solver is then wrapped into an ISolver implementation in Appendix F for operability
with Kona. In this case, the ISolver implementation inherits from an empty base class linked to Kona’s
default BaseVector and BaseAllocator implementations based on NumPy ndarray data storage.

Since this is a matrix-based solver, it contains a linearization method that updates the non-linear Jaco-
bians and gradients with the design and state points Kona passes onto the ISolver interface as arguments.
As noted before, this approach is typically inadvisable in high-performance applications, as it will yield a
large number of computationally expensive Jacobian assemblies and re-factorizations.

The optimization results of this problem can be found in Section V.A, among other analytical verification
problems.

IV. Algorithm Example: Reduced-Space Newton-CG

Reduced-space Newton-Krylov (RSNK) algorithms are a central part of our approach in addressing the
challenges of PDE-governed design optimization. Consequently, the unconstrained RSNK algorithm offers
a good implementation example that will not only provide a practical application of the IAlgorithm and
IHessian interfaces, but also help justify Kona’s software design choices.

Our focus in this section is the implementation details of the second-order adjoint formulation for the
Hessian-vector product, and the use of this Hessian in the RSNK algorithm. The full derivation of this
formulation, for both unconstrained and equality-constrained problems, is available in previously published
papers by the authors.2,15 However, this description will focus solely on the unconstrained formulation.

We begin by introducing the first-order optimality equations for an unconstrained optimization problem
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g(x, u(x)) = ∇xf(x, u(x)) = 0.

where g(x, u(x)) ∈ Rn is the total derivative of the objective function, ∇xf . Next we linearize about xk to
obtain the system

Hkpk = −gk,

where Hk ∈ Rn×n is the Hessian of the objective function, pk ∈ Rn is the search direction, and gk as defined
above, all evaluated at the design xk ∈ Rn.

The RSNK approach inexactly solves this system at each Newton iteration using a Krylov solver, lever-
aging the rapid convergence of Newton’s method. In addition, employing a Krylov solver allows us to avoid
an explicit Hessian formulation, and instead iteratively solve the system using Hessian-vector products of the
form Hw, where w ∈ Rn is an arbitrary vector in the design space. However, this introduces two challenges:
addressing nonconvexity and efficiently computing the Hessian-vector product itself.

When detailing the optimization side interface for Kona, we introduced some Krylov solvers already im-
plemented in the library based on Kona’s abstract vectors. Out of these implementations, the unconstrained
RSNK algorithm uses the Steihaug-Toint Conjugate Gradient (STCG) solver, while the constrained ver-
sion uses the novel Flexible Equality-Constrained Subproblem (FLECS) solver. Both Krylov solvers adopt
trust-region methods for globalization, thereby addressing the challenge of convexity.

In order to define the Hessian-vector product, RSNK uses a second-order adjoint approach. To facilitate
the discussion of this formulation, we will introduce some new notation.

In general, the optimization problem is governed by a non-linear PDE or state system defined by the
residual R(x, u) = 0 ∈ Rs. The implicit dependence of the state variables, u ∈ Rs, on the design variables
is satisfied through this residual. Consequently, the total design derivative of an objective function that
depends on the states can be formulated using the adjoint method:

g(x, u, ψ) ≡ ∇xf =
∂f

∂x
+
∂R

∂x

T

ψ,

where ψ ∈ Rs are the first-order adjoint variables. The adjoint system is defined as

S(x, u, ψ) =
∂R

∂u

T

ψ +
∂f

∂u
.

For the second-order adjoint formulation, we begin by constructing the Lagrangian,

L(x, u, ψ,w, z, λ) = g(x, u, ψ)Tw + [R(x, u)]Tλ+ [S(x, u, ψ)]T z,

where w ∈ Rn is the arbitrary vector in the Hessian-vector product, and λ, z ∈ Rs are the second-order
adjoint variables. These second-order adjoints can be calculated by solving the following two linear systems,
which are obtained by differentiating the Lagrangian with respect to ψ and u, respectively.

∂R

∂u
z = −∂R

∂x
w,

∂R

∂u

T

λ = −∂g
∂x

T

w − ∂S

∂u

T

z,

The Hessian-vector product is then defined as the derivative of the Lagrangian with respect to the design
variables:

Hw = ∇xL =
∂g

∂x

T

w +
∂R

∂x
λ+

∂S

∂x

T

z.
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Table 2: Analytical test problems categorized by their features.

Problems
Governing
Equation

Equality
Constraints

Inequality
Constraints

State-based
Constraints

Rosenbrock16 × × × ×
Spiral × × ×
Sphere × × ×
Exponential × × ×
Sellar17 ×

It is important to note that this formulation of the Hesian-vector product contains second-derivatives

included in ∂g
∂x

T
and ∂S

∂x

T
, but these derivatives always appear in matrix-vector products. Consequently, our

RSNK implementation approximates the product terms using inexpensive directional finite-differences.
The code for the second-order adjoint formulation is an IHessian implementation, presented as an ab-

stract Kona matrix object named ReducedHessian. It includes the optional linearize() method discussed
earlier, internally assembling the total objective gradient gk and the first-order adjoint residual Sk at the
design-state-adjoint linearization point (xk, uk, ψk)c. Following the linearization, the product() method then
performs the Hessian-vector product as described above for any given w vector.

Using this abstract Hessian object, the RSNK algorithm itself reduces to a simple Newton loop that uses
STCG to solve the Newton system defined by the Hessian object at each iteration. Appendix G shows the
source code for the core Newton loop in the STCG RSNK object. Kona’s Hessian/algorithm separation and
vector abstraction layer together yield an easily readable algorithm, hiding the PDE solver implementation
details completely from the optimization side.

For constrained problems, a similar ReducedKKTMatrix object implements the primal-dual matrix-vector
product used with the FLECS Krylov solver. Individual matrix objects for the Hessian and constraint
Jacobian blocks of the primal-dual matrix are also available, and currently used in the composite-step
algorithm.

In Section V.A, we use the STCG-based RSNK algorithm on the Spiral optimization problem as part of
Kona’s analytical verification tests.

V. Test Cases

To demonstrate Kona’s various capabilities, we present a selection of test cases: a diverse set of analytical
verification problems, and a stress-constrained mass minimization problem.

V.A. Analytical Verification Problems

In order to test, debug and verify Kona, we have implemented five analytical test problems with different
features intended to target various different algorithms in our optimization framework. Table 2 categorizes
these problems based on the existence of state variables and the types of constraints. The Rosenbrock16

function and the Sellar17 problem are documented in literature, and the Spiral problem was described above
in Section E. Appendix A provides mathematical statements of the verification problems developed by the
authors.

The verification problems are tested with the following algorithms in Kona:

• L-BFGS RSQN – Reduced-space quasi-Newton with limited-memory BFGS updates (unconstrained).

• STCG-RSNK – Reduced-space Newton-CG (unconstrained).

• CS-RSNK – Composite-step reduced-space Newton-Krylov (constrained).

• FLECS-RSNK – FLECS-based reduced-space Newton-Krylov (constrained).

cThis assembly does not involve any adjoint recalculations.
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As part of this work, we have also integrated Kona into OpenMDAO 1.x Alpha as an optimization
driver. All the test problems in this section are implemented and solved via OpenMDAO using various
optimization algorithms in Kona. SNOPT,18 a quasi-Newton SQP library available in pyOptSparse,19 is
used as a benchmark in the verification. Figure 2 shows the objective function evaluations across nonlinear
iterations. The measured quantity is the difference between the numerical objective value and the analytical
optimum, normalized by the initial error.

These results demonstrate that the optimization algorithms in Kona recover the expected optima.

V.B. Stress-constrained Mass Minimization

High-performance structures are often designed for minimum weight with a constraint that the stress within
the structure cannot exceed some specified value. When the behavior of the structure is modeled using a
PDE, these types of design problems constitute challenging PDE-governed optimization problems with local
state-based constraints. In this paper, we will consider stress-constrained mass minimization of 2D plane
stress structures. We begin by describing the structural design problem that will be solved.

In a 2D plane-stress problem, the structure consists of a planar domain where the loads are restricted
to lie in-plane. The design parameters in this problem are structural thicknesses, and the state variables
are the displacements along the in-plane coordinate directions. The stress at any point in the structure can
be evaluated based on the in-plane displacements. The stress-constrained problem has several interesting
properties within the context of PDE-governed optimization. Firstly, the governing equations are self-adjoint
and therefore both the direct and transposed matrix-vector products are implemented using the same code.
Furthermore, the preconditioner for both forward and transpose products is also shared. In this case, we
use a preconditioner based on V-cycle multigrid where the operators are formed from a Galerkin projection
between mesh levels.

In this particular implementation, we have adopted the use of inverse thickness design variables in order
to facilitate more favorable trust-region globalization behavior near the lower thickness bound. In addition,
we have also implemented a conic spatial filter, such that the thickness at each element is the weighted combi-
nation of design variables in adjacent elements within the filter. With this parameterization, the thicknesses
can be expressed a function of the design variables:

ti(x) =
∑
k∈Fi

wik

xk
m i = 1, . . . , n,

where n is the number of structural components in the model.
The Jacobian of the governing equations, i.e. the stiffness matrix, can be written as a linear combination

of the thicknesses as follows:

K(x) =

n∑
i=1

ti(x)Ki,

where Ki are positive semi-definite matrices associated with each structural component in the model. The
governing equations are then written as

R(x, u) = K(x)u− f = 0,

where u are the state variables and f is the force vector. The local stress constraints are based on a von
Mises stress criteria and can be written as quadratic functions of the state variables as follows:

ci(u) = 1− uTBT
i GBiu ≥ 0 i = 1, . . . , n,

where Bi ∈ R3×s is a linear operator that returns the strain at a point within the structure as a function of
the displacement vector, and G ∈ R3×3 is a positive-definite matrix with entries that depend on the material
stiffness properties and the maximum allowable stress.

Finally, the mass can be written as

m(x) =

n∑
i=1

mi
1

xi
,
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(a) Rosenbrock function optimization. (b) Spiral problem optimization.

(c) Sphere problem optimization. (d) Exponential problem optimization.

(e) Sellar problem optimization.

Figure 2: Relative error in the objective value across function evaluations for all verification problems
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where mi is the mass per unit thickness of the i-th element of the discrete structure. The full design problem
is

min
x

m(x)

subject to c(u) ≥ 0

xmax ≥ x ≥ xmin

governed by K(x)u− f = 0

where xmin and xmax are the lower and upper bounds on the design variables, recovered from the upper and
lower bounds on plate thicknesses.

In this paper we apply the above problem to a cantilever beam configuration with an applied point load,
as shown in Figure 3. A similar formulation on the same PDE solver, with forcing applied as traction along
the entire edge instead of a point load in the corner, has previously been solved using a full-space Newton-
Krylov approach.20 Here we will be using the FLECS-based reduced-space Newton-Krylov algorithm. Kona’s
abstraction layer is suitable for full-space optimization problems, but we have not yet implemented a full-
space (i.e. one-shot, or SAND) algorithm as part of our optimization framework. We will be exploring this
option in future work.

Figure 3: Cantilever beam configuration.

One of the features of this problem is that the number of design and state variables are easily scalable by
the discretization resolution of the cantilever plate. In this work, we present only the results obtained from a
64-by-32 cartesian grid. This produces 2048 design variables and 6144 constraints; 2048 each for upper and
lower bounds on the design variables, and 2048 total stress constraints across all elements.

Figure 4 shows the convergence history for this problem, where mass, optimality and feasibility metrics
are all normalized by their initial values. Figure 5 shows solutions at several iterations along the optimization
run, where the thickness values increase from red to yellow to blue. While the FLECS-based RSNK algorithm
reduces the optimality and feasibility metrics by roughly three orders of magnitude from their initial values,
we believe that the solution can be converged further. The stress constraints in the reduced-space make the
primal-dual systems exceedingly difficult for the Krylov-based solver to solve to a sufficiently tight tolerance,
which then causes asymptotic nonlinear convergence to suffer.

This mirrors our previous experience applying the RSNK approach to aerodynamic shape optimization,15

and once again highlights the need to develop effective preconditioners for the reduced-space primal-dual
system. This is ongoing work in our research.

VI. Closing Remarks

In this paper, we have described the software design of a novel Python optimization library, called
Kona, that aims to perform parallel optimization of large-scale PDE-governed engineering systems. This is
achieved via a reverse-communication abstraction layer that allows optimization algorithms implemented in
Kona to perform all necessary optimization tasks without access to direct data. This separation makes the
optimization algorithms agnostic to distributed data structures and parallelization schemes implemented by
the underlying “PDE solver”.
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Figure 4: Convergence history for the stress-constrained mass minimization problem.

Through our test problems we have demonstrated integration with OpenMDAO and basic verification of
various optimization algorithms implemented in our library. In the future, we aim to leverage this OpenM-
DAO integration to test our algorithms on large, challenging problems such as a CubeSat satellite optimiza-
tion21 and aircraft mission-allocation.22

We exercised the RSNK algorithm on a stress-constrained mass minimization, a challenging problem
with a large number of state-based constraints. While convergence performance can be improved, we are
nonetheless able to make significant strides towards the optimum. We are pursuing ongoing research in ways
to improve the convergence of the reduced-space primal-dual system for such problems. In the process, the
linear algebra abstraction layer in Kona facilitates rapid development of new algorithms independently from
the underlying solver, helping us achieve short turnaround times while exploring new primal-dual system
preconditioners.

While the results shared here do not demonstrate parallelization, the Python-rewrite of Kona has been
used to perform parallelized aerodynamic shape optimization. This work builds on our previous efforts using
the C++ version of Kona on this problem15 and will be explored further in future research by the authors.
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(a) Initial cantilever beam.

(b) Solution at the 20th Newton iteration.

(c) Solution at the 70th Newton iteration.

(d) Final solution.

Figure 5: Thickness distribution of the plate at representative points in the optimization. Thickness values
increase from red, to yellow, to blue.
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A. Verification Problem Formulations

A.A. Sphere Constrained Problem

min
x,y,z

f(x, y, z) = x+ y + z

subject to 3− (x2 + y2 + z2) ≥ 0

A.B. Exponential Constrained Problem

min
x,y

f(x, y) = x+ y2

subject to ex − 1 ≥ 0

A.C. Sellar Problem

With x =
(
x1 x2 x3

)T
and u =

(
u1 u2

)T
:

min
x

f(x, u) = x23 + x2 + u1 + e−u2

governed by R(x, u) =

[
u1 − x21 − x3 − x2 + 0.2u2

u2 −
√
u1 − x1 − x2

]
=

[
0

0

]
subject to

u1
3.16

− 1 ≥ 0

1− u2
24
≥ 0

− 10 ≤ x1 ≤ 10

0 ≤ x2 ≤ 10

0 ≤ x3 ≤ 10
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B. Full UML Diagram
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Figure 6: Complete UML diagram for Kona optimization library.
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C. BaseVector – IVector Implemention with NumPy

import numpy as np

class BaseVector(object ):

"""

Kona’s default data container , implemented on top of NumPy arrays.

Any user defined data container must implement all the methods below.

These vectors are initialized by the user -created ‘BaseAllocator ‘ object.

Therefore , the initialization implementation does not need to exactly

follow the example below. The user is free to initialize these vector

objects any which way they like , as long as it is in sync with the

‘BaseAllocator ‘ implementation.

Parameters

----------

size: int

Size of the 1-D numpy vector contained in this object.

val : float , optional

Data value for vector initialization.

Attributes

----------

data : numpy.array

Numpy vector containing numerical data.

"""

def __init__(self , size , val =0):

if np.isscalar(val):

if val == 0:

self.data = np.zeros(size , dtype=float)

elif isinstance(val , (np.float , np.int )):

self.data = np.ones(size , dtype=float )*val

elif isinstance(val , (np.ndarray , list , tuple )):

if size != len(val):

raise ValueError(

’size given as %d, but length of value %d’%(size , len(val )))

self.data = np.array(val)

else:

raise ValueError(

’val must be a scalar or array like , ’ +

’but was given as type %s’%(type(val)))

def plus(self , vector ):

"""

Add the given vector to this vector.

Parameters

----------

vector : BaseVector

Incoming vector for in-place operation.

"""

self.data = self.data + vector.data

def times_scalar(self , value ):

"""

Multiply all elements of this vector with the given scalar.

Parameters

----------

value: float

"""

self.data = value*self.data

def times_vector(self , vector ):

"""

Perform element -wise multiplication between vectors.
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Parameters

----------

vector : BaseVector

Incoming vector for in-place operation.

"""

self.data = self.data*vector.data

def equals_value(self , value ):

"""

Set all elements of this vector to given scalar value.

Parameters

----------

value : float

"""

self.data [:] = value

def equals_vector(self , vector ):

"""

Set this vector equal to the given vector.

Parameters

----------

vector : BaseVector

Incoming vector for in-place operation.

"""

self.data [:] = vector.data [:]

def equals_ax_p_by(self , a, x, b, y):

"""

Perform the elementwise scaled addition defined below:

.. math:: a\\ mathbf{x} + b\\ mathbf{y}

The result is saved into this vector.

Parameters

----------

a : double

Scalar coefficient of ‘‘x‘‘.

x : BaseVector

Vector to be operated on.

b : double

Scalar coefficient of ‘‘y‘‘.

y : BaseVector

Vector to be operated on.

"""

self.data = a*x.data + b*y.data

def inner(self , vector ):

"""

Perform an inner product between the given vector and this one.

Parameters

----------

vector : BaseVector

Incoming vector for in-place operation.

Returns

-------

float

Result of the operation.

"""

if len(self.data) == 0:

return 0.

else:

return np.inner(self.data , vector.data)

def exp(self , vector ):

"""
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Calculate element -wise exponential operation on the vector.

Parameters

----------

vector : BaseVector

Incoming vector for in-place operation.

"""

self.data = np.exp(vector.data)
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D. BaseAllocator – IAllocator Implementation for BaseVector

from kona.user import BaseVector

class BaseAllocator(object ):

"""

Allocator object that handles the generation of vectors within the

problem ’s various vector spaces.

Parameters

----------

num_primal : int

Primal space size.

num_state : int

State space size.

num_dual : int

Dual space size.

Attributes

----------

num_primal : int

Primal space size.

num_state : int

State space size.

num_dual : int

Dual space size.

"""

def __init__(self , num_primal , num_state , num_dual ):

self.num_primal = num_primal

self.num_state = num_state

self.num_dual = num_dual

def alloc_primal(self , count ):

"""

Initialize as many instances of the "primal" vector space object as

Kona requested.

Parameters

----------

count : int

Number of vectors requested in the primal -space.

Returns

-------

list

A standard Python array containing the reuqested number of

instances of the user’s primal -space ‘BaseVector ‘ implementation.

"""

out = []

for i in xrange(count):

out.append(BaseVector(self.num_primal ))

return out

def alloc_state(self , count ):

"""

Initialize as many instances of the "state" vector space object as

Kona requested.

Parameters

----------

count : int

Number of vectors requested in the state -space.

Returns

-------

list

A standard Python array containing the reuqested number of

instances of the user’s state -space ‘BaseVector ‘ implementation.

"""
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out = []

for i in xrange(count):

out.append(BaseVector(self.num_state ))

return out

def alloc_dual(self , count):

"""

Initialize as many instances of the "dual" vector space object as

Kona requested.

Parameters

----------

count : int

Number of vectors requested in the dual -space.

Returns

-------

list

A standard Python array containing the reuqested number of

instances of the user’s dual -space ‘BaseVector ‘ implementation.

"""

out = []

for i in xrange(count):

out.append(BaseVector(self.num_dual ))

return out
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E. Spiral Problem – ”PDE” Solver

import numpy as np

class SpiralSolver(object ):

def linearize(self , at_design , at_state=None):

self.X = at_design.data [0]

if at_state is not None:

self.U = at_state.data

else:

self.U = None

@property

def theta(self):

return 0.5*( self.X + np.pi)

@property

def alpha(self):

return 0.5*( self.X - np.pi)

@property

def dRdX(self):

dRdX1 = -np.\sin{self.theta )*self.U[0] + np.\cos{self.theta)*self.U[1] \

- self.X*np.\cos{self.alpha) + (self.X**2)*np.\sin{self.alpha)

dRdX2 = -np.\cos{self.theta )*self.U[0] - np.\sin{self.theta)*self.U[1] \

- self.X*np.\sin{self.alpha) - (self.X**2)*np.\cos{self.alpha)

return 0.5*np.array ([[ dRdX1],[dRdX2 ]])

@property

def dRdU(self):

return np.array ([[np.\cos{self.theta), np.\sin{self.theta)],

[-np.\sin{self.theta), np.\cos{self.theta )]])

@property

def rhs(self):

return np.array ([( self.X**2)*np.\cos{self.alpha),

(self.X**2)*np.\sin{self.alpha )])

@property

def R(self):

return self.dRdU.dot(self.U) - self.rhs

@property

def F(self):

return 0.5*( self.X**2 + self.U[0]**2 + self.U[1]**2)

@property

def dFdX(self):

return np.array([self.X])

@property

def dFdU(self):

return np.array([self.U[0], self.U[1]])

24 of 27

American Institute of Aeronautics and Astronautics



F. Spiral Problem – ISolver Implementation

from kona.user import UserSolver

class Spiral(UserSolver ):

def __init__(self):

super(Spiral , self). __init__ (1,2,0)

self.PDE = SpiralSolver ()

def eval_obj(self , at_design , at_state ):

self.PDE.linearize(at_design , at_state)

return self.PDE.F

def eval_residual(self , at_design , at_state , store_here ):

self.PDE.linearize(at_design , at_state)

store_here.data = self.PDE.R

def multiply_dRdX(self , at_design , at_state , in_vec , out_vec ):

self.PDE.linearize(at_design , at_state)

out_vec.data = self.PDE.dRdX.dot(in_vec.data)

def multiply_dRdU(self , at_design , at_state , in_vec , out_vec ):

self.PDE.linearize(at_design , at_state)

out_vec.data = self.PDE.dRdU.dot(in_vec.data)

def multiply_dRdX_T(self , at_design , at_state , in_vec , out_vec ):

self.PDE.linearize(at_design , at_state)

out_vec.data = self.PDE.dRdX.T.dot(in_vec.data)

def multiply_dRdU_T(self , at_design , at_state , in_vec , out_vec ):

self.PDE.linearize(at_design , at_state)

out_vec.data = self.PDE.dRdU.T.dot(in_vec.data)

def eval_dFdX(self , at_design , at_state , store_here ):

self.PDE.linearize(at_design , at_state)

store_here.data = self.PDE.dFdX

def eval_dFdU(self , at_design , at_state , store_here ):

self.PDE.linearize(at_design , at_state)

store_here.data = self.PDE.dFdU

def init_design(self , store_here ):

store_here.data = np.array ([1.0])

def solve_nonlinear(self , at_design , result ):

# linearize the PDE

self.PDE.linearize(at_design)

# perform the solution

self.PDE.U = np.linalg.solve(self.PDE.dRdU , self.PDE.rhs

# write result and return cost

result.data = self.PDE.U

return 0

def solve_linear(self , at_design , at_state , rhs_vec , rel_tol , result ):

self.PDE.linearize(at_design , at_state)

result.data = np.linalg.solve(self.PDE.dRdU , rhs_vec.data)

return 0

def solve_adjoint(self , at_design , at_state , rhs_vec , rel_tol , result ):

self.PDE.linearize(at_design , at_state)

result.data = np.linalg.solve(self.PDE.dRdU.T, rhs_vec.data)

return 0

25 of 27

American Institute of Aeronautics and Astronautics



G. STCG-based RSNK Algorithm – Newton loop

# use vector factories to generate abstract Kona vectors

x = self.primal_factory.generate ()

p = self.primal_factory.generate ()

dJdX = self.primal_factory.generate ()

primal_work = self.primal_factory.generate ()

state = self.state_factory.generate ()

adjoint = self.state_factory.generate ()

state_work = self.state_factory.generate ()

# set initial design and solve for state

x.equals_init_design ()

state.equals_primal_solution(x)

# solve for adjoint

adjoint.equals_adjoint_solution(x, state , state_work)

# calculate the total gradient

dJdX.equals_total_gradient(x, state , adjoint , primal_work)

# get objective value

obj = objective_value(x, state)

# calculate convergence criterion

grad_norm0 = dJdX.norm2

grad_tol = self.primal_tol*grad_norm0

# start Newton loop

for i in xrange(self.max_iter ):

# check convergence

grad_norm = dJdX.norm2

if grad_norm < grad_tol:

break

# define adaptive Krylov tolerance for superlinear convergence

krylov_tol = self.krylov.rel_tol*min(1.0, sqrt(grad_norm/grad_norm0 ))

krylov_tol = max(krylov_tol , grad_tol/grad_norm)

self.krylov.rel_tol = krylov_tol

# use -dJdX as the Newton step RHS vector

dJdX.times (-1.0)

# update Krylov solver trust -radius

self.krylov.radius = self.radius

# set the evaluation point for the Hessian -vector product

self.hessian.linearize(x, state , adjoint)

# solve the system (H*p = -dJdX)

pred , active = self.krylov.solve(self.hessian.product , dJdX , p)

# revert the sign on dJdX

dJdX.times (-1.0)

# update the design point with the calculated step

x.plus(p)

# compute the objective function reduction and trust parameter rho

obj_old = obj

state_work.equals(state)

if state.equals_primal_solution(x):

obj = objective_value(x, state)

rho = (obj_old - obj)/pred

else:

rho = np.nan

# update trust radius if necessary

if rho < 0.25 or np.isnan(rho):

self.radius *= 0.25

else:

# if we hit the trust boundary , increase radius

if active and (rho > 0.75):
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self.radius = min(2* self.radius , self.max_radius)

# revert the solution if necessary

if rho < 0.1:

x.minus(p)

state.equals(state_work)

else:

# if the solution is good , solve for the adjoint

adjoint.equals_adjoint_solution(x, state , state_work)

# calculate the total gradient

dJdX.equals_total_gradient(x, state , adjoint , primal_work)
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